AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Opportunities for Computational Techniques for Multi-Omics Integrated Personalized Medicine

Department of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China.
Department of Computer Science and Engineering, State University of New York at Buffalo, Buffalo, NY 14260-2500, USA.
Show Author Information

Abstract

Personalized medicine is defined as "a model of healthcare that is predictive, personalized, preventive, and participator" and has very broad content. With the rapid development of high-throughput technologies, an explosive accumulation of biological information is collected from multiple layers of biological processes, including genomics, transcriptomics, proteomics, metabonomics, and interactomics (omics). Implementing integrative analysis of these multiple omics data is the best way of deriving systematical and comprehensive views of living organisms, achieving better understanding of disease mechanisms, and finding operable personalized health treatments. With the help of computational methods, research in the field of biology and biomedicine has gained tremendous benefits over the past few decades. In the new era of personalized medicine, we will rely more on the assistance of computational analysis. In this paper, we briefly review the generation of multiple omics and their basic characteristics. And then the challenges and opportunities for computational analysis are discussed and some state-of-art analysis methods that were recently proposed by peers for integrative analysis of multiple omics data are reviewed. We foresee that further integrated omics data platform and computational tools would help to translate the biological knowledge to clinical usage and accelerate development of personalized medicine.

References

[1]
C. L. Overby and P. Tarczy-Hornoch, Personalized medicine: Challenges and opportunities for translational bioinformatics, Per. Med., vol. 10, no. 5, pp. 453-462, 2013.
[2]
S. Olson, S. H. Beachy, C. F. Giammaria, and A. C. Berger, Integrating Large-Scale Genomic Information into Clinical Practice: Workshop Summary. The National Academies Press, 2012.
[3]
L. Hood and M. Flores, A personal view on systems medicine and the emergence of proactive fP4g medicine: Predictive, preventive, personalized and participatory, New Biotechnology, vol. 29, no. 6, pp. 613-624, 2012.
[4]
I. S. Chan and G. S. Ginsburg, Personalized medicine: Progress and promise, Annual Review of Genomics and Human Genetics, vol. 12, no. 1, pp. 217-244, 2011.
[5]
B. Munos, Lessons from 60 years of pharmaceutical innovation, Nature Reviews Drug Discovery, vol. 8, no. 12, pp. 959-968, 2009.
[6]
S. M. Paul, D. S. Mytelka, C. T. Dunwiddie, C. C. Persinger, B. H. Munos, S. R. Lindborg, and A. L. Schacht, How to improve r&d productivity: The pharmaceutical industry’s grand challenge, Nature Reviews Drug Discovery, vol. 9, no. 3, pp. 203-214, 2010.
[7]
C. P. Webb and D. M. Cherba, Systems biology of personalized medicine, in Bioinformatics for Systems Biology. Springer, 2009, pp. 615-630.
[8]
M. Kussmann, F. Raymond, and M. Affolter, Omicsdriven biomarker discovery in nutrition and health, Journal of Biotechnology, vol. 124, no. 4, pp. 758-787, 2006.
[9]
L. Chin, W. C. Hahn, G. Getz, and M. Meyerson, Making sense of cancer genomic data, Genes & Development, vol. 25, no. 6, pp. 534-555, 2011.
[10]
Y. Guan, C. L. Ackert-Bicknell, B. Kell, O. G. Troyanskaya, and M. A. Hibbs, Functional genomics complements quantitative genetics in identifying diseasegene associations, PLoS Computational Biology, vol. 6, no. 11, p. e1000991, 2010.
[11]
J. Shendure and H. Ji, Next-generation dna sequencing, Nature Biotechnology, vol. 26, no. 10, pp. 1135-1145, 2008.
[12]
M. L. Metzker, Sequencing technologiesthe next generation, Nature Reviews Genetics, vol. 11, no. 1, pp. 31-46, 2010.
[13]
G. Chen and T. Shi, Next-generation sequencing technologies for personalized medicine: Promising but challenging, Science China: Life Sciences, vol. 56, no. 2, pp. 101-103, 2013.
[14]
I. Toma, G. St Laurent, and T. A. McCaffrey, Toward knowing the whole human: Next-generation sequencing for personalized medicine, Personalized Medicine, vol. 8, no. 4, pp. 483-491, 2011.
[15]
H. Li and N. Homer, A survey of sequence alignment algorithms for next-generation sequencing, Briefings in Bioinformatics, vol. 11, no. 5, pp. 473-483, 2010.
[16]
A. Zhang, Advanced Analysis of Gene Expression Microarray Data. World Scientific, 2006.
[17]
N. Azad, A. K. V. Iyer, and Y. Rojanasakul, DNA microarrays in drug discovery and development, in Biopharmaceutical Drug Design and Development. Springer, 2008, pp. 47-66.
[18]
D. Amaratunga, J. Cabrera, and Z. Shkedy, Exploration and Analysis of DNA Microarray and Other High-Dimensional Data. John Wiley & Sons, 2014.
[19]
A. P. Gasch, M. Huang, S. Metzner, D. Botstein, S. J. Elledge, and P. O. Brown, Genomic expression responses to dna-damaging agents and the regulatory role of the yeast atr homolog mec1p, Molecular Biology of the Cell, vol. 12, no. 10, pp. 2987-3003, 2001.
[20]
P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D. Botstein, and B. Futcher, Comprehensive identification of cell cycle- regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization, Molecular Biology of the Cell, vol. 9, no. 12, pp. 3273-3297, 1998.
[21]
P. A. Bryant, D. Venter, R. Robins-Browne, and N. Curtis, Chips with everything: DNA microarrays in infectious diseases, The Lancet Infectious Diseases, vol. 4, no. 2, pp. 100-111, 2004.
[22]
C. Debouck and P. N. Goodfellow, DNA microarrays in drug discovery and development, Nature Genetics, vol. 21, pp. 48-50, 1999.
[23]
F. Steele and L. Gold, Taking measure of personalized medicine: The proteome, Personalized Medicine, vol. 10, no. 2, pp. 177-182, 2013.
[24]
R. Kellner, Proteomics. Concepts and perspectives, Fresenius’ Journal of Analytical Chemistry, vol. 366, nos. 6-7, pp. 517-524, 2000.
[25]
B.-L. Adam, A. Vlahou, O. J. Semmes, and G. L. Wright Jr, Proteomic approaches to biomarker discovery in prostate and bladder cancers, Proteomics, vol. 1, no. 10, pp. 1264-1270, 2001.
[26]
D.-C. Kim, X. Wang, C.-R. Yang, and J. Gao, A framework for personalized medicine: Prediction of drug sensitivity in cancer by proteomic profiling, Proteome Science, vol. 10, no. Suppl 1, p. S13, 2012.
[27]
J. Sun, R. D. Beger, and L. K. Schnackenberg, Metabolomics as a tool for personalizing medicine: 2012 update, Personalized Medicine, vol. 10, no. 2, pp. 149-161, 2013.
[28]
L. M. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, Experimental realization of shor’s quantum factoring algorithm using nuclear magnetic resonance, Nature, vol. 414, no. 6866, pp. 883-887, 2001.
[29]
D. L. Mendrick and L. Schnackenberg, Genomic and metabolomic advances in the identification of disease and adverse event biomarkers, Biomarkers in Medicine, vol. 3, no. 5, pp. 605-615, 2009.
[30]
A. Backshall, R. Sharma, S. J. Clarke, and H. C. Keun, Pharmacometabonomic profiling as a predictor of toxicity in patients with inoperable colorectal cancer treated with capecitabine, Clinical Cancer Research, vol. 17, pp. 3019-3028, 2011.
[31]
M. Bayet-Robert, D. Morvan, P. Chollet, and C. Barthomeuf, Pharmacometabolomics of docetaxeltreated human mcf7 breast cancer cells provides evidence of varying cellular responses at high and low doses, Breast Cancer Research and Treatment, vol. 120, no. 3, pp. 613-626, 2010.
[32]
A.-C. Gavin, P. Aloy, P. Grandi, R. Krause, M. Boesche, M. Marzioch, C. Rau, L. J. Jensen, S. Bastuck, B. Dümpelfeld, et al., Proteome survey reveals modularity of the yeast cell machinery, Nature, vol. 440, no. 7084, pp. 631-636, 2006.
[33]
S. Matsui, Genomic biomarkers for personalized medicine: Development and validation in clinical studies, Computational and Mathematical Methods in Medicine, vol. 2013, p. 865980, 2013.
[34]
J. A. Dawson and C. Kendziorski, Survival-supervised latent dirichlet allocation models for genomic analysis of time-to-event outcomes, arXiv preprint arXiv:1202.5999, 2012.
[35]
Y. Liu, V. Devescovi, S. Chen, and C. Nardini, Multilevel omic data integration in cancer cell lines: Advanced annotation and emergent properties, BMC Syst. Biol., vol. 7, p. 14, 2013.
[36]
K. Arakawa and M. Tomita, Merging multiple omics datasets in silico: Statistical analyses and data interpretation, in Systems Metabolic Engineering. Springer, 2013, pp. 459-470.
[37]
S. R. Piccolo, M. R. Withers, O. E. Francis, A. H. Bild, and W. E. Johnson, Multiplatform single-sample estimates of transcriptional activation, in Proceedings of the National Academy of Sciences, vol. 110, no. 44, pp. 17778-17783, 2013.
[38]
H. Bengtsson, A. Ray, P. Spellman, and T. P. Speed, A single-sample method for normalizing and combining full resolution copy numbers from multiple platforms, labs and analysis methods, Bioinformatics, vol. 25, no. 7, pp. 861-867, 2009.
[39]
T. Hastie and W. Stuetzle, Principal curves, Journal of the American Statistical Association, vol. 84, no. 406, pp. 502-516, 1989.
[40]
S. R. Piccolo, Y. Sun, J. D. Campbell, M. E. Lenburg, A. H. Bild, and W. E. Johnson, A single-sample microarray normalization method to facilitate personalized-medicine workflows, Genomics, vol. 100, no. 6, pp. 337-344, 2012.
[41]
K.-A. Lê Cao, F. Rohart, L. McHugh, O. Korn, and C. A. Wells, Yugene: A simple approach to scale gene expression data derived from different platforms for integrated analyses, Genomics, vol. 103, no. 4, pp. 239-251, 2014.
[42]
R. Liu, X. Yu, X. Liu, D. Xu, K. Aihara, and L. Chen, Identifying critical transitions of complex diseases based on a single sample, Bioinformatics, p. btu084, 2014.
[43]
S. H. Yoon, M.-J. Han, H. Jeong, C. H. Lee, X.-X. Xia, D.-H. Lee, J. H. Shim, S. Y. Lee, T. K. Oh, and J. F. Kim, Comparative multi-omics systems analysis of Escherichia coli strains b and k-12, Genome Biol., vol. 13, no. 5, p. R37, 2012.
[44]
S. Dietmair, M. P. Hodson, L.-E. Quek, N. E. Timmins, P. Gray, and L. K. Nielsen, A multi-omics analysis of recombinant protein production in hek293 cells, PloS One, vol. 7, no. 8, p. e43394, 2012.
[45]
T. Tebaldi, A. Re, G. Viero, I. Pegoretti, A. Passerini, E. Blanzieri, and A. Quattrone, Widespread uncoupling between transcriptome and translatome variations after a stimulus in mammalian cells, BMC Genomics, vol. 13, no. 1, p. 220, 2012.
[46]
C. Cotten and J. L. Reed, Mechanistic analysis of multiomics datasets to generate kinetic parameters for constraintbased metabolic models, BMC Bioinformatics, vol. 14, no. 1, p. 32, 2013.
[47]
W. Zhang, F. Li, and L. Nie, Integrating multiple omics analysis for microbial biology: Application and methodologies, Microbiology, vol. 156, no. 2, pp. 287-301, 2010.
[48]
J. Chen and B. Yuan, Detecting functional modules in the yeast protein-protein interaction network, Bioinformatics, vol. 22, no. 18, pp. 2283-2290, 2006.
[49]
Y.-R. Cho, W. Hwang, and A. Zhang, Identification of overlapping functional modules in protein interaction networks: Information flow-based approach, in ICDM Workshops 2006, Sixth IEEE International Conference on, 2006, pp. 147-152.
[50]
M. Li, X. Wu, J. Wang, and Y. Pan, Towards the identification of protein complexes and functional modules by integrating ppi network and gene expression data, BMC Bioinformatics, vol. 13, no. 1, p. 109, 2012.
[51]
G. Cesareni, A. Ceol, C. Gavrila, L. M. Palazzi, M. Persico, and M. V. Schneider, Comparative interactomics, FEBS Letters, vol. 579, no. 8, pp. 1828-1833, 2005.
[52]
M. Pellegrini, E. M. Marcotte, M. J. Thompson, D. Eisenberg, and T. O. Yeates, Assigning protein functions by comparative genome analysis: Protein phylogenetic profiles, Proceedings of the National Academy of Sciences, vol. 96, no. 8, pp. 4285-4288, 1999.
[53]
E. M. Marcotte, M. Pellegrini, H.-L. Ng, D. W. Rice, T. O. Yeates, and D. Eisenberg, Detecting protein function and protein-protein interactions from genome sequences, Science, vol. 285, no. 5428, pp. 751-753, 1999.
[54]
N. Du, J. Gao, V. Gopalakrishnan, and A. Zhang, De-noise biological network from heterogeneous sources via link propagation, in Bioinformatics and Biomedicine (BIBM), 2012 IEEE International Conference on, 2012, pp. 1-6.
[55]
I. Gat-Viks, A. Tanay, and R. Shamir, Modeling and analysis of heterogeneous regulation in biological networks, Journal of Computational Biology, vol. 11, no. 6, pp. 1034-1049, 2004.
[56]
K. Shimizu, Toward systematic metabolic engineering based on the analysis of metabolic regulation by the integration of different levels of information, Biochemical Engineering Journal, vol. 46, no. 3, pp. 235-251, 2009.
[57]
D. W. Huang, B. T. Sherman, and R. A. Lempicki, Systematic and integrative analysis of large gene lists using david bioinformatics resources, Nature Protocols, vol. 4, no. 1, pp. 44-57, 2008.
[58]
K. J. Bussey, D. Kane, M. Sunshine, S. Narasimhan, S. Nishizuka, W. C. Reinhold, B. Zeeberg, W. Ajay, and J. Weinstein, Matchminer: A tool for batch navigation among gene and gene product identifiers, Genome Biol., vol. 4, no. 4, p. R27, 2003.
[59]
S. S. Chavan, J. D. Shaughnessy Jr, and R. D. Edmondson, Overview of biological database mapping services for interoperation between different’omics’ datasets, Human Genomics, vol. 5, no. 6, p. 703, 2011.
[60]
C.-H. Yeang and M. Vingron, A joint model of regulatory and metabolic networks, BMC Bioinformatics, vol. 7, no. 1, p. 332, 2006.
[61]
E. Mosca and L. Milanesi, Network-based analysis of omics with multi-objective optimization, Molecular BioSystems, vol. 9, no. 12, pp. 2971-2980, 2013.
[62]
N. Du, Y. Zhang, K. Li, J. Gao, S. D. Mahajan, B. B. Nair, S. A. Schwartz, and A. Zhang, Evolutionary analysis of functional modules in dynamic ppi networks, in Proceedings of the ACM Conference on Bioinformatics, Computational Biology and Biomedicine, 2012, pp. 250-257.
[63]
J.-D. J. Han, N. Bertin, T. Hao, D. S. Goldberg, G. F. Berriz, L. V. Zhang, D. Dupuy, A. J. Walhout, M. E. Cusick, F. P. Roth, et al., Evidence for dynamically organized modularity in the yeast protein-protein interaction network, Nature, vol. 430, no. 6995, pp. 88-93, 2004.
[64]
I. W. Taylor, R. Linding, D. Warde-Farley, Y. Liu, C. Pesquita, D. Faria, S. Bull, T. Pawson, Q. Morris, and J. L. Wrana, Dynamic modularity in protein interaction networks predicts breast cancer outcome, Nature Biotechnology, vol. 27, no. 2, pp. 199-204, 2009.
[65]
S. Srihari and H. W. Leong, Temporal dynamics of protein complexes in ppi networks: A case study using yeast cell cycle dynamics, BMC Bioinformatics, vol. 13, no. Suppl 17, p. S16, 2012.
[66]
X. Tang, J. Wang, B. Liu, M. Li, G. Chen, and Y. Pan, A comparison of the functional modules identified from time course and static ppi network data, BMC Bioinformatics, vol. 12, no. 1, p. 339, 2011.
[67]
J. Wang, X. Peng, M. Li, and Y. Pan, Construction and application of dynamic protein interaction network based on time course gene expression data, Proteomics, vol. 13, no. 2, pp. 301-312, 2013.
[68]
Q. Xiao, J. Wang, X. Peng, and F.-X. Wu, Detecting protein complexes from active protein interaction networks constructed with dynamic gene expression profiles, Proteome Science, vol. 11, no. Suppl 1, p. S20, 2013.
[69]
R. Jin, S. Mccallen, and C. Liu, Identify dynamic network modules with temporal and spatial constraints, Pac. Symp. Biocomput., vol. 14, pp. 203-214, 2009.
[70]
Y. Zhang, N. Du, K. Li, K. Jia, and A. Zhang, Co-regulated protein functional modules with varying activities in dynamic ppi networks, Tsinghua Science and Technology, vol. 18, no. 5, pp. 530-540, 2013.
[71]
B. Chen, W. Fan, J. Liu, and F.-X. Wu, Identifying protein complexes and functional moduleslfrom static ppi networks to dynamic ppi networks, Briefings in Bioinformatics, p. bbt039, 2013.
[72]
X. Wang, Role of clinical bioinformatics in the development of network-based biomarkers., J. Clinical Bioinformatics, vol. 1, p. 28, 2011.
[73]
L. Chen, R. Liu, Z.-P. Liu, M. Li, and K. Aihara, Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers, Scientific Reports, vol. 29, no. 2, p. 342, 2012.
[74]
Y. Zhang, N. Du, K. Li, J. Feng, K. Jia, and A. Zhang, msidbn: A method of identifying critical proteins in dynamic ppi networks, BioMed Research International, vol. 2014, 2014.
[75]
V. Marx, Biology: The big challenges of big data, Nature, vol. 498, no. 7453, pp. 255-260, 2013.
[76]
G. M. Church, Genomes for all, Scientific American, vol. 294, no. 1, pp. 46-54, 2006.
[77]
D. R. Bentley, S. Balasubramanian, H. P. Swerdlow, G. P. Smith, J. Milton, C. G. Brown, K. P. Hall, D. J. Evers, C. L. Barnes, H. R. Bignell, et al., Accurate whole human genome sequencing using reversible terminator chemistry, Nature, vol. 456, no. 7218, pp. 53-59, 2008.
[78]
C. Lam, Hadoop in Action. Manning Publications Co., 2010.
[79]
R. C. Taylor, An overview of the hadoop/mapreduce/hbase framework and its current applications in bioinformatics, BMC Bioinformatics, vol. 11, no. Suppl 12, p. S1, 2010.
[80]
S. Leo, F. Santoni, and G. Zanetti, Biodoop: Bioinformatics on hadoop, in ICPPW’09, International Conference on, 2009, pp. 415-422.
[81]
[82]
X. Qiu, J. Ekanayake, S. Beason, T. Gunarathne, G. Fox, R. Barga, and D. Gannon, Cloud technologies for bioinformatics applications, in Proceedings of the 2nd Workshop on Many-Task Computing on Grids and Supercomputers, 2009, p. 6.
[83]
[84]
Google appengine, http://code.google.com/appengine/, 2014.
[85]
Microsoft azure, http://www.microsoft.com/azure, 2014.
[86]
H. Lee, Y. Yang, H. Chae, S. Nam, D. Choi, P. Tangchaisin, C. Herath, S. Marru, K. P. Nephew, and S. Kim, Biovlab-mmia: A cloud environment for microrna and mrna integrated analysis (mmia) on amazon ec2, NanoBioscience, IEEE Transactions on, vol. 11, no. 3, pp. 266-272, 2012.
[87]
The environmental molecular sciences laboratory, http://www.nersc.gov/users/computational-systems/, 2014.
[88]
The US Eept. of Energy, http://genomicscience.energy.gov/compbio/, 2014.
[89]
H. Xiao, Towards parallel and distributed computing in large-scale data mining: A survey, Technical University of Munich, Tech. Rep, 2010.
[90]
M. C. Schatz, Cloudburst: Highly sensitive read mapping with mapreduce, Bioinformatics, vol. 25, no. 11, pp. 1363-1369, 2009.
[94]
A. Matsunaga, M. Tsugawa, and J. Fortes, Cloudblast: Combining mapreduce and virtualization on distributed resources for bioinformatics applications, in eScience’08, IEEE Fourth International Conference on, 2008, pp. 222-229.
[95]
A. P. Heath, M. Greenway, R. Powell, J. Spring, R. Suarez, D. Hanley, C. Bandlamudi, M. E. McNerney, K. P. White, and R. L. Grossman, Bionimbus: A cloud for managing, analyzing and sharing large genomics datasets, Journal of the American Medical Informatics Association, , 2014.
Tsinghua Science and Technology
Pages 545-558
Cite this article:
Zhang Y, Cheng Y, Jia K, et al. Opportunities for Computational Techniques for Multi-Omics Integrated Personalized Medicine. Tsinghua Science and Technology, 2014, 19(6): 545-558. https://doi.org/10.1109/TST.2014.6961025

583

Views

18

Downloads

4

Crossref

N/A

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 09 June 2014
Accepted: 16 June 2014
Published: 20 November 2014
The Author(s)
Return