AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Genetic differentiation of grain, fodder and pod vegetable type cowpeas (Vigna unguiculata L.) identified through single nucleotide polymorphisms from genotyping-by-sequencing

Xingbo Wu1,2Andrés J. Cortés3,4Matthew W. Blair1 ( )
Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 37209, USA
Tropical Research and Education Center, Department of Environmental Horticultural, University of Florida, 18905 SW 280th St, Homestead, FL 33031, USA
Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, C.I. La Selva, Km 7 vía Rionegro – Las Palmas, Rionegro, Colombia
Universidad Nacional de Colombia – Sede Medellín, Facultad de Ciencias Agrarias – Departamento de Ciencias Forestales, Medellín, Colombia
Show Author Information

Abstract

The species Vigna unguiculata L. (Walp), commonly known as cowpea, is a multi-purpose legume that has been selected into three subspecies that are divided into grain, fodder and pod (yardlong bean) types. However, genetic bases for distinctions are not well understood. The purpose of this study was to apply genotyping-by-sequencing (GBS) and current reference genome for V. unguiculata to distinguish three subspecies and identify signatures of divergence. The collection of 130 accessions included 128 cultivated from: 1) ssp. cylindrica, fodder type; 2) ssp. sesquipedalis, pod vegetable type; and 3) ssp. unguiculata, grain type. Two wilds genotypes from spp. dekindtiana and spp. pubescens, were used to anchor phylogeny. A total of 11,083 highly informative single nucleotide polymorphisms (SNPs) were discovered. Wild accessions showed distinct genetic fingerprints and were separated from cultivated subspecies. Principal component analysis showed closer relationship between ssp. unguiculata and ssp. cylindrica compared to ssp. sesquipedalis. Relative differentiation of cultivated subspecies (with Fixation Index, FST) indicated the existence of discrete signatures of selection. This work clarifies the population structure, phylogeny, and domestication of cultivated cowpeas. Furthermore, significant genetic differences between grain and pod vegetable types can provide valuable information for future breeding in three cowpea groups.

Electronic Supplementary Material

Download File(s)
mh-2-1-8_ESM.pdf (1.7 MB)

References

 

Andargie M, Knudsen JT, Pasquet RS, Gowda BS, Muluvi GM, Timko MP. Mapping of quantitative trait loci for floral scent compounds in cowpea (Vigna unguiculata L.). Plant Breed. 2014;33(1): 92–100. https://doi.org/10.1111/pbr.12112.

 

Andargie M, Pasquet RS, Gowda BS, Muluvi GM, Timko MP. Construction of a SSR-based genetic map and identification of QTL for domestication traits using recombinant inbred lines from a cross between wild and cultivated cowpea (V. unguiculata (L.) Walp.). Mol Breeding. 2011;28: 413–20.

 

Boukar O, Belko N, Chamarthi S, Togola A, Batieno J, Owusu E, et al. Cowpea (Vigna unguiculata): genetics, genomics and breeding. Plant Breed. 2019;138(4): 415–24. https://doi.org/10.1111/pbr.12589.

 

Chen H, Chen H, Hu L, Wang L, Wang S, Wang ML, et al. Genetic diversity and a population structure analysis of accessions in the Chinese cowpea [Vigna unguiculata (L.) Walp.] germplasm collection. Crop J. 2017;5(5): 363–72. https://doi.org/10.1016/j.cj.2017.04.002.

 

Cortés AJ, Blair MW. Genotyping by Sequencing and Genome – Environment Associations in Wild Common Bean Predict Widespread Divergent Adaptation to Drought. Front Plant Sci. 2018;9: 128. https://doi.org/10.3389/fpls.2018.00128.

 

Cortés AJ, López-Hernández F, Osorio-Rodriguez D. Predicting thermal adaptation by looking into populations’ genomic past. Front Genet. 2020;11. https://doi.org/10.3389/fgene.2020.564515.

 

Cortés AJ, Skeen P, Blair MW, Chacón-Sánchez MI. Does the genomic landscape of species divergence in Phaseolus beans coerce parallel signatures of adaptation and domestication? Front Plant Sci. 2018;9: 1816. https://doi.org/10.3389/fpls.2018.01816.

 

Coulibaly S, Pasquet R, Papa R, Gepts P. AFLP analysis of the phenetic organization and genetic diversity of Vigna unguiculata L. Walp reveals extensive gene flow between wild and domesticated types. Theor Appl Genet. 2002;104(2-3): 358–66.

 

D’Auria JC. Acyltransferases in plants: a good time to be BAHD. Curr Opin Plant Biol. 2006;9(3): 331–40. https://doi.org/10.1016/j.pbi.2006.03.016.

 

Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27(15): 2156–8. https://doi.org/10.1093/bioinformatics/btr330.

 

Desalegne BA, Mohammed S, Dagne K, Timko MP. Assessment of genetic diversity in Ethiopian cowpea [Vigna unguiculata (L.) Walp.] germplasm using simple sequence repeat markers. Plant Mol. Biol. Rep. 2016;34: 978–92.

 

Ehlers J, Hall A. Cowpea (Vigna unguiculata L. walp.). Field Crops Res. 1997;53(1-3): 187–204. https://doi.org/10.1016/S0378-4290(97)00031-2.

 

Ellegren H, Wolf JB. Parallelism in genomic landscapes of differentiation, conserved genomic features and the role of linked selection. J Evol Biol. 2017;30(8): 1516–8. https://doi.org/10.1111/jeb.13113.

 

Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6(5): e19379. https://doi.org/10.1371/journal.pone.0019379.

 

Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14(8): 2611–20. https://doi.org/10.1111/j.1365-294X.2005.02553.x.

 

Fang J, Chao CCT, Roberts PA, Ehlers JD. Genetic diversity of cowpea [Vigna unguiculata (L.) Walp.] in four West African and USA breeding programs as determined by AFLP analysis. Genet Resour Crop Evol. 2007;54: 1197–209.

 

Fatokun C, Girma G, Abberton M, Gedil M, Unachukwu N, Oyatomi O, et al. Genetic diversity and population structure of a mini-core subset from the world cowpea (Vigna unguiculata (L.) Walp.) germplasm collection. Sci Rep. 2018;8: 1–10.

 

Gillaspie A, Hopkins M, Dean R. Determining genetic diversity between lines of Vigna unguiculata subspecies by AFLP and SSR markers. Resour Crop Evol. 2005;52(3): 245–7. https://doi.org/10.1007/s10722-004-6693-9.

 

Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, et al. TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS One. 2014;9(2): e90346. https://doi.org/10.1371/journal.pone.0090346.

 

Hall AE, Cisse N, Thiaw S, Elawad HO, Ehlers JD, Ismail AM, et al. Development of cowpea cultivars and germplasm by the bean/cowpea CRSP. Field Crops Res. 2003;82(2-3): 103–34. https://doi.org/10.1016/S0378-4290(03)00033-9.

 

He J, Zhao X, Laroche A, Lu ZX, Liu H, Li Z. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci. 2014;5: 484. https://doi.org/10.3389/fpls.2014.00484.

 

Herniter IA, Lo R, Muñoz-Amatriaín M, Lo S, Guo YN, Huynh BL, et al. Seed coat pattern QTL and development in cowpea (Vigna unguiculata [L.] Walp.). Front Plant Sci. 2019;10: 1346.

 

Hubisz MJ, Falush D, Stephens M, Pritchard JK. Inferring weak population structure with the assistance of sample group information. Mol Ecol Notes. 2009;9(5): 1322–32. https://doi.org/10.1111/j.1755-0998.2009.02591.x.

 

Huynh BL, Close TJ, Roberts PA, Hu Z, Wanamaker S, Lucas MR, et al. Gene pools and the genetic architecture of domesticated cowpea. Plant Genome. 2013;6(3). https://doi.org/10.3835/plantgenome2013.03.0005.

 

Irwin DE, Alcaide M, Delmore KE, Irwin JH, Owens GL. Recurrent selection explains parallel evolution of genomic regions of high relative but low absolute differentiation in a ring species. Mol Eco. 2016;25(18): 4488–507. https://doi.org/10.1111/mec.13792.

 

Isemura T, Kaga A, Tomooka N, Shimizu T, Vaughan DA. The genetics of domestication of rice bean, Vigna umbellata. Ann Bot. 2010;106(6): 927–44. https://doi.org/10.1093/aob/mcq188.

 

Kongjaimun A, Kaga A, Tomooka N, Somta P, Shimizu T, Shu Y, et al. An SSR-based linkage map of yardlong bean (Vigna unguiculata (L.) Walp. subsp. unguiculata Sesquipedalis Group) and QTL analysis of pod length. Genome. 2012;55: 81–92.

 

Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour. 2015;15(5): 1179–91. https://doi.org/10.1111/1755-0998.12387.

 

Leclercq J, Adams-Phillips LC, Zegzouti H, Jones B, Latché A, Giovannoni JJ, et al. LeCTR1, a tomato CTR1-like gene, demonstrates ethylene signaling ability in Arabidopsis and novel expression patterns in tomato. Plant Phy. 2002;130(3): 1132–42. https://doi.org/10.1104/pp.009415.

 

Li CD, Fatokun CA, Ubi B, Singh BB, Scoles GJ. Determining genetic similarities and relationships among cowpea breeding lines and cultivars by microsatellite markers. Crop Sci. 2001;41(1): 189–97. https://doi.org/10.2135/cropsci2001.411189x.

 

Lo S, Fatokun C, Boukar O, Gepts P, Close TJ, Muñoz-Amatriaín M. Identification of QTL for perenniality and floral scent in cowpea (Vigna unguiculata [L.] Walp.). PLoS One. 2020;15(4): e0229167. https://doi.org/10.1371/journal.pone.0229167.

 

Lo S, Muñoz-Amatriaín M, Boukar O, Herniter I, Cisse N, Guo YN, et al. Identification of QTL controlling domestication-related traits in cowpea (Vigna unguiculata L. Walp). Sci Rep. 2018;8: 1–9.

 

Lonardi S, Munoz-Amatriain M, Liang Q, Shu S, Wanamaker SI, et al. The genome of cowpea (Vigna unguiculata [L.] Walp.). Plant J. 2019;98(5): 767–82. https://doi.org/10.1111/tpj.14349.

 

Lush W, Evans L. The domestication and improvement of cowpeas (Vigna unguiculata (L.) Walp.). Euphytica. 1981;30(3): 579–87. https://doi.org/10.1007/BF00038783.

 

Lush W, Evans L, Wien H. Environmental adaptation of wild and domesticated cowpeas (Vigna unguiculata (L.) Walp.). Field Crops Res. 1980;3: 173–87.

 

Ma T, Wang K, Hu Q, Xi Z, Wan D, Wang Q, et al. Ancient polymorphisms and divergence hitchhiking contribute to genomic islands of divergence within a poplar species complex. Proc Natl Acad Sci U S A. 2018;115(2): E236–43. https://doi.org/10.1073/pnas.1713288114.

 

Malviya N, Sarangi B, Yadav MK, Yadav D. Analysis of genetic diversity in cowpea (Vigna unguiculata L. Walp.) cultivars with random amplified polymorphic DNA markers. Plant Syst Evol. 2012;298(2): 523–6. https://doi.org/10.1007/s00606-011-0545-9.

 

Munoz-Amatriain M, Lo S, Herniter IA, Boukar O, Fatokun C, Carvalho M, et al. The UCR Minicore: a valuable resource for cowpea research and breeding. Legume Sci. 2021;3: e95.

 
Nei M. Molecular evolutionary genetics: Columbia University Press; 1987. https://doi.org/10.7312/nei-92038.
 
Ng N, Marechal R. Cowpea taxonomy, origin and germplasm. In Cowpea research, production and utilization. 1985;pp.11–21.
 

Olasupo FO, Ilori CO, Stanley EA, Owoeye TE, Igwe DO. Genetic Analysis of Selected Mutants of Cowpea (Vigna unguiculata [L.] Walp) Using Simple Sequence Repeat and RCBL Markers. Am J Plant Sci. 2018;9:2728.

 

Parker TA, Lo S, Gepts P. Pod Shattering in Grain Legumes: Emerging Genetic and Environment-Related Patterns. Plant Cell. 2021;33:179–99. https://doi.org/10.1093/plcell/koaa025.

 

Poland JA, Rife TW. Genotyping-by-sequencing for plant breeding and genetics. Plant Genome. 2012;5:92–102.

 

Ravelombola W, Shi A, Weng Y, Mou B, Motes D, Clark J, et al. Association analysis of salt tolerance in cowpea (Vigna unguiculata (L.) Walp) at germination and seedling stages. Theor Appl Genet. 2018;131:79–91.

 

Rawal KM. Natural hybridization among wild, weedy and cultivated Vigna unguiculata (L.) Walp. Euphytica. 1975;24:699–707.

 
Reis C, Frederico A. Genetic diversity in cowpea (Vigna unguiculata) using isozyme electrophoresis. In International Symposium on Molecular Markers for Characterizing Genotypes and Identifying Cultivars in Horticulture, 2000;pp. 497–501.
 

Rosenberg NA. DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes. 2004;4(1):137–8. https://doi.org/10.1046/j.1471-8286.2003.00566.x.

 
Sahay G, Shukla P. Cytological investigations of Cowpea (Vigna unguiculata (L.) Walp) and Sem (Lablab purpureus (L.) Sweet) two major fodder legumes. In The 23rd International Gr d International Grassland Congr assland Congress, D.R.M. M. M. Roy, V. K. Yadav, Tejveer Singh, R. P. Sah, D. Vijay, and A. Radhakrishna ed (New Delhi, India: Range Management Society of India). 2020.
 

Slatkin M. Linkage disequilibrium—understanding the evolutionary past and mapping the medical future. Nat Rev Genet. 2008;9(6):477–85. https://doi.org/10.1038/nrg2361.

 

Simpson C, Thomas C, Findlay K, Bayer E, Maule AJ. An Arabidopsis GPI-anchor plasmodesmal neck protein with callose binding activity and potential to regulate cell-to-cell trafficking. Plant Cell. 2009;21(2):581–94. https://doi.org/10.1105/tpc.108.060145.

 
Singh BB, Ehlers J, Sharma B, Freire Filho F. Recent progress in cowpea breeding. In Challenges and Opportunities for Enhancing Sustainable Cowpea Production. 2002; pp. 22.
 

Sprent JI, Odee DW, Dakora FD. African legumes: a vital but under-utilized resource. J Exp Bot. 2010;61(5):1257–65. https://doi.org/10.1093/jxb/erp342.

 

Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet. 2019;20(8):467–84. https://doi.org/10.1038/s41576-019-0127-1.

 

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.

 

Verdcourt B. Studies in the Leguminosae-Papilionoïdeae for the'Flora of tropical East Africa': Ⅲ. In Kew Bulletin. 1970;2970:379–447.

 

Weir BS, Cockerham C. Estimating F-Statistics for the Analysis of Population Structure. Evolution. 1984;38(6):1358–70. https://doi.org/10.2307/2408641.

 
Whit WC. Soul food as cultural creation. In: Bower AL, editor. In African American foodways: Explorations of history and culture. Champaign: University of Illinois Press; 2007. p. 45–58.
 

Wolf JB, Ellegren H. Making sense of genomic islands of differentiation in light of speciation. Nat Rev Genet. 2017;18(2):87–100. https://doi.org/10.1038/nrg.2016.133.

 

Xiong H, Shi A, Mou B, Qin J, Motes D, Lu W, et al. Genetic diversity and population structure of cowpea (Vigna unguiculata L. Walp). PLoS One. 2016;11(8):e0160941. https://doi.org/10.1371/journal.pone.0160941.

 

Xu P, Wu X, Munoz-Amatriain M, Wang B, Wu X, Hu Y, et al. Genomic regions, cellular components and gene regulatory basis underlying pod length variations in cowpea (V. unguiculata L. Walp). Plant Biotechnol J. 2017;15:547–57.

 

Xu P, Wu X, Wang B, Liu Y, Ehlers JD, Close TJ, et al. A SNP and SSR based genetic map of asparagus bean (Vigna. unguiculata ssp. sesquipedialis) and comparison with the broader species. PLoS One. 2011;6:e15952.

 

Yadav T, Chopra NK, Chopra N, Kumar R, Soni P. Assessment of critical period of crop-weed competition in forage cowpea (Vigna unguiculata) and its effect on seed yield and quality. India J Agron. 2018;63:124–7.

 

Yang X, Kalluri UC, Jawdy S, Gunter LE, Yin T, Tschaplinski TJ, et al. The F-box gene family is expanded in herbaceous annual plants relative to woody perennial plants. Plant Physiol. 2008;148(3):1189–200. https://doi.org/10.1104/pp.108.121921.

Molecular Horticulture
Pages 8-8
Cite this article:
Wu X, Cortés AJ, Blair MW. Genetic differentiation of grain, fodder and pod vegetable type cowpeas (Vigna unguiculata L.) identified through single nucleotide polymorphisms from genotyping-by-sequencing. Molecular Horticulture, 2022, 2(1): 8. https://doi.org/10.1186/s43897-022-00028-x

145

Views

1

Downloads

8

Crossref

7

Web of Science

7

Scopus

Altmetrics

Received: 24 September 2021
Accepted: 21 February 2022
Published: 28 March 2022
© The Author(s). 2022

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Return