Spiking neural network (SNN), widely known as the third-generation neural network, has been frequently investigated due to its excellent spatiotemporal information processing capability, high biological plausibility, and low energy consumption characteristics. Analogous to the working mechanism of human brain, the SNN system transmits information through the spiking action of neurons. Therefore, artificial neurons are critical building blocks for constructing SNN in hardware. Memristors are drawing growing attention due to low consumption, high speed, and nonlinearity characteristics, which are recently introduced to mimic the functions of biological neurons. Researchers have proposed multifarious memristive materials including organic materials, inorganic materials, or even two-dimensional materials. Taking advantage of the unique electrical behavior of these materials, several neuron models are successfully implemented, such as Hodgkin–Huxley model, leaky integrate-and-fire model and integrate-and-fire model. In this review, the recent reports of artificial neurons based on memristive devices are discussed. In addition, we highlight the models and applications through combining artificial neuronal devices with sensors or other electronic devices. Finally, the future challenges and outlooks of memristor-based artificial neurons are discussed, and the development of hardware implementation of brain-like intelligence system based on SNN is also prospected.
Chen C, Li K L, Ouyang A J, Zeng Z and Li K Q 2018 GFlink: an in-memory computing architecture on heterogeneous CPU-GPU clusters for big data IEEE Trans. Parallel Distrib. Syst. 29 1275–88
Zhao X N, Xu H Y, Wang Z Q, Lin Y and Liu Y C 2019 Memristors with organic-inorganic halide perovskites InfoMat 1 183–210
Wang Q and He D Y 2017 Time-decay Memristive Behavior and diffusive dynamics in one forget process operated by a 3D vertical Pt/Ta2O5−x/W device Sci. Rep. 7 822
Ravichandran V, Li C, Banagozar A, Yang J J and Xia Q F 2018 Artificial neural networks based on memristive devices Sci. China Inf. Sci. 61 060423
Chen Y, Zhu H Y, Jin H and Sun X H 2012 Algorithm-level Feedback-controlled Adaptive data prefetcher: accelerating data access for high-performance processors Parallel Comput. 38 533–51
Kavi K, Pianelli S, Pisano G, Regina G and Ignatowski M 2015 Memory organizations for 3D-DRAMs and PCMs in processor memory hierarchy J. Syst. Archit. 61 539–52
Ielmini D and Wong H S P 2018 In-memory computing with resistive switching devices Nat. Electron. 1 333–43
Painkras E, Plana L A, Garside J, Temple S, Galluppi F, Patterson C, Lester D R, Brown A D and Furber S B 2013 SpiNNaker: a 1-W 18-core system-on-chip for massively-parallel neural network simulation IEEE J. Solid-State Circuits 48 1943–53
Wang X, Tumeo A, Leidel J D, Li J and Chen Y 2021 HAM: hotspot-aware manager for improving communications with 3D-stacked memory IEEE Trans. Comput. 70 833–48
Kim S G, Han J S, Kim H, Kim S Y and Jang H W 2018 Recent advances in memristive materials for artificial synapses Adv. Mater. Technol. 3 1800457
Xu W T, Cho H, Kim Y H, Kim Y T, Wolf C, Park C G and Lee T W 2016 Organometal halide perovskite artificial synapses Adv. Mater. 28 5916–22
Kuzum D, Yu S M and Wong H S P 2013 Synaptic electronics: materials, devices and applications Nanotechnology 24 382001
Ho V M, Lee J A and Martin K C 2011 The cell biology of synaptic plasticity Science 334 623–8
Tan Z H, Yang R, Terabe K, Yin X B, Zhang X D and Guo X 2016 Synaptic metaplasticity realized in oxide memristive devices Adv. Mater. 28 377–84
Yang Y C, Yin M H, Yu Z Z, Wang Z W, Zhang T, Cai Y M, Lu W D and Huang R 2017 Multifunctional nanoionic devices enabling simultaneous heterosynaptic plasticity and efficient in-memory boolean logic Adv. Electron. Mater. 3 1700032
Wang T, Huang H M, Wang X X and Guo X 2021 An artificial olfactory inference system based on memristive devices InfoMat 3 804–13
Taherkhani A, Belatreche A, Li Y H, Cosma G, Maguire L P and McGinnity T M 2020 A review of learning in biologically plausible spiking neural networks Neural Netw. 122 253–72
Fei W W, Trommer J, Lemme M C, Mikolajick T and Heinzig A 2022 Emerging reconfigurable electronic devices based on two-dimensional materials: a review InfoMat 4 e12355
Merolla P A et al 2014 A million spiking-neuron integrated circuit with a scalable communication network and interface Science 345 668–73
Jaiswal A R, Roy S, Srinivasan G and Roy K 2017 Proposal for a leaky-integrate-fire spiking neuron based on magnetoelectric switching of ferromagnets IEEE Trans. Electron. Devices 64 1818–24
Gao L G, Chen P Y and Yu S M 2017 NbOx based oscillation neuron for neuromorphic computing Appl. Phys. Lett. 111 103503
Pickett M D and Stanley Williams R 2012 Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices Nanotechnology 23 215202
Donato A, Kagias K, Zhang Y and Hilliard M A 2019 Neuronal sub-compartmentalization: a strategy to optimize neuronal function Biol. Rev. 94 1023–37
Swanson L W and Bota M 2010 Foundational model of structural connectivity in the nervous system with a schema for wiring diagrams, connectome, and basic plan architecture Proc. Natl Acad. Sci. USA 107 20610–7
Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G and Wu C Z 2004 Interneurons of the neocortical inhibitory system Nat. Rev. Neurosci. 5 793–807
Wang T Y et al 2022 Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics Nat. Commun. 13 7432
Meng J L, Wang T Y, Zhu H, Li J, Bao W Z, Zhou P, Chen L, Sun Q Q and Zhang D W 2022 Integrated in-sensor computing optoelectronic device for environment-adaptable artificial retina perception application Nano Lett. 22 81–89
Wang T Y et al 2020 Three-dimensional nanoscale flexible memristor networks with ultralow power for information transmission and processing application Nano Lett. 20 4111–20
Yang K, Yang J J, Huang R and Yang Y C 2022 Nonlinearity in memristors for neuromorphic dynamic systems Small Sci. 2 2100049
Kumar S, Wang X X, Strachan J P, Yang Y C and Lu W D 2022 Dynamical memristors for higher-complexity neuromorphic computing Nat. Rev. Mater. 7 575–91
Alexandrov A S, Bratkovsky A M, Bridle B, Savel’ev S E, Strukov D B and Williams R S 2011 Current-controlled negative differential resistance due to Joule heating in TiO2 Appl. Phys. Lett. 99 202104
Pickett M D, Borghetti J, Yang J J, Medeiros-Ribeiro G and Williams R S 2011 Coexistence of memristance and negative differential resistance in a nanoscale metal-oxide-metal system Adv. Mater. 23 1730–3
Kumar S, Williams R S and Wang Z W 2020 Third-order nanocircuit elements for neuromorphic engineering Nature 585 518–23
Yu J W, Zeng F, Wan Q, Lu Z A and Pan F 2023 Emulation of auditory senses depending on chaotic dynamics of threshold switching memristor InfoMat. e12458
Cao R R et al 2022 Compact artificial neuron based on anti-ferroelectric transistor Nat. Commun. 13 7018
Bian J Y, Tao Y, Wang Z Q, Zhang X H, Zhao X N, Lin Y, Xu H Y and Liu Y C 2022 A stacked memristive device enabling both analog and threshold switching behaviors for artificial leaky integrate and fire neuron IEEE Electron Device Lett. 43 1436–9
Wang Y et al 2021 Artificial neurons based on Ag/V2C/W threshold switching memristors Nanomaterials 11 2860
Fang X Y, Duan S K and Wang L D 2021 Memristive hodgkin-huxley spiking neuron model for reproducing neuron behaviors Front. Neurosci. 15 730566
Yi W, Tsang K K, Lam S K, Bai X W, Crowell J A and Flores E A 2018 Biological plausibility and stochasticity in scalable VO2 active memristor neurons Nat. Commun. 9 4661
Yang R et al 2018 Synaptic suppression triplet-STDP learning rule realized in second-order memristors Adv. Funct. Mater. 28 1704455
Sung S H, Kim T J, Shin H, Im T H and Lee K J 2022 Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse Nat. Commun. 13 2811
Zhang X M et al 2018 An artificial neuron based on a threshold switching memristor IEEE Electron Device Lett. 39 308–11
Lashkare S, Chouhan S, Chavan T, Bhat A, Kumbhare P and Ganguly U 2018 PCMO RRAM for integrate-and-fire neuron in spiking neural networks IEEE Electron Device Lett. 39 484–7
Zhang X M et al 2020 An artificial spiking afferent nerve based on Mott memristors for neurorobotics Nat. Commun. 11 51
Yuan R et al 2022 A calibratable sensory neuron based on epitaxial VO2 for spike-based neuromorphic multisensory system Nat. Commun. 13 3973
Wang Y, Gong Y, Huang S M, Xing X C, Lv Z Y, Wang J J, Yang J Q, Zhang G H, Zhou Y and Han S T 2021 Memristor-based biomimetic compound eye for real-time collision detection Nat. Commun. 12 5979
Fu T D, Liu X M, Fu S, Woodard T, Gao H Y, Lovley D R and Yao J 2021 Self-sustained green neuromorphic interfaces Nat. Commun. 12 3351
Agatonovic-Kustrin S and Beresford R 2000 Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research J. Pharm. Biomed. Anal. 22 717–27
Choi S, Yang J and Wang G 2020 Emerging memristive artificial synapses and neurons for energy-efficient neuromorphic computing Adv. Mater. 32 2004659
Lee G, Baek J H, Ren F, Pearton S J, Lee G H and Kim J 2021 Artificial neuron and synapse devices based on 2D materials Small 17 2100640
Li Z Y, Tang W, Zhang B N, Yang R and Miao X S 2023 Emerging memristive neurons for neuromorphic computing and sensing Sci. Technol. Adv. Mater. 24 2188878
Tuma T, Pantazi A, Le Gallo M, Sebastian A and Eleftheriou E 2016 Stochastic phase-change neurons Nat. Nanotechnol. 11 693–9
Pickett M D, Medeiros-Ribeiro G and Williams R S 2013 A scalable neuristor built with Mott memristors Nat. Mater. 12 114–7
Wang J J, Hu S G, Zhan X T, Yu Q, Liu Z, Chen T P, Yin Y, Hosaka S and Liu Y 2018 Handwritten-digit recognition by hybrid convolutional neural network based on HfO2 memristive spiking-neuron Sci. Rep. 8 12546
Tassetto M and Gao F B 2006 Transcriptional control of dendritic patterning in Drosophila neurons Genome Biol. 7 225
Sardi S, Vardi R, Sheinin A, Goldental A and Kanter I 2017 New types of experiments reveal that a neuron functions as multiple independent threshold units Sci. Rep. 7 18036
Deemyad T, Lüthi J and Spruston N 2018 Astrocytes integrate and drive action potential firing in inhibitory subnetworks Nat. Commun. 9 4336
Saghatelyan A, Carleton A, Lagier S, de Chevigny A and Lledo P M 2003 Local neurons play key roles in the mammalian olfactory bulb J. Physiol. 97 517–28
Luczak A, McNaughton B L and Kubo Y 2022 Neurons learn by predicting future activity Nat. Mach. Intell. 4 62–72
Benfenati V et al 2013 A transparent organic transistor structure for bidirectional stimulation and recording of primary neurons Nat. Mater. 12 672–80
Shibata T and Ohmi T 1993 Neuron MOS binary-logic integrated circuits. I. Design fundamentals and soft-hardware-logic circuit implementation IEEE Trans. Electron Devices 40 570–6
Tanaka H, Morie T and Aihara K 2006 An analog CMOS circuit for spiking neuron models Int. Congr. Ser. 1291 217–20
Yan X B, Zhang L, Yang Y Q, Zhou Z Y, Zhao J H, Zhang Y Y, Liu Q and Chen J S 2017 Highly improved performance in Zr0.5Hf0.5O2 films inserted with graphene oxide quantum dots layer for resistive switching non-volatile memory J. Mater. Chem. C 5 11046–52
Zhang M Y, Long S B, Li Y, Liu Q, Lv H B, Miranda E A, Suñé J and Liu M 2016 Analysis on the filament structure evolution in reset transition of Cu/HfO2/Pt RRAM device Nanoscale Res. Lett. 11 269
Chen Y H et al 2019 Realization of artificial neuron using MXene bi-directional threshold switching memristors IEEE Electron Device Lett. 40 1686–9
Zhao X J, Chang K, Liu B B, Jiang K A, Hu C H, Wang Y and Wang H 2022 Electrochemical-tunable and mesostructure-dependent abrupt-to-progressive conversion in fibroin-based transient memristor Appl. Phys. Lett. 121 023301
Mikhaylov A N et al 2016 Field-and irradiation-induced phenomena in memristive nanomaterials Phys. Status Solidi c 13 870–81
Zhang T, Yin M H, Xu C M, Lu X Y, Sun X H, Yang Y C and Huang R 2017 High-speed true random number generation based on paired memristors for security electronics Nanotechnology 28 455202
Kim G, In J H, Kim Y S, Rhee H, Park W, Song H, Park J and Kim K M 2021 Self-clocking fast and variation tolerant true random number generator based on a stochastic mott memristor Nat. Commun. 12 2906
John R A, Shah N, Vishwanath S K, Ng S E, Febriansyah B, Jagadeeswararao M, Chang C H, Basu A and Mathews N 2021 Halide perovskite memristors as flexible and reconfigurable physical unclonable functions Nat. Commun. 12 3681
Lv F C, Yang R and Guo X 2017 Analog and digital reset processes observed in Pt/CuO/Pt memristive devices Solid State Ion. 303 161–6
Pan F, Chen C, Wang Z S, Yang Y C, Yang J and Zeng F 2010 Nonvolatile resistive switching memories-characteristics, mechanisms and challenges Prog. Nat. Sci.: Mater. Int. 20 1–15
Wang C, Song B and Zeng Z M 2017 Excellent selector performance in engineered Ag/ZrO2:Ag/Pt structure for high-density bipolar RRAM applications AIP Adv. 7 125209
Zhang Y et al 2021 Evolution of the conductive filament system in HfO2-based memristors observed by direct atomic-scale imaging Nat. Commun. 12 7232
Zhuang P P, Ma W Z, Liu J, Cai W W and Lin W Y 2021 Progressive RESET induced by Joule heating in hBN RRAMs Appl. Phys. Lett. 118 143101
Yamasaki T and Narahashi T 1958 Effects of potassium and sodium ions on the resting and action potentials of the giant axon of the cockroach Nature 182 1805
Babacan Y, Kaçar F and Gürkan K 2016 A spiking and bursting neuron circuit based on memristor Neurocomputing 203 86–91
Kumar S, StrachanJ P and Williams R S 2017 Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing Nature 548 318–21
Sohn J I, Cha S N, Son S B, Kim J M, Welland M E and Hong W K 2017 Metastable state-induced consecutive step-like negative differential resistance behaviors in single crystalline VO2 nanobeams Nanoscale 9 8200–6
Zhang J M et al 2016 Thermally induced crystallization in NbO2 thin films Sci. Rep. 6 34294
Kumar S et al 2017 Physical origins of current and temperature controlled negative differential resistances in NbO2 Nat. Commun. 8 658
Sakai J 2008 High-efficiency voltage oscillation in VO2 planer-type junctions with infinite negative differential resistance J. Appl. Phys. 103 103708
Pattanayak M, Hoque N, Fan Z Y and Bernussi A A 2018 Electrical oscillation generation with current-induced resistivity switching in VO2 micro-channel devices Sci. Technol. Adv. Mater. 19 693–701
Mulaosmanovic H, Chicca E, Bertele M, Mikolajick T and Slesazeck S 2018 Mimicking biological neurons with a nanoscale ferroelectric transistor Nanoscale 10 21755–63
Cheng Y X, Peng B, Hu Z Q, Zhou Z Y and Liu M 2018 Recent development and status of magnetoelectric materials and devices Phys. Lett. A 382 3018–25
Kundu S, Maurya D, Clavel M, Zhou Y, Halder N N, Hudait M K, Banerji P and Priya S 2015 Integration of lead-free ferroelectric on HfO2/Si (100) for high performance non-volatile memory applications Sci. Rep. 5 8494
Heron J T et al 2014 Deterministic switching of ferromagnetism at room temperature using an electric field Nature 516 370–3
Kang W, Ran Y, Zhang Y G, Lv W F and Zhao W S 2017 Modeling and exploration of the voltage-controlled magnetic anisotropy effect for the next-generation low-power and high-speed MRAM applications IEEE Trans. Nanotechnol. 16 387–95
Liu J, Geng W P, Chou X J and Zhang W D 2012 Electric-field-induced antiferroelectric to ferroelectric and ferroelectric to paraelectric phase transition at various temperatures in (Pb, La)(Zr, Ti)O3 antiferroelectric thick films J. Sol-Gel Sci. Technol. 62 414–8
Xu T, Xiang L Y, Xu M L, Xie W F and Wang W 2017 Excellent low-voltage operating flexible ferroelectric organic transistor nonvolatile memory with a sandwiching ultrathin ferroelectric film Sci. Rep. 7 8890
Karthik T, Radhakrishanan D, Narayana C and Asthana S 2018 Nature of electric field driven ferroelectric phase transition in lead-free Na1/2Bi1 2TiO3: in-situ temperature dependent ferroelectric hysteresis and Raman scattering studies J. Alloys Compd. 732 945–51
Wuttig M and Yamada N 2007 Phase-change materials for rewriteable data storage Nat. Mater. 6 824–32
Wuttig M, Bhaskaran H and Taubner T 2017 Phase-change materials for non-volatile photonic applications Nat. Photon. 11 465–76
Wang L, Lu S R and Wen J 2017 Recent advances on neuromorphic systems using phase-change materials Nanoscale Res. Lett. 12 347
Lacaita A L 2006 Phase change memories: state-of-the-art, challenges and perspectives Solid-State Electron. 50 24–31
Burr G W et al 2016 Recent progress in phase-change memory technology IEEE J. Emerg. Sel. Top. Circuits Syst. 6 146–62
Tuma T, Le Gallo M, Sebastian A and Eleftheriou E 2016 Detecting correlations using phase-change neurons and synapses IEEE Electron Device Lett. 37 1238–41
Wright C D, Hosseini P and Diosdado J A V 2013 Beyond von-neumann computing with nanoscale phase-change memory devices Adv. Funct. Mater. 23 2248–54
Gupta I, Serb A, Khiat A, Zeitler R, Vassanelli S and Prodromakis T 2016 Real-time encoding and compression of neuronal spikes by metal-oxide memristors Nat. Commun. 7 12805
Zhong Y N, Wang T, Gao X, Xu J L and Wang S D 2018 Synapse-like organic thin film memristors Adv. Funct. Mater. 28 1800854
Huang H M, Yang R, Tan Z H, He H K, Zhou W, Xiong J and Guo X 2019 Quasi-Hodgkin-Huxley neurons with leaky integrate-and-fire functions physically realized with memristive devices Adv. Mater. 31 1803849
Tsumoto K, Kitajima H, Yoshinaga T, Aihara K and Kawakami H 2006 Bifurcations in Morris-Lecar neuron model Neurocomputing 69 293–316
Hu X Y, Liu C X, Liu L, Ni J K and Li S L 2016 An electronic implementation for Morris-Lecar neuron model Nonlinear Dyn. 84 2317–32
Ditlevsen S and Greenwood P 2013 The Morris-Lecar neuron model embeds a leaky integrate-and-fire model J. Math. Biol. 67 239–59
Izhikevich E M 2003 Simple model of spiking neurons IEEE Trans. Neural Netw. 14 1569–72
Kampakis S 2012 Improved Izhikevich neurons for spiking neural networks Soft Comput. 16 943–53
Häusser M 2000 The Hodgkin-Huxley theory of the action potential Nat. Neurosci. 3 1165
Catterall W A, Raman I M, Robinson H P C, Sejnowski T J and Paulsen O 2012 The hodgkin-huxley heritage: from channels to circuits J. Neurosci. 32 14064–73
Schwiening C J 2012 A brief historical perspective: Hodgkin and Huxley J. Physiol. 590 2571–5
Wareham A C 2005 Action potential: generation and propagation Anaesth. Intensive Care Med. 6 200–3
Torres Valderrama A, Witteveen J, Navarro M and Blom J 2015 Uncertainty propagation in nerve impulses through the action potential mechanism J. Math. Neurosci. 5 3
Erdem R and Ekiz C 2005 A kinetic model for voltage-gated ion channels in cell membranes based on the path integral method Physica A 349 283–90
Cohen A, Shappir J, Yitzchaik S and Spira M E 2008 Reversible transition of extracellular field potential recordings to intracellular recordings of action potentials generated by neurons grown on transistors Biosens. Bioelectron. 23 811–9
Wang R B, Wang Z Y and Zhu Z Y 2018 The essence of neuronal activity from the consistency of two different neuron models Nonlinear Dyn. 92 973–82
Dutta S, Kumar V, Shukla A, Mohapatra N R and Ganguly U 2017 Leaky integrate and fire neuron by charge-discharge dynamics in floating-body MOSFET Sci. Rep. 7 8257
Fang X Y, Liu D R, Duan S K and Wang L D 2022 Memristive LIF spiking neuron model and its application in morse code Front. Neurosci. 16 853010
Zare M, Zafarkhah E and Anzabi-Nezhad N S 2021 An area and energy efficient LIF neuron model with spike frequency adaptation mechanism Neurocomputing 465 350–8
Lim H, Kornijcuk V, Seok J Y, Kim S K, Kim I, Hwang C S and Jeong D S 2015 Reliability of neuronal information conveyed by unreliable neuristor-based leaky integrate-and-fire neurons: a model study Sci. Rep. 5 9776
Lv M and Ma J 2016 Multiple modes of electrical activities in a new neuron model under electromagnetic radiation Neurocomputing 205 375–81
Xu Y, Ying H P, Jia Y, Ma J and Hayat T 2017 Autaptic regulation of electrical activities in neuron under electromagnetic induction Sci. Rep. 7 43452
Serb A et al 2020 Author correction: memristive synapses connect brain and silicon spiking neurons Sci. Rep. 10 9584
Rzeszut P, Chȩciński J, Brzozowski I, Ziȩtek S, Skowroński W and Stobiecki T 2022 Multi-state MRAM cells for hardware neuromorphic computing Sci. Rep. 12 7178
Zhang X M et al 2021 Hybrid memristor-CMOS neurons for in-situ learning in fully hardware memristive spiking neural networks Sci. Bull. 66 1624–33
Dev D, Krishnaprasad A, Shawkat M S, He Z Z, Das S, Fan D L, Chung H, Jung Y and Roy T 2020 2D MoS2-based threshold switching memristor for artificial neuron IEEE Electron Device Lett. 41 936–9
Lu Y F, Li Y, Li H Y, Wan T Q, Huang X D, He Y H and Miao X S 2020 Low-power artificial neurons based on Ag/TiN/HfAlOx/Pt threshold switching memristor for neuromorphic computing IEEE Electron Device Lett. 41 1245–8
Mao H W, He Y L, Chen C S, Zhu L, Zhu Y X, Zhu Y, Ke S, Wang X J, Wan C J and Wan Q 2022 A spiking stochastic neuron based on stacked InGaZnO memristors Adv. Electron. Mater. 8 2100918
Lumpkin E A and Caterina M J 2007 Mechanisms of sensory transduction in the skin Nature 445 858–65
van Giesen L, Hernandez-Nunez L, Delasoie-Baranek S, Colombo M, Renaud P, Bruggmann R, Benton R, Samuel A D T and Sprecher S G 2016 Erratum: multimodal stimulus coding by a gustatory sensory neuron in Drosophila larvae Nat. Commun. 7 11028
Chadderton P, Schaefer A T, Williams S R and Margrie T W 2014 Sensory-evoked synaptic integration in cerebellar and cerebral cortical neurons Nat. Rev. Neurosci. 15 71–83
Norwich K H 1977 On the information received by sensory receptors Bull. Math. Biol. 39 453–61
Jung Y H, Park B, Kim J U and Kim T I 2019 Bioinspired electronics for artificial sensory systems Adv. Mater. 31 1803637
Collin S P 2007 Nervous and sensory systems Fish Physiol. 26 121–79
Mishkin M, Ungerleider L G and Macko K A 1983 Object vision and spatial vision: two cortical pathways Trends Neurosci. 6 414–7
van Polanen V and Davare M 2015 Interactions between dorsal and ventral streams for controlling skilled grasp Neuropsychologia 79 186–91
Freud E, Plaut D C and Behrmann M 2016 'What' is happening in the dorsal visual pathway Trends Cogn. Sci. 20 773–84
Wang X Q, Hou Z G, Zou A M, Tan M and Cheng L 2008 A behavior controller based on spiking neural networks for mobile robots Neurocomputing 71 655–66
Wang Y, Liu S J, Wang H, Zhao Y and Zhang X D 2022 Neuron devices: emerging prospects in neural interfaces and recognition Microsyst. Nanoeng. 8 128
Horgue L F, Assens A, Fodoulian L, Marconi L, Tuberosa J, Haider A, Boillat M, Carleton A and Rodriguez I 2022 Transcriptional adaptation of olfactory sensory neurons to GPCR identity and activity Nat. Commun. 13 2929
Chun S et al 2021 An artificial neural tactile sensing system Nat. Electron. 4 429–38
Duan Q X, Zhang T, Liu C, Yuan R, Li G, Tiw P J, Yang K, Ge C, Yang Y C and Huang R 2022 Artificial multisensory neurons with fused haptic and temperature perception for multimodal in-sensor computing Adv. Intell. Syst. 4 2200039
Sun F Q, Lu Q F, Hao M M, Wu Y, Li Y, Liu L, Li L H, Wang Y Y and Zhang T 2022 An artificial neuromorphic somatosensory system with spatio-temporal tactile perception and feedback functions npj Flex. Electron. 6 72
Wu X M, Li E L, Liu Y Q, Lin W K, Yu R J, Chen G X, Hu Y Y, Chen H P and Guo T L 2021 Artificial multisensory integration nervous system with haptic and iconic perception behaviors Nano Energy 85 106000
Sun L, Du Y, Yu H Y, Wei H H, Xu W L and Xu W T 2022 An artificial reflex arc that perceives afferent visual and tactile information and controls efferent muscular actions Research 2022 9851843
Iqbal S M A, Mahgoub I, Du E, Leavitt M A and Asghar W 2021 Advances in healthcare wearable devices npj Flex. Electron. 5 9
Dai B Y, Gao C C and Xie Y N 2022 Flexible wearable devices for intelligent health monitoring View 3 20220027
Bayoumy K et al 2021 Smart wearable devices in cardiovascular care: where we are and how to move forward Nat. Rev. Cardiol. 18 581–99
Maiti R, Gerhardt L C, Lee Z S, Byers R A, Woods D, Sanz-Herrera J A, Franklin S E, Lewis R, Matcher S J and Carré M J 2016 In vivo measurement of skin surface strain and sub-surface layer deformation induced by natural tissue stretching J. Mech. Behav. Biomed. Mater. 62 556–69
Hua Q L, Sun J L, Liu H T, Bao R R, Yu R M, Zhai J Y, Pan C F and Wang Z L 2018 Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing Nat. Commun. 9 244
Lee W W, Tan Y J, Yao H C, Li S, See H H, Hon M, Ng K A, Xiong B, Ho J S and Tee B C 2019 A neuro-inspired artificial peripheral nervous system for scalable electronic skins Sci. Robot. 4 eaax2198
Kim M K, Parasuraman R N, Wang L, Park Y, Kim B, Lee S J, Lu N S, Min B C and Lee C H 2019 Soft-packaged sensory glove system for human-like natural interaction and control of prosthetic hands npg Asia Mater. 11 43
Lin C T, He C W, Huang T T and Pan C L 2017 Longevity control by the nervous system: sensory perception, stress response and beyond Transl. Med. Aging 1 41–51
Schulze P, Bestgen A K, Lech R K, Kuchinke L and Suchan B 2017 Preprocessing of emotional visual information in the human piriform cortex Sci. Rep. 7 9191
Vetter P, Smith F W and Muckli L 2014 Decoding sound and imagery content in early visual cortex Curr. Biol. 24 1256–62
Smith S L and Häusser M 2010 Parallel processing of visual space by neighboring neurons in mouse visual cortex Nat. Neurosci. 13 1144–9
Koch C and Segev I 2000 The role of single neurons in information processing Nat. Neurosci. 3 1171–7
Lee T S, Mumford D, Romero R and Lamme V A F 1998 The role of the primary visual cortex in higher level vision Vis. Res. 38 2429–54
Iacaruso M F, Gasler I T and Hofer S B 2017 Synaptic organization of visual space in primary visual cortex Nature 547 449–52
Chen J W, Zhou Z, Kim B J, Zhou Y, Wang Z Q, Wan T Q, Yan J M, Kang J F, Ahn J H and Chai Y 2023 Optoelectronic graded neurons for bioinspired in-sensor motion perception Nat. Nanotechnol. 18 882–8
Wang H, Du Y M, Li Y T, Zhu B W, Leow W R, Li Y G, Pan J S, Wu T and Chen X D 2015 Configurable resistive switching between memory and threshold characteristics for protein-based devices Adv. Funct. Mater. 25 3825–31
Wang S S, Wang R, Cao Y X, Ma X H, Wang H and Hao Y 2023 Bio-voltage memristors: from physical mechanisms to neuromorphic interfaces Adv. Electron. Mater. 9 2200972
Matsukatova A N, Emelyanov A V, Kulagin V A, Vdovichenko A Y, Minnekhanov A A and Demin V A 2022 Nanocomposite parylene-C memristors with embedded Ag nanoparticles for biomedical data processing Org. Electron. 102 106455
Zhang Y, Fan S N and Zhang Y P 2021 Bio-memristors based on silk fibroin Mater. Horiz. 8 3281–94
Xu J Q, Zhao X N, Zhao X L, Wang Z Q, Tang Q X, Xu H Y and Liu Y C 2022 Memristors with biomaterials for biorealistic neuromorphic applications Small Sci. 2 2200028
Fu T D et al 2020 Bioinspired bio-voltage memristors Nat. Commun. 11 1861
O’Brien F J 2011 Biomaterials & scaffolds for tissue engineering Mater. Today 14 88–95
Orive G, Anitua E, Pedraz J L and Emerich D F 2009 Biomaterials for promoting brain protection, repair and regeneration Nat. Rev. Neurosci. 10 682–92
Chen F M and Liu X H 2016 Advancing biomaterials of human origin for tissue engineering Prog. Polym. Sci. 53 86–168
Zhang K et al 2018 Advanced smart biomaterials and constructs for hard tissue engineering and regeneration Bone Res. 6 31
Omichi M, Asano A, Tsukuda S, Takano K, Sugimoto M, Saeki A, Sakamaki D, Onoda A, Hayashi T and Seki S 2014 Fabrication of enzyme-degradable and size-controlled protein nanowires using single particle nano-fabrication technique Nat. Commun. 5 3718
Maeda Y and Matsui H 2012 Genetically engineered proteinnanowires: unique features in site-specific functionalization and multi-dimensional self-assembly Soft Matter 8 7533–44
Men D, Zhang Z P, Guo Y C, Zhu D H, Bi L J, Deng J Y, Cui Z Q, Wei H P and Zhang X E 2010 An auto-biotinylated bifunctional protein nanowire for ultra-sensitive molecular biosensing Biosens. Bioelectron. 26 1137–41
Wang J J, Qian F S, Huang S M, Lv Z Y, Wang Y, Xing X C, Chen M, Han S T and Zhou Y 2021 Recent progress of protein-based data storage and neuromorphic devices Adv. Intell. Syst. 3 2000180
Wang T et al 2022 A chemically mediated artificial neuron Nat. Electron. 5 586–95
Li X Y et al 2020 Power-efficient neural network with artificial dendrites Nat. Nanotechnol. 15 776–82