Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Nickel(Ni)-rich layered oxide has been regarded as one of the most important cathode materials for the lithium-ion batteries because of its low cost and high energy density. However, the concerns in safety and durability of this compound are still challenging for its further development. On this account, the in-depth understanding in the structural factors determining its capacity attenuation is essential. In this review, we summarize the recent advances on the degradation mechanisms of Ni-rich layered oxide cathode. Progresses in the structure evolution of Ni-rich oxide are carefully combed in terms of inner evolution, surface evolution, and the property under thermal condition, while the state-of-the-art modification strategies are also introduced. Finally, we provide our perspective on the future directions for investigating the degradation of Ni-rich oxide cathode.
Jung S K, Hwang I, Chang D, Park K Y, Kim S J, Seong W M, Eum D, Park J, Kim B, Kim J, Heo J H, Kang K. Nanoscale phenomena in lithium-ion batteries[J]. Chem. Rev., 2020, 120(14): 6684-6737.
Xue W, Huang M, Li Y, Zhu Y G, Gao R, Xiao X, Zhang W, Li S, Xu G, Yu Y, Li P, Lopez J, Yu D, Dong Y, Fan W, Shi Z, Xiong R, Sun C J, Hwang I, Lee W K, Shao H Y, Johnson J A, Li J. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte[J]. Nat. Energy, 2021, 6: 495-505.
Manthiram A. A reflection on lithium-ion battery cathode chemistry[J]. Nat. Commun., 2020, 11(1): 1550.
Or T, Gourley S W D, Kaliyappan K, Yu A, Chen Z W. Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook[J]. Carbon Energy, 2020, 2(1): 6-43.
Liu Y, Zhai Y P, Xia Y Y, Li W, Zhao D Y. Recent progress of porous materials in lithium-metal batteries[J]. Small Structures, 2021, 2(5): 2000118.
Li Y, Wu F, Qian J, Zhang M H, Yuan Y X, Bai Y, Wu C. Metal chalcogenides with heterostructures for high-performance rechargeable batteries[J]. Small Science, 2021, 1(9): 2100012.
Gong D C, Wei C Y, Liang Z W, Tang Y B. Recent advances on sodium-ion batteries and sodium dual-ion batteries: State-of-the-art Na+ host anode materials[J]. Small Science, 2021, 1(6): 2100014.
Zuo W H, Luo M Z, Liu X S, Wu J, Liu H D, Li J, Winter M, Fu R Q, Yang W L, Yang Y. Li-rich cathodes for rechargeable Li-based batteries: Reaction mechanisms and advanced characterization techniques[J]. Energ. Environ. Sci., 2020, 13(12): 4450-4497.
Qiao Y, Yang H J, Chang Z, Deng H, Li X, Zhou H S. A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent[J]. Nat. Energy, 2021, 6(6): 653-662.
Zheng J X, Ye Y K, Liu T C, Xiao Y G, Wang C M, Wang F, Pan F. Ni/Li disordering in layered transition metal oxide: Electrochemical impact, origin, and control[J]. Accounts Chem. Res., 2019, 52(8): 2201-2209.
Wu J X, Cao Y L, Zhao H M, Mao J F, Guo Z P. The critical role of carbon in marrying silicon and graphite anodes for high-energy lithium-ion batteries[J]. Carbon Energy, 2019, 1(1): 57-76.
Yu L, Wang J, Xu Z J. A perspective on the behavior of lithium anodes under a magnetic field[J]. Small Structures, 2020, 2(1): 2000043.
Song Y W, Peng Y Q, Zhao M, Lu Y, Liu J N, Li B Q, Zhang Q. Understanding the impedance response of lithium polysulfide symmetric cells[J]. Small Science, 2021: 2100042.
Zhao S Q, Guo Z Q, Yan K, Wan S W, He F R, Sun B, Wang G X. Towards high-energy-density lithium-ion batteries: Strategies for developing high-capacity lithium-rich cathode materials[J]. Energy Storage Mater., 2021, 34: 716-734.
Li T Y, Yuan X Z, Zhang L, Song D T, Shi K Y, Bock C. Degradation mechanisms and mitigation strategies of nickel-rich NMC-based lithium-ion batteries[J]. Electrochem. Energy Rev., 2019, 3(1): 43-80.
Li J, Hwang S, Guo F M, Li S, Chen Z W, Kou R H, Sun K, Sun C J, Gan H, Yu A P, Stach E A, Zhou H, Su D. Phase evolution of conversion-type electrode for lithium ion batteries[J]. Nat. Commun., 2019, 10(1): 2224.
Ren J C, Huang Y L, Zhu H, Zhang B H, Zhu H K, Shen S H, Tan G Q, Wu F, He H, Lan S, Xia X H, Liu Q. Recent progress on MOF-derived carbon materials for energy storage[J]. Carbon Energy, 2020, 2(2): 176-202.
Zhang X D, Yue F S, Liang J Y, Shi J L, Li H, Guo Y G. Structure design of cathode electrodes for solid-state batteries: Challenges and progress[J]. Small Structures, 2020, 1(3): 2000042.
Meng X Y, Sun Y F, Yu M Z, Wang Z Y, Qiu J S. Hydrogen-bonding crosslinking mxene to highly robust and ultralight aerogels for strengthening lithium metal anode[J]. Small Science, 2021, 1(9): 2100021.
Hou P Y, Yin J M, Ding M, Huang J Z, Xu X J. Surface/interfacial structure and chemistry of high-energy nickel-rich layered oxide cathodes: Advances and perspectives[J]. Small, 2017, 13(45): 1701802.
Duffner F, Kronemeyer N, Tübke J, Leker J, Winter M, Schmuch R. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure[J]. Nat. Energy, 2021, 6(2): 123-134.
Cai W, Yan C, Yao Y X, Xu L, Xu R, Jiang L L, Huang J Q, Zhang Q. Rapid lithium diffusion in order@disorder pathways for fast-charging graphite anodes[J]. Small Structures, 2020, 1(1): 2000010.
Chen L, Su Y F, Chen S, Li N, Bao L Y, Li W K, Wang Z, Wang M, Wu F. Hierarchical Li1.2Ni0.2Mn0.6O2 nanoplates with exposed {010} planes as high-performance cathode material for lithium-ion batteries[J]. Adv. Mater., 2014, 26(39): 6756-6760.
Lee S Y, Park G S, Jung C, Ko D S, Park S Y, Kim H G, Hong S H, Zhu Y, Kim M. Revisiting primary particles in layered lithium transition-metal oxides and their impact on structural degradation[J]. Adv. Sci., 2019, 6(6): 1800843.
Nitta N, Wu F, Lee J T, Yushin G. Li-ion battery materials: Present and future[J]. Mater. Today, 2015, 18(5): 252-264.
Bhuvaneswari S, Varadaraju U V, Gopalan R, Prakash R. Structural stability and superior electrochemical performance of Sc-doped LiMn2O4 spinel as cathode for lithium ion batteries[J]. Electrochim. Acta, 2019, 301: 342-351.
Galceran M, Guerfi A, Armand M, Zaghib K, Casas C M. The critical role of carbon in the chemical delithiation kinetics of LiFePO4[J]. J. Electrochem. Soc., 2020, 167(7): 070538.
Alsamet M A M M, Burgaz E. Synthesis and characterization of nano-sized LiFePO4 by using consecutive combination of sol-gel and hydrothermal methods[J]. Electrochim. Acta, 2021, 367: 137530.
Bai Y, Li L M, Li Y, Chen G H, Zhao H C, Wang Z H, Wu C, Ma H Y, Wang X Q, Cui H Y, Zhou J. Reversible and irreversible heat generation of NCA/Si-C pouch cell during electrochemical energy-storage process[J]. J. Energy Chem., 2019, 29: 95-102.
Xia S B, Huang W J, Shen X, Liu J M, Cheng F X, Liu J J, Yang X F, Guo H. Rearrangement on surface structures by boride to enhanced cycle stability for LiNi0.80Co0.15Al0.05O2 cathode in lithium ion batteries[J]. J. Energy Chem., 2020, 45: 110-118.
Kim J, Cho H, Jeong H Y, Ma H, Lee J, Hwang J, Park M, Cho J. Self-induced concentration gradient in nickel-rich cathodes by sacrificial polymeric bead clusters for high-energy lithium-ion batteries[J]. Adv. Energy Mater., 2017, 7(12): 1602559.
Li H, Zhou P F, Liu F M, Li H X, Cheng F Y, Chen J. Stabilizing nickel-rich layered oxide cathodes by magnesium doping for rechargeable lithium-ion batteries[J]. Chem. Sci., 2019, 10(5): 1374-1379.
Liang C P, Kong F T, Longo R C, Zhang C X, Nie Y F, Zheng Y P, Cho K. Site-dependent multicomponent doping strategy for Ni-rich LiNi1-2yCoyMnyO2 (y = 1/12) cathode materials for Li-ion batteries[J]. J. Mater. Chem. A, 2017, 5(48): 25303-25313.
Li W, Erickson E M, Manthiram A. High-nickel layered oxide cathodes for lithium-based automotive batteries[J]. Nat. Energy, 2020, 5(1): 26-34.
Kim U H, Kim J H, Hwang J Y, Ryu H H, Yoon C S, Sun Y K. Compositionally and structurally redesigned high-energy Ni-rich layered cathode for next-generation lithium batteries[J]. Mater. Today, 2019, 23: 26-36.
Sun H H, Ryu H H, Kim U H, Weeks J A, Heller A, Sun Y K, Mullins C B. Beyond doping and coating: Prospective strategies for stable high-capacity layered Ni-rich cathodes[J]. ACS Energy Lett., 2020, 5(4): 1136-1146.
Li J Y, Manthiram A. A comprehensive analysis of the interphasial and structural evolution over long-term cycling of ultrahigh-nickel cathodes in lithium-ion batteries[J]. Adv. Energy Mater., 2019, 9(45): 1902731.
Liu W, Oh P, Liu X, Lee M J, Cho W, Chae S, Kim Y, Cho J. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries[J]. Angew. Chem. Int. Edit., 2015, 54(15): 4440-4457.
Li H Y, Liu A R, Zhang N, Wang Y Q, Yin S, Wu H H, Dahn J R. An unavoidable challenge for Ni-rich positive electrode materials for lithium-ion batteries[J]. Chem. Mater., 2019, 31(18): 7574-7583.
Li Y, Li X H, Wang Z X, Guo H J, Wang J X. Spray pyrolysis synthesis of nickel-rich layered cathodes LiNi1-2xCox-MnxO2 (x = 0.075, 0.05, 0.025) for lithium-ion batteries[J]. J. Energy Chem., 2018, 27(2): 447-450.
Liu Y, Tang L B, Wei H X, Zhang X H, He Z J, Li Y J, Zheng J C. Enhancement on structural stability of Ni-rich cathode materials by in-situ fabricating dual-modified layer for lithium-ion batteries[J]. Nano Energy, 2019, 65: 104043.
Kim U H, Ryu H H, Kim J H, Mü cke R, Kaghazchi P, Yoon C S, Sun Y K. Microstructure-controlled Ni-rich cathode material by microscale compositional partition for next-generation electric vehicles[J]. Adv. Energy Mater., 2019, 9(15): 1803902.
Zhang L Q, Zhu C X, Yu S C, Ge D H, Zhou H S. Status and challenges facing representative anode materials for rechargeable lithium batteries[J]. J. Energy Chem., 2022, 66: 260-294.
Liang L W, Zhang W H, Zhao F, Denis D K, Zaman F U, Hou L R, Yuan C Z. Surface/interface structure degradation of Ni-rich layered oxide cathodes toward lithium-ion batteries: Fundamental mechanisms and remedying strategies[J]. Adv. Mater. Inter., 2019, 7(3): 1901749.
Hu D Z, Su Y F, Chen L, Li N, Bao L Y, Lu Y, Zhang Q Y, Wang J, Chen S, Wu F. The mechanism of side reaction induced capacity fading of Ni-rich cathode materials for lithium ion batteries[J]. J. Energy Chem., 2021, 58: 1-8.
Lin Q Y, Guan W H, Zhou J B, Meng J, Huang W, Chen T, Gao Q, Wei X, Zeng Y W, Li J X, Zhang Z. Ni-Li anti-site defect induced intragranular cracking in Ni-rich layer-structured cathode[J]. Nano Energy, 2020, 76: 105021.
Lee W, Muhammad S, Sergey C, Lee H, Yoon J, Kang Y M, Yoon W S. Advances in the cathode materials for lithium rechargeable batteries[J]. Angew. Chem. Int. Ed., 2020, 59(7): 2578-2605.
Nam K W, Bak S M, Hu E Y, Yu X Q, Zhou Y N, Wang X, Wu L, Zhu Y, Chung K Y, Yang X Q. Combining in situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries[J]. Adv. Funct. Mater., 2013, 23(8): 1047-1063.
Yin S Y, Deng W T, Chen J, Gao X, Zou G Q, Hou H S, Ji X B. Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries[J]. Nano Energy, 2021, 83: 105854.
Qian G N, Zhang J, Chu S Q, Li J Z, Zhang K, Yuan Q X, Ma Z F, Pianetta P, Li L S, Jung K, Liu Y J. Understanding the mesoscale degradation in nickel-rich cathode materials through machine-learning-revealed strain-redox decoupling[J]. ACS Energy Lett., 2021, 6(2): 687-693.
Tang Z F, Wang S, Liao J Y, Wang S, He X D, Pan B C, He H Y, Chen C H. Facilitating lithium-ion diffusion in layered cathode materials by introducing Li+/Ni2+ antisite defects for high-rate Li-ion batteries[J]. Research, 2019: UNSP2198906.
Xu Z R, Jiang Z R, Kuai C G, Xu R, Qin C D, Zhang Y, Rahman M M, Wei C X, Nordlund D, Sun C J, Xiao X H, Du X W, Zhao K J, Yan P F, Liu Y J, Lin F. Charge distribution guided by grain crystallographic orientations in polycrystalline battery materials[J]. Nat. Commun., 2020, 11(1): 83.
Su Y F, Zhang Q Y, Chen L, Bao L Y, Lu Y, Chen S, Wu F. Stress accumulation in Ni-rich layered oxide cathodes: Origin, impact, and resolution[J]. J. Energy Chem., 2022, 65: 236-253.
Yoon C S, Ryu H H, Park G T, Kim J H, Kim K H, Sun Y K. Extracting maximum capacity from Ni-rich Li[Ni0.95Co0.025Mn0.025]O2 cathodes for high-energy-density lithium-ion batteries[J]. J. Mater. Chem. A, 2018, 6(9): 4126-4132.
Park S Y, Baek W J, Lee S Y, Seo J A, Kang Y S, Koh M, Kim S H. Probing electrical degradation of cathode materials for lithium-ion batteries with nanoscale resolution[J]. Nano Energy, 2018, 49: 1-6.
Cheng X P, Li Y H, Cao T C, Wu R, Wang M M, Liu H, Liu X Q, Lu J X, Zhang Y F. Real-time observation of chemomechanical breakdown in a layered nickel-rich oxide cathode realized by in situ scanning electron microscopy[J]. ACS Energy Lett., 2021, 6(5): 1703-1710.
Wu H Q, Qin C D, Wang K, Han X, Sui M L, Yan P F. Revealing two distinctive intergranular cracking mechanisms of Ni-rich layered cathode by cross-sectional scanning electron microscopy[J]. J. Power Sources, 2021, 503: 230066.
Xu Z R, Rahman M M, Mu L Q, Liu Y J, Lin F. Chemomechanical behaviors of layered cathode materials in alkali metal ion batteries[J]. J. Mater. Chem. A, 2018, 6(44): 21859-21884.
Ryu H H, Park K J, Yoon C S, Sun Y K. Capacity fading of Ni-rich Li[NixCoyMn1-x-y]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: Bulk or surface degradation?[J]. Chem. Mater., 2018, 30(3): 1155-1163.
Miller D J, Proff C, Wen J G, Abraham D P, Bareño J. Observation of microstructural evolution in Li battery cathode oxide particles by in situ electron microscopy[J]. Adv. Energy Mater., 2013, 3(8): 1098-1103.
Zheng S Y, Hong C Y, Guan X Y, Xiang Y X, Liu X S, Xu G L, Liu R, Zhong G M, Zheng F, Li Y X, Zhang X Y, Ren Y, Chen Z H, Amine K, Yang Y. Correlation between long range and local structural changes in Ni-rich layered materials during charge and discharge process[J]. J. Power Sources, 2019, 412: 336-343.
Yan P F, Zheng J M, Gu M, Xiao J, Zhang J G, Wang C M. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries[J]. Nat. Commun., 2017, 8; 14101.
Zhang H L, Omenya F, Yan P F, Luo L L, Whittingham M S, Wang C M, Zhou G W. Rock-salt growth-induced (003) cracking in a layered positive electrode for Li-ion batteries[J]. ACS Energy Lett., 2017, 2(11): 2607-2615.
Xiao B W, Wang K, Xu G L, Song J H, Chen Z H, Amine K, Reed D, Sui M L, Sprenkle V, Ren Y, Yan P F, Li X L. Revealing the atomic origin of heterogeneous Li-ion diffusion by probing Na[J]. Adv. Mater., 2019, 31(29): 1805889.
Li S, Yao Z P, Zheng J M, Fu M S, Cen J J, Hwang S, Jin H L, Orlov A, Gu L, Wang S, Chen Z W, Su D. Direct observation of defect-aided structural evolution in a nickel-rich layered cathode[J]. Angew. Chem. Int. Ed., 2020, 59(49): 22092-22099.
Qian G N, Zhang Y T, Li L S, Zhang R X, Xu J M, Cheng Z J, Xie S J, Wang H, Rao Q L, He Y S, Shen Y B, Chen L W, Tang M, Ma Z F. Single-crystal nickel-rich layered-oxide battery cathode materials: Synthesis, electrochemistry, and intra-granular fracture[J]. Energy Storage Mater., 2020, 27: 140-149.
Trevisanello E, Ruess R, Conforto G, Richter F H, Janek J. Polycrystalline and single crystalline ncm cathode materials-quantifying particle cracking, active surface area, and lithium diffusion[J]. Adv. Energy Mater., 2021, 11(18): 2003400.
Yan P F, Zheng J M, Liu J, Wang B Q, Cheng X P, Zhang Y F, Sun X L, Wang C M, Zhang J G. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries[J]. Nat. Energy, 2018, 3(7): 600-605.
Li Y W, Li Z B, Chen C, Yang K, Cao B, Xu S Y, Yang N, Zhao W G, Chen H B, Zhang M J, Pan F. Recent progress in Li and Mn rich layered oxide cathodes for Li-ion batteries[J]. J. Energy Chem., 2021, 61: 368-385.
Shao M C, Shang C S, Zhang F X, Xu Z, Hu W, Lu Q Q, Gai L G. Selective adsorption-involved formation of NMC532/PANI microparticles with high ageing resistance and improved electrochemical performance[J]. J. Energy Chem., 2021, 54: 668-679.
Qiu Q Q, Yuan S S, Bao J, Wang Q C, Yue X Y, Li X L, Wu X J, Zhou Y N. Suppressing irreversible phase transition and enhancing electrochemical performance of Nirich layered cathode LiNi0.9Co0.05Mn0.05O2 by fluorine substitution[J]. J. Energy Chem., 2021, 61: 574-581.
Wu F, Liu N, Chen L, Li N, Dong J Y, Lu Y, Tan G Q, Xu M Z, Cao D Y, Liu Y F, Chen Y B, Su Y F. The nature of irreversible phase transformation propagation in nickel-rich layered cathode for lithium-ion batteries[J]. J. Energy Chem., 2021, 62: 351-358.
Lin F, Markus I M, Nordlund D, Weng T C, Asta M D, Xin H L, Doeff M M. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries[J]. Nat. Commun., 2014, 5: 3529.
Jung S K, Gwon H, Hong J, Park K Y, Seo D H, Kim H, Hyun J, Yang W, Kang K. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries[J]. Adv. Energy Mater., 2014, 4(1): 1300787.
Tsutomu O, Atsushi U, Nagayama M. Electrochemistry and structural chemistry of LiNiO2 (R3m) for 4 volt secondary lithium cells[J]. J. Electrochem. Soc., 1993, 140(7): 1862-1870.
Lin Q Y, Guan W H, Meng J, Huang W, Wei X, Zeng Y W, Li J X, Zhang Z. A new insight into continuous performance decay mechanism of Ni-rich layered oxide cathode for high energy lithium ion batteries[J]. Nano Energy, 2018, 54: 313-321.
Wang J, Lu X, Zhang Y, Zhou J, Wang J, Xu S. A new insight into continuous performance decay mechanism of Ni-rich layered oxide cathode for high energy lithium ion batteries[J]. Nano Energy, 2018, 54: 313-321.
Zhang S S. Understanding of performance degradation of LiNi0.80Co0.10Mn0.10O2 cathode material operating at high potentials[J]. J. Energy Chem., 2020, 41: 135-141.
Xu C, Marker K, Lee J, Mahadevegowda A, Reeves P J, Day S J, Groh M F, Emge S P, Ducati C, Layla Mehdi B, Tang C C, Grey C P. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries[J]. Nat. Mater., 2021, 20(1): 84-92.
Li W D, Song B H, Manthiram A. High-voltage positive electrode materials for lithium-ion batteries[J]. Chem. Soc. Rev., 2017, 46(10): 3006-3059.
Zhang Y, Katayama Y, Tatara R, Giordano L, Yu Y, Fraggedakis D, Sun J G, Maglia F, Jung R, Bazant M Z, Shao H Y. Revealing electrolyte oxidation via carbonate dehydrogenation on Ni-based oxides in Li-ion batteries by in situ fourier transform infrared spectroscopy[J]. Energ Environ. Sci., 2020, 13(1): 183-199.
Giordano L, Karayaylali P, Yu Y, Katayama Y, Maglia F, Lux S, Shao H Y. Chemical reactivity descriptor for the oxide-electrolyte interface in Li-ion batteries[J]. J. Phys. Chem. Lett., 2017, 8(16): 3881-3887.
Zheng J X, Liu T C, Hu Z X, Wei Y, Song X H, Ren Y, Wang W D, Rao M M, Lin Y, Chen Z H, Lu J, Wang C M, Amine K, Pan F. Tuning of thermal stability in layered Li(NixMnyCoz)O2[J]. J. Am. Chem. Soc., 2016, 138(40): 13326-13334.
Lin Y, Zhou M, Tai X L, Li H F, Han X, Yu J G. Analytical transmission electron microscopy for emerging advanced materials[J]. Matter, 2021, 4(7): 2309-2339.
Noh H J, Youn S, Yoon C S, Sun Y K. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries[J]. J. Power Sources, 2013, 233: 121-130.
Bak S M, Nam K W, Chang W, Yu X, Hu E, Hwang S, Stach E A, Kim K B, Chung K Y, Yang X Q. Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials[J]. Chem. Mater., 2013, 25(3): 337-351.
Li Y, Liu X, Wang L, Feng X N, Ren D S, Wu Y, Xu G L, Lu L G, Hou J X, Zhang W F, Wang Y L, Xu W Q, Ren Y, Wang Z F, Huang J Y, Meng X F, Han X B, Wang H W, He X M, Chen Z H, Amine K, Ouyang M G. Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials[J]. Nano Energy, 2021, 85: 105878.
Alvarado J, Wei C X, Nordlund D, Kroll T, Sokaras D, Tian Y C, Liu Y J, Doeff M M. Thermal stress-induced charge and structure heterogeneity in emerging cathode materials[J]. Mater. Today, 2020, 35: 87-98.
Mu L Q, Lin R L, Xu R, Han L L, Xia S H, Sokaras D, Steiner J D, Weng T C, Nordlund D, Doeff M M, Liu Y J, Zhao K J, Xin H L L, Lin F. Oxygen release induced chemomechanical breakdown of layered cathode materials[J]. Nano Lett., 2018, 18(5): 3241-3249.
Wang C Y, Han L L, Zhang R, Cheng H, Mu L Q, Kisslinger K, Zou P C, Ren Y, Cao P H, Lin F, Xin H L. Resolving atomic-scale phase transformation and oxygen loss mechanism in ultrahigh-nickel layered cathodes for cobalt-free lithium-ion batteries[J]. Matter, 2021, 4(6): 2013-2026.
Lv H J, Li C L, Zhao Z K, Wu B R, Mu D B. A review: Modification strategies of nickel-rich layer structure cathode (Ni ≥ 0.8) materials for lithium ion power batteries[J]. J. Energy Chem., 2021, 60: 435-450.
Yan W W, Yang S Y, Huang Y Y, Yang Y, Yuan G H. A review on doping/coating of nickel-rich cathode materials for lithium-ion batteries[J]. J. Alloy. Compd., 2020, 819: 153048.
Zhao W G, Zou L F, Jia H P, Zheng J M, Wang D H, Song J H, Hong C Y, Liu R, Xu W, Yang Y, Xiao J, Wang C M, Zhang J G. Optimized al doping improves both interphase stability and bulk structural integrity of Ni-rich NMC cathode materials[J]. ACS Appl. Energ. Mater., 2020, 3(4): 3369-3377.
Yu H F, Zhu H W, Yang Z F, Liu M M, Jiang H, Li C Z. Bulk Mg-doping and surface polypyrrole-coating enable high-rate and long-life for Ni-rich layered cathodes[J]. Chem. Eng. J., 2021, 412: 128625.
Zhang D K, Liu Y, Wu L W, Feng L W, Jin S L, Zhang R, Jin M L. Effect of Ti ion doping on electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material[J]. Electrochim. Acta, 2019, 328: 135086.
Choi J U, Voronina N, Sun Y K, Myung S T. Recent pro gress and perspective of advanced high-energy Co-less Ni-rich cathodes for Li-ion batteries: Yesterday, Today, and Tomorrow[J]. Adv. Energy Mater., 2020, 10(42): 2002027.
Zhao Z Y, Huang B, Wang M, Yang X W, Gu Y J. Facile synthesis of fluorine doped single crystal Ni-rich cathode material for lithium-ion batteries[J]. Solid State Ionics, 2019, 342: 115065.
Huang Z J, Wang Z X, Jing Q, Guo H J, Li X H, Yang Z H. Investigation on the effect of Na doping on structure and Li-ion kinetics of layered LiNi0.6Co0.2Mn0.2O2 cathode material[J]. Electrochim. Acta, 2016, 192: 120-126.
Kim U H, Park G T, Son B K, Nam G W, Liu J, Kuo L Y, Kaghazchi P, Yoon C S, Sun Y K. Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge[J]. Nat. Energy, 2020, 5(11): 860-869.
Binder J O, Culver S P, Pinedo R, Weber D A, Friedrich M S, Gries K I, Volz K, Zeier W G, Janek J. Investigation of fluorine and nitrogen as anionic dopants in nickel-rich cathode materials for lithium-ion batteries[J]. ACS Appl. Mater. Inter., 2018, 10(51): 44452-44462.
Li X L, Kang F Y, Shen W C, Bai X D. Improvement of structural stability and electrochemical activity of a cathode material LiNi0.7Co0.3O2 by chlorine doping[J]. Electrochim. Acta, 2007, 53(4): 1761-1765.
Li J Y, Yang M X, Huang Z C, Zhao B Q, Zhang G, Li S M, Cui Y H, Dong Z H, Liu H. Nanoscale operation of Ni-rich cathode surface by polycrystalline solid electrolytes Li3.2Zr0.4Si0.6O3.6 coating[J]. Chem. Eng. J., 2021, 417: 129217.
Li Y Y, Li X F, Hu J H, Liu W, Sari H M K, Li D J, Sun Q, Kou L, Tian Z Y, Shao L, Zhang C, Zhang J J, Sun X L. ZnO interface modified LiNi0.6Co0.2Mn0.2O2 toward boosting lithium storage[J]. Energy Environ. Mater., 2020, 3(4): 522-528.
Cheng X P, Zheng J M, Lu J X, Li Y H, Yan P F, Zhang Y F. Realizing superior cycling stability of Ni-rich layered cathode by combination of grain boundary engineering and surface coating[J]. Nano Energy, 2019, 62: 30-37.
Li Y, Liu X, Ren D S, Hsu H J, Xu G L, Hou J X, Wang L, Feng X N, Lu L G, Xu W Q, Ren Y, Li R H, He X M, Amine K, Ouyang M G. Toward a high-voltage fast-charging pouch cell with TiO2 cathode coating and enhanced battery safety[J]. Nano Energy, 2020, 71: 104643.
Gan Q M, Qin N, Wang Z Y, Li Z Q, Zhu Y H, Li Y Z, Gu S, Yuan H M, Luo W, Lu L, Xu Z H, Lu Z G. Revealing mechanism of Li3PO4 coating suppressed surface oxygen release for commercial Ni-rich layered cathodes[J]. ACS Appl. Energ. Mater., 2020, 3(8): 7445-7455.
Dai S C, Yan G J, Wang L, Luo L M, Li Y P, Yang Y T, Liu H H, Liu Y, Yuan M L. Enhanced electrochemical performance and thermal properties of Ni-rich LiNi0.8-Co0.1Mn0.1O2 cathode material via CaF2 coating[J]. J. Electroanal. Chem., 2019, 847: 113197.
Zhang L J, Li N, Wu B R, Xu H L, Wang L, Yang X Q, Wu F. Sphere-shaped hierarchical cathode with enhanced growth of nanocrystal planes for high-rate and cycling-stable Li-ion batteries[J]. Nano Lett., 2015, 15(1): 656-661.
Su Y F, Chen G, Chen L, Li W K, Zhang Q Y, Yang Z R, Lu Y, Bao L Y, Tan J, Chen R J, Chen S, Wu F. Exposing the {010} planes by oriented self-assembly with nanosheets to improve the electrochemical performances of Ni-rich Li[Ni0.8Co0.1Mn0.1]O2 microspheres[J]. ACS Appl. Mater. Inter., 2018, 10(7): 6407-6414.
Hua W B, Liu W Y, Chen M Z, Indris S, Zheng Z, Guo X D, Bruns M, Wu T H, Chen Y X, Zhong B H, Chou S L, Kang Y M, Ehrenberg H. Unravelling the growth mechanism of hierarchically structured Ni1/3Co1/3Mn1/3(OH)2 and their application as precursors for high-power cathode materials[J]. Electrochim. Acta, 2017, 232: 123-131.
Li Y C, Xiang W, Xiao Y, Wu Z G, Xu C L, Xu W, Xu Y D, Wu C, Yang Z G, Guo X D. Synergy of doping and coating induced heterogeneous structure and concentration gradient in Ni-rich cathode for enhanced electrochemical performance[J]. J. Power Sources, 2019, 423: 144-151.
Park N Y, Ryu H H, Park G T, Noh T C, Sun Y K. Optimized Ni-rich NCMA cathode for electric vehicle batteries[J]. Adv. Energy Mater., 2021, 11(9): 2003767.
Wu K, Wang J Y, Li Q, Yang Y Q, Deng X, Dang R B, Wu M M, Wu Z J, Xiao X L, Yu X Q. In situ synthesis of a nickel concentration gradient structure of Ni-rich LiNi0.8Co0.15Al0.05O2 with promising superior electrochemical properties at high cut-off voltage[J]. Nanoscale, 2020, 12(20): 11182-11191.
Sun Y K, Chen Z, Noh H J, Lee D J, Jung H G, Ren Y, Wang S, Yoon C S, Myung S T, Amine K. Nanostructured high-energy cathode materials for advanced lithium batteries[J]. Nat. Mater., 2012, 11(11): 942-947.
Yang H, Wu H H, Ge M, Li L, Yuan Y, Yao Q, Chen J, Xia L, Zheng J, Chen Z, Duan J, Kisslinger K, Zeng X C, Lee W K, Zhang Q, Lu J. Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries[J]. Adv. Funct. Mater., 2019, 29(13): 1808825.