Sort:
Open Access Issue
Opportunities for Computational Techniques for Multi-Omics Integrated Personalized Medicine
Tsinghua Science and Technology 2014, 19(6): 545-558
Published: 20 November 2014
Abstract PDF (1.3 MB) Collect
Downloads:18

Personalized medicine is defined as "a model of healthcare that is predictive, personalized, preventive, and participator" and has very broad content. With the rapid development of high-throughput technologies, an explosive accumulation of biological information is collected from multiple layers of biological processes, including genomics, transcriptomics, proteomics, metabonomics, and interactomics (omics). Implementing integrative analysis of these multiple omics data is the best way of deriving systematical and comprehensive views of living organisms, achieving better understanding of disease mechanisms, and finding operable personalized health treatments. With the help of computational methods, research in the field of biology and biomedicine has gained tremendous benefits over the past few decades. In the new era of personalized medicine, we will rely more on the assistance of computational analysis. In this paper, we briefly review the generation of multiple omics and their basic characteristics. And then the challenges and opportunities for computational analysis are discussed and some state-of-art analysis methods that were recently proposed by peers for integrative analysis of multiple omics data are reviewed. We foresee that further integrated omics data platform and computational tools would help to translate the biological knowledge to clinical usage and accelerate development of personalized medicine.

Open Access Issue
Co-regulated Protein Functional Modules with Varying Activities in Dynamic PPI Networks
Tsinghua Science and Technology 2013, 18(5): 530-540
Published: 03 October 2013
Abstract PDF (1.5 MB) Collect
Downloads:35

Current methods for the detection of differential gene expression focus on finding individual genes that may be responsible for certain diseases or external irritants. However, for common genetic diseases, multiple genes and their interactions should be understood and treated together during the exploration of disease causes and possible drug design. The present study focuses on analyzing the dynamic patterns of co-regulated modules during biological progression and determining those having remarkably varying activities, using the yeast cell cycle as a case study. We first constructed dynamic active protein-protein interaction networks by modeling the activity of proteins and assembling the dynamic co-regulation protein network at each time point. The dynamic active modules were detected using a method based on the Bayesian graphical model and then the modules with the most varied dispersion of clustering coefficients, which could be responsible for the dynamic mechanism of the cell cycle, were identified. Comparison of results from our functional module detection with the state-of-art functional module detection methods and validation of the ranking of activities of functional modules using GO annotations demonstrate the efficacy of our method for narrowing the scope of possible essential responding modules that could provide multiple targets for biologists to further experimentally validate.

Total 2