AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1,015.2 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

A High-Performance Continuous-Flow MEA Reactor for Electroreduction CO2 to Formate

Pei-Xuan Liu1,#Lu-Wei Peng1,#Rui-Nan He1Lu-Lu Li1Jin-Li Qiao1,2( )
College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China

#Same contribution to this work.

Show Author Information

Graphical Abstract

Abstract

The electrochemical carbon dioxide reduction reaction (CO2RR) is a promising approach to produce liquid fuels and industrial chemicals by utilizing intermittent renewable electricity for mitigating environmental problems. However, the traditional H-type reactor seriously limits the electrochemical performance of CO2RR due to the low CO2 solubility in electrolyte, and high ohmic resistance caused by the large distance between two electrodes, which is unbeneficial for industrial application. Herein, we demonstrated a high-performance continuous flow membranes electrode assembly (MEA) reactor based on a self-growing Cu/Sn bimetallic electrocatalyst in 0.5 mol·L-1 KHCO3 for converting CO2 to formate. Compared with an H-type cell, the MEA reactor not only shows the excellent current density (66.41 mA·cm-2 at -1.11 VRHE), but also maintains high Faraday efficiency of formate (89.56%) with the steady work around 20 h. Notably, we also designed the new CO2RR system to effectively separate the gaseous/liquid production. Surprisingly, the production rate of formate reached 163 μmol·h-1·cm-2 at -0.91 VRHE with the cell voltage of 3.17 V. This study provides a promising path to overcome mass transport limitations of the electrochemical CO2RR and to separate liquid from gas products.

Electronic Supplementary Material

Download File(s)
dhx-28-1-2104231_ESM.pdf (371.7 KB)

References

[1]

Daiyan R, Saputera W H, Masood H, Leverett J, Lu X Y, Amal R. A disquisition on the active sites of heterogeneous catalysts for electrochemical reduction of CO2 to value-added chemicals and fuel[J]. Adv. Energy Mater., 2020, 11(10): 1903796.

[2]

Song R B, Zhu W, Fu J, Chen Y, Liu L, Zhang J R, Lin Y, Zhu J J. Electrode materials engineering in electrocatalytic CO2 reduction: energy input and conversion efficiency[J]. Adv. Mater., 2020, 27(32): 1902106.

[3]

Yao Y, Wang J, Shahid U B, Gu M, Wang H J, Li H, Shao M H. Electrochemical synthesis of ammonia from nitrogen under mild conditions: current status and challenges, electrochem[J]. Energy Rev., 2020, 3(2): 239-270.

[4]

Al-Mamoori A, Krishnamurthy A, Rownaghi A A, Rezaei F. Carbon capture and utilization update[J]. Energy Technology, 2017, 5(6): 834-849.

[5]

Kondratenko E V, Baltrusaitis G, Mul J, Larrazabal G O, Perez-Ramirez J. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes[J]. Energy & Environ. Sci., 2013, 6(11): 3112-3135.

[6]

Jhong H R, Ma S C, Kenis P J A. Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities[J]. Curr. Opin. Chem. Eng., 2013, 2(2): 191-199.

[7]

Lu Q, Jiao F. Electrochemical CO2 reduction: Electrocatalyst, reaction mechanism, and process engineering[J]. Nano Energy, 2016, 29(SI): 439-456.

[8]

Zheng X, Cai Z P, Li Y S. Data linkage in smart internet of things systems: A consideration from a privacy perspective[J]. IEEE Commun. Mag., 2018, 56(9): 55-61.

[9]

Liu L X, Zhou Y, Chang Y C, Zhang J R, Jiang L P, Zhu W, Lin Y. Tuning Sn3O4 for CO2 reduction to formate with ultra-high current density[J]. Nano Energy, 2020, 77: 105296.

[10]

Li Q Q, Rao X F, Sheng J W, Xu J, Yi J, Liu Y Y, Zhang J J. Energy storage through CO2 electroreduction: A brief review of advanced Sn-based electrocatalysts and electrodes[J]. J. CO2 Util., 2018, 27: 48-59.

[11]

Jiang X X, Wang X K, Liu Z J, Wang Q L, Xiao X, Pan H P, Li M, Wang J W, Shao Y, Peng Z Q, Shen Y, Wang M K. A highly selective tin-copper bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to formate[J]. Appl. Catal. B: Environ., 2019, 259: 118040.

[12]

Xiong W, Yang J, Shuai L, Hou Y, Qiu M, Li X Y, Leung M K H. CuSn alloy nanoparticles on nitrogen-doped graphene for electrocatalytic CO2 reduction[J]. ChemElectroChem, 2019, 6(24): 5951-5957.

[13]

Chen A, Lin B L. A simple framework for quantifying electrochemical CO2 fixation[J]. Joule, 2018, 2(4): 594-606.

[14]

Lee J, Lim J, Roh C W, Whang H S, Lee H. Electrochemical CO2 reduction using alkaline membrane electrode assembly on various metal electrodes[J]. J. CO2 Util., 2019, 31: 244-250.

[15]

Ju W, Jiang F, Ma H, Pan Z, Zhao Y B, Pagani F, Rentsch D, Wang J, Battaglia C. Electrocatalytic reduction of gaseous CO2 to CO on Sn/Cu-nanofiber-based gas diffusion electrodes[J]. Adv. Energy Mater., 2019, 9(32): 1901514.

[16]

Kim H Y, Choi I, Ahn S H, Hwang S J, Yoo S J, Han J, Kim J, Park H, Jang J H, Kim S K. Analysis on the effect of operating conditions on electrochemical conversion of carbon dioxide to formic acid[J]. Int. J. Hydrogen Energy, 2014, 39(29): 16506-16512.

[17]

Gabardo C M, O’Brien C P, Edwards J P, McCallum C, Dinh Y, Xu C T, Sargent J, Li E H, Sinton D. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly[J]. Joule, 2019, 3(11): 2777-2791.

[18]

Zhang F, Jin Z, Chen C, Tang Y, Mahyoub S A, Yan S, Cheng Z. Electrochemical conversion of CO2 to CO into a microchannel reactor system in the case of aqueous electrolyte[J]. Ind. Eng. Chem. Res., 2020, 59(13): 5664-5674.

[19]

Yang H Z, Kaczur J J, Sajjad S D, Masel R I. Electrochemical conversion of CO2 to formic acid utilizing sustainion (TM) membranes[J]. J. CO2 Util., 2017, 20: 208-217.

[20]

Larrazabal G O, Strom-Hansen P, Heli J P, Zeiter K, Therkildsen K T, Chorkendorff I, Seger B. Analysis of mass flows and membrane cross-over in CO2 reduction at high current densities in an MEA-type electrolyzer[J]. ACS Appl. Mater. Inter., 2019, 11(44): 41281-41288.

[21]

Liu J Y, Peng L W, Zhou Y, Lv L, Fu J, Lin J, Guay D, Qiao J L. Metal-organic-frameworks-derived Cu/Cu2O catalyst with ultrahigh current density for continuous-flow CO2 electroreduction[J]. ACS Sustain. Chem. Eng., 2019, 7(18): 15739-15746.

[22]

Gong Q F, Ding P, Xu M Q, Zhu X R, Wang M Y, Deng J, Ma Q, Han N, Zhu Y, Lu J, Feng Z X, Li Y F, Zhou W, Li Y G. Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction[J]. Nat. Commun., 2019, 10(1): 2807.

[23]

Cifrain M, Kordesch K V. Advances, aging mechanism and lifetime in AFCs with circulating electrolytes[J]. J. Power Sources, 2004, 127: 234-242.

[24]

Peng L W, Wang Y X, Masood I, Zhou B, Wang Y F, Lin J, Qiao J L, Zhang F Y. Self-growing Cu/Sn bimetallic electrocatalysts on nitrogen-doped porous carbon cloth with 3D-hierarchical honeycomb structure for highly active carbon dioxide reduction[J]. Appl. Catal. B-Environ., 2020, 264: 118447.

[25]

Xiang H, Miller H A, Bellini M, Christensen H, Scott K, Rasul S, Yu E H. Production of formate by CO2 electrochemical reduction and its application in energy storage[J]. Sustain. Energ. Fuels, 2020, 4(1): 277-284.

[26]

Hatsukade T, Kuhl K P, Cave E R, Abram D N, Jaramillo T F. Insights into the electrocatalytic reduction of CO2 on metallic silver surfaces[J]. Phys. Chem. Chem. Phys., 2014, 16(27): 138-149.

[27]

Burdyny T, Smith W A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions[J]. Energ. Environ. Sci., 2019, 12(5): 1442-1453.

Journal of Electrochemistry
Article number: 2104231
Cite this article:
Liu P-X, Peng L-W, He R-N, et al. A High-Performance Continuous-Flow MEA Reactor for Electroreduction CO2 to Formate. Journal of Electrochemistry, 2022, 28(1): 2104231. https://doi.org/10.13208/j.electrochem.210423

245

Views

17

Downloads

0

Crossref

19

Scopus

0

CSCD

Altmetrics

Received: 23 April 2021
Revised: 06 June 2021
Published: 28 January 2022
© 2022 Editorial Office of Journal of Electrochemistry
Return