AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Advances of Phosphide Promoter Assisted Pt Based Catalyst for Electrooxidation of Methanol

Meng LiLi-Gang Feng( )
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, China
Show Author Information

Graphical Abstract

Abstract

Transition metal phosphide (TMP), as an ideal catalytic promoter in methanol fuel oxidation, has received increased attention because of its multifunctional active sites, tunable structure and composition, as well as unique physical and chemical properties and efficient multi-composition synergistic effect. Some advances have been made for this catalyst system recently. In the current review, the research progresses of transition metal phosphides (TMPs) in the assisted electrooxidation of methanol including the catalysts fabrication and their performance evaluation for methanol oxidation are reviewed. The promotion effect of TMPs has been firstly presented and the catalyst systems based on the different metal centers of TMPs are then mainly discussed. It is concluded that the TMPs can greatly promote methanol oxidation through the electronic effect and the oxyphilic property based on the bifunctional catalytic mechanism. The problems and challenges in methanol fuel oxidation by using TMPs are also described at the end with the attention being paid to the precise catalyst design. The catalytic mechanism probing and application of the fuel cells device are proposed. The current effort might be helpful to the community for novel catalyst system design and fabrication.

References

[1]

Munjewar S S, Thombre S B, Mallick R K. Approaches to overcome the barrier issues of passive direct methanol fuel cell-Review[J]. Renew. Sust. Energ. Rev., 2017, 67: 1087-1104.

[2]

Rigsby M A, Zhou W P, Lewera A, Duong H T, Bagus P S, Jaegermann W, Hunger R, Wieckowski A. experiment and theory of fuel cell catalysis: methanol and formic acid decomposition on nanoparticle Pt/Ru[J]. J. Phys. Chem. C, 2008, 112(39): 15595-15601.

[3]

Cai Z C, Kamiko M, Yamada I, Yagi S. PtCo3 nanoparticle-encapsulated carbon nanotubes as active catalysts for methanol fuel cell anodes[J]. ACS Appl. Nano Mater., 2021, 4(2): 1445-1454.

[4]

Abdelkareem M A, Lootah M A, Sayed E T, Wilberforce T, Alawadhi H, Yousef B A A, Olabi A G. Fuel cells for carbon capture applications[J]. Sci. Total Environ., 2021, 769: 144243.

[5]

Casalegno A, Bresciani F, Zago M, Marchesi R. Experimental investigation of methanol crossover evolution during direct methanol fuel cell degradation tests[J]. J. Power Sources, 2014, 249: 103-109.

[6]

Zhong C J, Luo J, Njoki P N, Mott D, Wanjala B, Loukrakpam R, Lim S, Wang L Y, Fang B, Xu Z C. Fuel cell technology: nano-engineered multimetallic catalysts[J]. Energy Environ. Sci., 2008, 1(4): 454-466.

[7]

Xia Z X, Zhang X M, Sun H, Wang S L, Sun G Q. Recent advances in multi-scale design and construction of materials for direct methanol fuel cells[J]. Nano Energy, 2019, 65: 104048.

[8]

Glüsen A, Dionigi F, Paciok P, Heggen M, Müller M, Gan L, Strasser P, Dunin-Borkowski R E, Stolten D. Dealloyed PtNi-core-shell nanocatalysts enable significant lowering of Pt electrode content in direct methanol fuel cells[J]. ACS Catal., 2019, 9(5): 3764-3772.

[9]

Li H Y, Wu X S, Tao X L, Lu Y, Wang Y W. Direct synthesis of ultrathin Pt nanowire arrays as catalysts for methanol oxidation[J]. Small, 2020, 16(33): 2001135.

[10]

Zhang Y Q, Shi Y L, Chen R, Tao L, Xie C, Liu D D, Yan D F, Wang S Y. Enriched nucleation sites for Pt deposition on ultrathin WO3 nanosheets with unique interactions for methanol oxidation[J]. J. Mater. Chem. A, 2018, 6(45): 23028-23033.

[11]

Wang M, Chen M, Yang Z Y, Wang Y T, Wang Y R, Liu G C, Lee J K, Wang X D. A study on fuel additive of methanol for room temperature direct methanol fuel cells[J]. Energy Convers. Manage., 2018, 168: 270-275.

[12]

Bai G L, Liu C, Gao Z, Lu B Y, Tong X L, Guo X Y, Yang N Y. Atomic carbon layers supported Pt nanoparticles for minimized CO Poisoning and maximized methanol oxidation[J]. Small, 2019, 15(38): 1902951.

[13]

Ramli Z A C, Kamarudin S K. Platinum-based catalysts on various carbon supports and conducting polymers for direct methanol fuel cell applications: a review[J]. Nanoscale Res. Lett., 2018, 13(1): 410.

[14]

Luo F, Zhang Q, Qu K G, Guo L, Hu H, Yang Z, Cai W W, Cheng H S. Decorated PtRu electrocatalyst for concentrated direct methanol fuel cells[J]. ChemCatChem, 2019, 11(4): 1238-1243.

[15]

Bai X X, Geng J R, Zhao S, Li H X, Li F J. Tunable hollow Pt@Ru dodecahedra via galvanic replacement for efficient methanol oxidation[J]. ACS Appl. Mater. Interfaces, 2020, 12(20): 23046-23050.

[16]

Su N, Hu X L, Zhang J B, Huang H H, Cheng J X, Yu J C, Ge C. Plasma-induced synthesis of Pt nanoparticles supported on TiO2 nanotubes for enhanced methanol electro-oxidation[J]. Appl. Surf. Sci., 2017, 399: 403-410.

[17]

Duan Y Q, Sun Y, Pan S Y, Dai Y, Hao L, Zou J L. Self-stable WP/C support with excellent cocatalytic functionality for Pt: enhanced catalytic activity and durability for methanol electro-oxidation[J]. ACS Appl. Mater. Interfaces, 2016, 8(49): 33572-33582.

[18]

Chen S, Yang X B, Tong X L, Zhang F W, Zou H B, Qiao Y, Dong M, Wang J C, Fan W B. Design of 3D hollow porous heterogeneous nickel-cobalt phosphides for synergistically enhancing catalytic performance for electrooxidation of methanol[J]. ACS Appl. Mater. Interfaces, 2020, 12(31): 34971-34979.

[19]

Wei D Y, Ma L, Gan M Y, Han S C, Shen J, Ding J J, Zhan W, Zhou C L, Zhong X J, Xie F. Pt-based catalyst decorated by bimetallic FeNi2P with outstanding CO tolerance and catalytic activity for methanol electrooxidation[J]. Int. J. Hydrogen Energy, 2020, 45(7): 4875-4886.

[20]

Bao Y F, Wang F L, Gu X C, Feng L G. Core-shell structured PtRu nanoparticles@FeP promoter with an efficient nanointerface for alcohol fuel electrooxidation[J]. Nanoscale, 2019, 11(40): 18866-18873.

[21]

Liu D N, Lu W B, Wang K Y, Du G, Asiri A M, Lu Q, Sun X P. Cobalt phosphide nanowall array as an efficient 3D catalyst electrode for methanol electro-oxidation[J]. Nanotechnology, 2016, 27(44): 44LT02.

[22]

Cui X Z, Zhu Y, Hua Z L, Feng J W, Liu Z W, Chen L S, Shi J L. SnO2 nanocrystal-decorated mesoporous ZSM-5 as a precious metal-free electrode catalyst for methanol oxidation[J]. Energ Environ Sci., 2015, 8(4): 1261-1266.

[23]

Jiang X F, Wang X B, Shen L M, Wu Q, Wang Y N, Ma Y W, Wang X Z, Hu Z. High-performance Pt catalysts supported on hierarchical nitrogen-doped carbon nanocages for methanol electrooxidation[J]. Chin. J. Catal., 2016, 37(7): 1149-1155.

[24]

Yuwen L H, Xu F, Xue B, Luo Z M, Zhang Q, Bao B Q, Su S, Weng L X, Huang W, Wang L H. General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation[J]. Nanoscale, 2014, 6(11): 5762-5769.

[25]

Chang J F, Feng L G, Liu C P, Xing W, Hu X L. Ni2P enhances the activity and durability of the Pt anode catalyst in direct methanol fuel cells[J]. Energy Environ. Sci., 2014, 7(5): 1628.

[26]

Liu H, Yang D W, Bao Y F, Yu X, Feng L G. One-step efficiently coupling ultrafine Pt-Ni2P nanoparticles as robust catalysts for methanol and ethanol electro-oxidation in fuel cells reaction[J]. J. Power Sources, 2019, 434: 226754.

[27]

Wang F L, Fang B, Yu X, Feng L G. Coupling ultrafine Pt nanocrystals over the Fe2P surface as a robust catalyst for alcohol fuel electro-oxidation[J]. ACS Appl. Mater. Interfaces, 2019, 11(9): 9496-9503.

[28]

Li R X, Ma Z Z, Zhang F, Meng H J, Wang M, Bao X Q, Tang B, Wang X G. Facile Cu3P-C hybrid supported strategy to improve Pt nanoparticle electrocatalytic performance toward methanol, ethanol, glycol and formic acid electro-oxidation[J]. Electrochim. Acta, 2016, 220: 193-204.

[29]

Chen S, Yang X, Tong X, Zhang F, Zou H, Qiao Y, Dong M, Wang J, Fan W. Design of 3D hollow porous heterogeneous nickel-cobalt phosphides for synergistically enhancing catalytic performance for electrooxidation of methanol[J]. ACS Appl. Mater. Interfaces, 2020, 12(31): 34971-34979.

[30]

Housmans T H M, Koper M T M. Methanol oxidation on stepped Pt[n(111) × (110)] electrodes: a chronoamperometric study[J]. J. Phys. Chem. B, 2003, 107(33): 8557-8567.

[31]

Watanabe M, Motoo S. Electrocatalysis by ad-atoms: Part Ⅲ. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms[J]. J. Electroanal. Chem. Interfacial Electrochem., 1975, 60(3): 275-283.

[32]

Yajima T, Uchida H, Watanabe M. In-situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed CO at Pt-Ru alloy[J]. J. Phys. Chem. B, 2004, 10(8): 2654-2659.

[33]

Norsko J K. Chemisorption on metal surfaces[J]. Rep. Prog. Phys., 1990, 53(10): 1253-1295.

[34]

Nørskov J K. Electronic factors in catalysis[J]. Prog. Surf. Sci., 1991, 38(2): 103-144.

[35]

Chang J F, Feng L G, Jiang K, Xue H G, Cai W B, Liu C P, Xing W. Pt-CoP/C as an alternative PtRu/C catalyst for direct methanol fuel cells[J]. J. Mater. Chem. A, 2016, 4(47): 18607-18613.

[36]

Xu J Y, Wei X K, Costa J D, Lado J L, Owens-Baird B, Goncalves L P L, Fernandes S P S, Heggen M, Petrovykh D Y, Dunin-Borkowski R E, Kovnir K, Kolen’ko Y V. Interface engineering in nanostructured nickel phosphide catalyst for efficient and stable water oxidation[J]. ACS Catal., 2017, 7(8): 5450-5455.

[37]

Chang J F, Feng L G, Liu C P, Xing W. Ni2P makes application of the PtRu catalyst much stronger in direct methanol fuel cells[J]. ChemSusChem, 2015, 8(19): 3340-3347.

[38]

Cao J M, Chen H L, Zhang X L, Zhang Y F, Liu X W. Graphene-supported platinum/nickel phosphide electrocatalyst with improved activity and stability for methanol oxidation[J]. RSC Adv., 2018, 8(15): 8228-8232.

[39]

Wang Y J, Du C Y, Sun Y R, Han G K, Kong F P, Yin G P, Gao Y Z, Song Y. The enhanced CO tolerance of platinum supported on FeP nanosheet for superior catalytic activity toward methanol oxidation[J]. Electrochim. Acta, 2017, 254: 36-43.

[40]

Cao H S, Li Z B, Xie Y, Xiao F, Wang H L, Wang X Y, Pan K, Cabot A. Hierarchical CoP nanostructures on nickel foam as efficient bifunctional catalysts for water splitting[J]. ChemSusChem, 2021, 14(4): 1094-1102.

[41]

Ji L L, Wang J Y, Teng X, Meyer T J, Chen Z F. CoP nanoframes as bifunctional electrocatalysts for efficient overall water splitting[J]. ACS Catal., 2020, 10(1): 412-419.

[42]

Zhu J L, He G Q, Shen P K. A cobalt phosphide on carbon decorated Pt catalyst with excellent electrocatalytic performance for direct methanol oxidation[J]. J. Power Sources, 2015, 275: 279-283.

[43]

Feng L G, Li K, Chang J F, Liu C P, Xing W. Nanostructured PtRu/C catalyst promoted by CoP as an efficient and robust anode catalyst in direct methanol fuel cells[J]. Nano Energy, 2015, 15: 462-469.

[44]

Li X, Wang H J, Yu H, Liu Z W, Wang H H, Peng F. Enhanced activity and durability of platinum anode catalyst by the modification of cobalt phosphide for direct methanol fuel cells[J]. Electrochim. Acta, 2015, 185: 178-183.

[45]

Xiao W P, Zhang L, Bukhvalov D, Chen Z P, Zou Z Y, Shang L, Yang X F, Yan D Q, Han F Y, Zhang T R. Hierarchical ultrathin carbon encapsulating transition metal doped MoP electrocatalysts for efficient and pH-universal hydrogen evolution reaction[J]. Nano Energy, 2020, 70: 104445.

[46]

Jiao Y Q, Yan H J, Wang R H, Wang X W, Zhang X M, Wu A P, Tian C G, Jiang B J, Fu H G. Porous plate-like MoP assembly as an efficient pH-universal hydrogen evolution electrocatalyst[J]. ACS Appl. Mater. Interfaces, 2020, 12(44): 49596-49606.

[47]

Bai J, Li X, Wang A J, Prins R, Wang Y. Hydrodesulfurization of dibenzothiophene and its hydrogenated intermediates over bulk MoP[J]. J. Catal., 2012, 287: 161-169.

[48]

Zhu J L, Huang S L, Key J L, Nie S X, Ma S J, Shen P K. Facile synthesis of a molybdenum phosphide (MoP) nanocomposite Pt support for high performance methanol oxidation[J]. Catal. Sci. Technol., 2017, 7(24): 5974-5981.

[49]

Zhou C L, Gan M Y, Xie F, Ma L, Ding J J, Shen J, Han S C, Wei D Y, Zhan W. Pt nanoparticles coated on multiwalled carbon nanotubes by the modification of small-sized molybdenum phosphide for enhanced methanol electro-oxidation[J]. Ionics, 2020, 26(12): 6331-6340.

[50]

Duan Y Q, Sun Y, Wang L, Dai Y, Chen B B, Pan S Y, Zou J L. Enhanced methanol oxidation and CO tolerance using oxygen-passivated molybdenum phosphide/carbon supported Pt catalysts[J]. J. Mater. Chem. A, 2016, 4(20): 7674-7682.

[51]

Zhang C Y, Dai Y, Chen H, Ma Y Y, Jing B J, Cai Z, Duan Y Q, Tang B, Zou J L. Carbon-thin-layer protected WP with no passivation supported on acid-treated expanded graphite as efficient Pt Co-catalysts for methanol oxidation and oxygen reduction reactions[J]. J. Mater. Chem. A, 2018, 6(45): 22636-22644.

[52]

Zhang F, Meng H J, Zhang W J, Wang M, Li J P, Wang X G. Nickel phosphide decorated Pt nanocatalyst with enhanced electrocatalytic properties toward common small organic molecule oxidation and hydrogen evolution reaction: A strengthened composite supporting effect[J]. Int. J. Hydrogen Energy, 2018, 43(6): 3203-3215.

[53]

Li S, Tian Z Q, Liu Y, Jang Z, Hasan S W, Chen X, Tsiakaras P, Shen P K. Hierarchically skeletal multi-layered Pt-Ni nanocrystals for highly efficient oxygen reduction and methanol oxidation reactions[J]. Chin. J. Catal., 2021, 42(4): 648-657.

Journal of Electrochemistry
Article number: 2106211
Cite this article:
Li M, Feng L-G. Advances of Phosphide Promoter Assisted Pt Based Catalyst for Electrooxidation of Methanol. Journal of Electrochemistry, 2022, 28(1): 2106211. https://doi.org/10.13208/j.electrochem.210621

152

Views

0

Downloads

0

Crossref

20

Scopus

0

CSCD

Altmetrics

Received: 21 June 2021
Revised: 03 August 2021
Published: 28 January 2022
© 2022 Editorial Office of Journal of Electrochemistry
Return