Sort:
Open Access Research Article Issue
Genetic differentiation of grain, fodder and pod vegetable type cowpeas (Vigna unguiculata L.) identified through single nucleotide polymorphisms from genotyping-by-sequencing
Molecular Horticulture 2022, 2 (1): 8
Published: 28 March 2022
Abstract PDF (1.3 MB) Collect
Downloads:1

The species Vigna unguiculata L. (Walp), commonly known as cowpea, is a multi-purpose legume that has been selected into three subspecies that are divided into grain, fodder and pod (yardlong bean) types. However, genetic bases for distinctions are not well understood. The purpose of this study was to apply genotyping-by-sequencing (GBS) and current reference genome for V. unguiculata to distinguish three subspecies and identify signatures of divergence. The collection of 130 accessions included 128 cultivated from: 1) ssp. cylindrica, fodder type; 2) ssp. sesquipedalis, pod vegetable type; and 3) ssp. unguiculata, grain type. Two wilds genotypes from spp. dekindtiana and spp. pubescens, were used to anchor phylogeny. A total of 11,083 highly informative single nucleotide polymorphisms (SNPs) were discovered. Wild accessions showed distinct genetic fingerprints and were separated from cultivated subspecies. Principal component analysis showed closer relationship between ssp. unguiculata and ssp. cylindrica compared to ssp. sesquipedalis. Relative differentiation of cultivated subspecies (with Fixation Index, FST) indicated the existence of discrete signatures of selection. This work clarifies the population structure, phylogeny, and domestication of cultivated cowpeas. Furthermore, significant genetic differences between grain and pod vegetable types can provide valuable information for future breeding in three cowpea groups.

Open Access Research paper Issue
Evaluation of common bean (Phaseolus vulgaris L.) genotypes for drought stress adaptation in Ethiopia
The Crop Journal 2016, 4 (5): 367-376
Published: 22 July 2016
Abstract PDF (996.2 KB) Collect
Downloads:5

Drought stress linked with climate change is one of the major constraints faced by common bean farmers in Africa and elsewhere. Mitigating this constraint requires the selection of resilient varieties that withstand drought threats to common bean production. This study assessed the drought response of 64 small red-seeded genotypes of common bean grown in a lattice design replicated twice under contrasting moisture regimes, terminal drought stress and non-stress, in Ethiopia during the dry season from November 2014 to March 2015. Multiple plant traits associated with drought were assessed for their contribution to drought adaptation of the genotypes. Drought stress determined by a drought intensity index was moderate (0.3). All the assessed traits showed significantly different genotypic responses under drought stress and non-stress conditions. Eleven genotypes significantly (P≤0.05) outperformed the drought check cultivar under both drought stress and non-stress conditions in seed yielding potential. Seed yield showed positive and significant correlations with chlorophyll meter reading, vertical root pulling resistance force, number of pods per plant, and seeds per pod under both soil moisture regimes, indicating their potential use in selection of genotypes yielding well under drought stress and non-stress conditions. Clustering analysis using Mahalanobis distance grouped the genotypes into four groups showing high and significant inter-cluster distance, suggesting that hybridization between drought-adapted parents from the groups will provide the maximum genetic recombination for drought tolerance in subsequent generations.

Total 2