PDF (3.3 MB)
Collect
Submit Manuscript
Review | Open Access

Recent Advances in Electrical Transport Spectroscopy for the in Situ Measurement of Electrochemical Interfaces

Zhang-Yan MuMeng-Ning Ding()
Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Electrochemical/electrocatalytic technology has played a central role in achieving highly efficient energy conversion and storage. To date, the in-depth electrochemical research begins to require accurate and multi-dimensional information of electrochemical interfaces, which usually relies on the application of in situ characterizations. Electrical transport spectroscopy (ETS) is a newly developed measurement strategy based on chip-platform, and provides in situ information of electrochemical interfaces from a novel perspective due to a signal origin that is fundamentally different from typical spectroscopic and electrochemical techniques. In this tutorial review, the working principle and experimental setup of ETS are described in detail with the demonstration of several model electrocatalytic materials, including metal nanoparticle/nanowires, two-dimensional layered materials, nickel based hydroxide/oxyhydroxides and dissimilatory metal-reducing bacteria. The advantages of ETS are summarized, and the future challenges and opportunities that ETS faces are also prospected.

References

[1]

Motobayashi K, Osawa M. Recent advances in spectroscopic investigations on ionic liquid/electrode interfaces[J]. Curr. Opin. Electrochem., 2018, 8: 147-155.

[2]

Zhu Y P, Wang J L, Chu H, Chu Y C, Chen H M. In situ/operando studies for designing next-generation electrocatalysts[J]. ACS Energy Lett., 2020, 5(4): 1281-1291.

[3]

Deng Y L, Yeo B S. Characterization of electrocatalytic water splitting and CO2 reduction reactions using in situ/operando Raman spectroscopy[J]. ACS Catal., 2017, 7(11): 7873-7889.

[4]

Timoshenko J, Cuenya B R. In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy[J]. Chem. Rev., 2021, 121(2): 882-961.

[5]

Yang K L, Kas R, Smith W A. In situ infrared spectroscopy reveals persistent alkalinity near electrode surfaces during CO2 electroreduction[J]. J. Am. Chem. Soc., 2019, 141(40): 15891-15900.

[6]

Polcari D, Dauphin-Ducharme P, Mauzeroll J. Scanning electrochemical microscopy: A comprehensive review of experimental parameters from 1989 to 2015[J]. Chem. Rev., 2016, 116(22): 13234-13278.

[7]

Hui F, Lanza M. Scanning probe microscopy for advanced nanoelectronics[J]. Nat. Electron., 2019, 2(6): 221-229.

[8]

Meddings N, Heinrich M, Overney F, Lee J S, Ruiz V, Napolitano E, Seitz S, Hinds G, Raccichini R, Gabers M, Park J. Application of electrochemical impedance spectroscopy to commercial Li-ion cells: A review[J]. J. Power Sources, 2020, 480: 228742.

[9]

Pajkossy T, Jurczakowski R. Electrochemical impedance spectroscopy in interfacial studies[J]. Curr. Opin. Electrochem., 2017, 1(1): 53-58.

[10]

Ding M N, He Q Y, Wang G M, Cheng H C, Huang Y, Duan X F. An on-chip electrical transport spectroscopy approach for in situ monitoring electrochemical interfaces[J]. Nat. Commun., 2015, 6: 7867.

[11]

Ding M N, Liu Y, Wang G M, Zhan Z P, Yin A X, He Q Y, Huang Y, Duan X F. Highly sensitive chemical detection with tunable sensitivity and selectivity from ultrathin platinum nanowires[J]. Small, 2017, 13(5): 1602969.

[12]

Yang F, Donavan K C, Kung S C, Penner R M. The surface scattering-based detection of hydrogen in air using a platinum nanowire[J]. Nano Lett., 2012, 12(6): 2924-2930.

[13]

Sondheimer E H. The mean free path of electrons in metals[J]. Adv. Phys., 2001, 50(6): 499-537.

[14]

Climent V, Feliu J M. Thirty years of platinum single crystal electrochemistry[J]. J. Solid State Electrochem., 2011, 15(7-8): 1297-1315.

[15]

Wang P T, Zhang X, Zhang J, Wan S, Guo S J, Lu G, Yao J L, Huang X Q. Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis[J]. Nat. Commun., 2017, 8: 14580.

[16]

Reier T, Oezaslan M, Strasser P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials[J]. ACS Catal., 2012, 2(8): 1765-1772.

[17]

Fukuzumi S, Yamada Y, Karlin K D. Hydrogen peroxide as a sustainable energy carrier: electrocatalytic production of hydrogen peroxide and the fuel cell[J]. Electrochim. Acta, 2012, 82: 493-511.

[18]

Chang X, Batchelor-McAuley C, Compton R G. Hydrogen peroxide reduction on single platinum nanoparticles[J]. Chem. Sci., 2020, 11(17): 4416-4421.

[19]

Ali A, Shen P K. Recent advances in graphene-based platinum and palladium electrocatalysts for the methanol oxidation reaction[J]. J. Mater. Chem. A, 2019, 7(39): 22189-22217.

[20]

Ferre-Vilaplana A, Perales-Rondón J V, Feliu J M, Herrero E. Understanding the effect of the adatoms in the formic acid oxidation mechanism on Pt(111) electrodes[J]. ACS Catal., 2014, 5(2): 645-654.

[21]

Banerjee S, Zhang Z Q, Hall A S, Thoi V S. Surfactant perturbation of cation interactions at the electrode-electrolyte interface in carbon dioxide reduction[J]. ACS Catal., 2020, 10(17): 9907-9914.

[22]

Cho M, Song J T, Back S, Jung Y, Oh J. The role of adsorbed CN and Cl on an Au electrode for electrochemical CO2 reduction[J]. ACS Catal., 2018, 8(2): 1178-1185.

[23]

Huang J E, Li F W, Ozden A, Rasouli A S, de Arquer F P G, Liu S J, Zhang S Z, Luo M C, Wang X, Lum Y W, Xu Y, Bertens K, Miao R K, Dinh C T, Sinton D, Sargent E H. CO2 electrolysis to multicarbon products in strong acid[J]. Science, 2021, 372(6546): 1074-1078.

[24]

Dubouis N, Serva A, Berthin R, Jeanmairet G, Porcheron B, Salager E, Salanne M, Grimaud A. Tuning water reduction through controlled nanoconfinement within an organic liquid matrix[J]. Nat. Catal., 2020, 3(8): 656-663.

[25]

Ding M, Zhong G Y, Zhao Z P, Huang Z H, Li M F, Shiu H Y, Liu Y, Shakir I, Huang Y, Duan X F. On-chip in situ monitoring of competitive interfacial anionic chemisorption as a descriptor for oxygen reduction kinetics[J]. ACS Cent. Sci., 2018, 4(5): 590-599.

[26]

Mu Z Y, Yang M, He W, Pan Y H, Zhang P K, Li X F, Wu X J, Ding M N. On-chip electrical transport investigation of metal nanoparticles: Characteristic acidic and alkaline adsorptions revealed on Pt and Au surface[J]. J. Phys. Chem. Lett., 2020, 11(14):5798-5806.

[27]

Valter M, Busch M, Wickman B, Grönbeck H, Baltrusaitis J, Hellman A. Electrooxidation of glycerol on gold in acidic medium: A combined experimental and DFT study[J]. J. Phys. Chem. C, 2018, 122(19): 10489-10494.

[28]

Liu Y, Weiss N O, Duan X D, Cheng H C, Huang Y, Duan X F. Van der Waals heterostructures and devices[J]. Nat. Rev. Mater., 2016, 1(9): 16042.

[29]

Liu Y, Huang Y, Duan X F. Van der Waals integration before and beyond two-dimensional materials[J]. Nature, 2019, 567(7748): 323-333.

[30]

He Q Y, Lin Z Y, Ding M N, Yin A X, Halim U, Wang C, Liu Y, Cheng H C, Huang Y, Duan X F. In situ probing molecular intercalation in two-dimensional layered semiconductors[J]. Nano Lett., 2019, 19(10), 6819-6826.

[31]

Zhang J S, Yang A K, Wu X, van de Groep J, Tang P Z, Liu S R, Liu B F, Shi F F, Wan J Y, Li Q T, Sun Y M, Lu Z Y, Zheng X L, Zhou G M, Wu C L, Zhang S C, Brongersma M L, Li J, Cui Y. Reversible and selective ion intercalation through the top surface of few-layer MoS2[J]. Nat. Commun., 2018, 9: 5289.

[32]

He W, Zang H, Cai S H, Mu Z Y, Liu C, Ding M N, Wang P, Wang X R. Intercalation and hybrid heterostructure integration of two-dimensional atomic crystals with functional organic semiconductor molecules[J]. Nano Res., 2020, 13(11): 2917-2924.

[33]

Yu X Y, Feng Y, Guan B Y, Lou X W, Paik U. Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction[J]. Energy Environ. Sci., 2016, 9(4): 1246-1250.

[34]

Tian B L, Shin H, Liu S T, Fei M C, Mu Z Y, Liu C, Pan Y H, Sun Y M, Goddard W A, Ding M N. Double exchange induced in situ conductivity in nickel based oxyhydroxides: An effective descriptor for electrocatalytic oxygen evolution[J]. Angew.Chem. Int. Ed., 2021, 60(30): 16448-16456.

[35]

Bediako D K, Lassalle-Kaiser B, Surendranath Y, Yano J, Yachandra V K, Nocera D G. Structure-activity correlations in a nickel-borate oxygen evolution catalyst[J]. J. Am. Chem. Soc., 2012, 134(15): 6801-6809.

[36]

de Gennes P G. Effects of double exchange in magnetic crystals[J]. Phys. Rev., 1960, 118(1): 141-154.

[37]

Nitopi S, Bertheussen E, Scott S B, Liu X Y, Engstfeld A K, Horch S, Seger B, Stephens I E L, Chan K, Hahn C, Nørskov J K, Jaramillo T F, Chorkendorff I. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte[J]. Chem. Rev., 2019, 119(12): 7610-7672.

[38]

Cao C S, Ma D D, Gu J F, Xie X Y, Zeng G, Li X F, Han S G, Zhu Q L, Wu X T, Xu Q. Metal-organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel[J]. Angew. Chem. Int. Ed., 2020, 59(35): 15014-15020.

[39]

Yang H, Han, N, Deng J, Wu J H, Wang Y, Hu Y P, Ding P, Li Y F, Li Y G, Lu J. Selective CO2 reduction on 2D mesoporous Bi nanosheets[J]. Adv. Energy Mater., 2018, 8(35): 1801536.

[40]

Zhou Y, Liu S T, Gu Y M, Wen G H, Ma J, Zuo J L, Ding M N. In(Ⅲ) metal-organic framework incorporated with enzyme-mimicking nickel bis(dithiolene) ligand for highly selective CO2 electroreduction[J]. J. Am. Chem. Soc., 2021, 143(35): 14071-14076.

[41]

Liu S T, Wang C, Wu J H, Tian B L, Sun Y M, Lv Y, Mu Z Y, Sun Y X, Li X S, Wang F Y, Wang Y Q, Tang L Y, Wang P, Li Y F, Ding M N. Efficient CO2 electroreduction with a monolayer Bi2WO6 through a metallic intermediate surface state[J]. ACS Catal., 2021, 11(20): 12476-12484.

[42]

Chen W, Xie C, Wang Y Y, Zou Y Q, Dong C L, Huang Y C, Xiao Z H, Wei Z X, Du S Q, Chen C, Zhou B, Ma J M, Wang S Y. Activity origins and design principles of nickel-based catalysts for nucleophile electrooxidation[J]. Chem, 2020, 6(11): 2974-2993.

[43]

Wang H Y, Hung S F, Chen H Y, Chan T S, Chen H M, Liu B. In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4[J]. J. Am. Chem. Soc., 2016, 138(1): 36-39.

[44]

Gerischer H. Charge transfer processes at semiconductor-electrolyte interfaces in connection with problems of catalysis[J]. Surf. Sci., 1969, 18(1): 97-122.

[45]

Bisri S Z, Shimizu S, Nakano M, Iwasa Y. Endeavor of iontronics: From fundamentals to applications of ion-controlled electronics[J]. Adv. Mater., 2017, 29(25): 1607054.

[46]

Marcus R A. On the theory of oxidation-reduction reactions involving electron transfer. Ⅰ[J]. J. Chem. Phys., 2004, 26(4): 867-871.

[47]

He Y M, He Q Y, Wang L Q, Zhu C, Golani P, Handoko A D, Yu X C, Gao C T, Ding M N, Wang X W, Liu F C, Zeng Q S, Yu P, Guo S S, Yakobson B I, Wang L, Seh Z W, Zhang Z H, Wu M H, Wang Q J, Zhang H, Liu Z. Self-gating in semiconductor electrocatalysis[J]. Nat. Mater., 2019, 18(10): 1098-1104.

[48]

Nealson K H, Saffarini D. Iron and manganese in anaerobic respiration: Environmental significance, physiology, and regulation[J]. Annu. Rev. Microbiol., 1994, 48: 311-343.

[49]

Fredrickson J K, Romine M F, Beliaev A S, Auchtung J M, Driscoll M E, Gardner T S, Nealson K H, Osterman A L, Pinchuk G, Reed J L, Rodionov D A, Rodrigues J L M, Saffarini D A, Serres M H, Spormann A M, Zhulin I B, Tiedje J M. Towards environmental systems biology of Shewanella[J]. Nat. Rev. Microbiol., 2008, 6(8): 592-603.

[50]

Rabaey K, Rozendal R A. Microbial electrosynthesis-revisiting the electrical route for microbial production[J]. Nat. Rev. Microbiol., 2010, 8(10): 706-716.

[51]

Ding M N, Shiu H Y, Li S L, Lee C K, Wang G M, Wu H, Weiss N O, Young T D, Weiss P S, Wong G C L, Nealson K H, Huang Y, Duan X F. Nanoelectronic investigation reveals the electrochemical basis of electrical conductivity in Shewanella and Geobacter[J]. ACS Nano, 2016, 10(11): 9919-9926.

[52]

Gao D F, Soholten F, Cuenya B R. Improved CO2 electroreduction performance on plasma-activated Cu catalysts via electrolyte design: Halide effect[J]. ACS Catal., 2017, 7(8): 5112-5120.

[53]

Wahab O J, Kang M, Unwi P R. Scanning electrochemical cell microscopy: A natural technique for single entity electrochemistry[J]. Curr. Opin. Electrochem., 2020, 22: 120-128.

[54]

Zhang J, Wu J J, Guo H, Chen W B, Yuan J T, Martinez U, Gupta G, Mohite A, Ajayan P M, Lou J. Unveiling active sites for the hydrogen evolution reaction on monolayer MoS2[J]. Adv. Mater., 2017, 29(42): 1701955.

[55]

Inkpen M S, Liu Z F, Li H X, Campos L M, Neaton J B, Venkataraman L. Non-chemisorbed gold-sulfur binding prevails in self-assembled monolayers[J]. Nat. Chem., 2019, 11(4): 351-358.

[56]

Gongding J J. Single entity electrochemistry progresses to cell counting[J]. Angew. Chem. Int. Ed., 2016, 55(42): 12956-12958.

[57]

Liu C, Gallagher J J, Sakimoto K K, Nichols E M, Chang C J, Chang M C Y, Yang P D. Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals[J]. Nano Lett., 2015, 15(5): 3634-3639.

[58]

Nevin K P, Woodard T L, Franks A E, Summers Z M, Lovley D R. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds[J]. 2010, mBio, 1(2): e00103-10.

[59]

Tian B Z, Lieber C M. Nanowired bioelectric interfaces[J]. Chem. Rev., 2019, 119(15): 9136-9152.

[60]

Patolsky F, Zheng G F, Lieber C M. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species[J]. Nat. Protoc., 2006, 1(4): 1711-1724.

[61]

Tian B Z, Liu J, Dvir T, Jin L H, Tsui J H, Qing Q, Suo Z G, Langer R, Kohane D S, Lieber C M. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues[J]. Nat. Mater., 2012, 11(11): 986-994.

[62]

Patolsky F, Timko B P, Yu G H, Fang Y, Greytak A B, Zheng G F, Lieber C M. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays[J]. Science, 2006, 313(5790): 1100-1104.

[63]

Li T X, Liang Y Q, Li J H, Yu Y, Xiao M M, Ni W, Zhang Z Y, Zhang G J. Carbon nanotube field-effect transistor biosensor for ultrasensitive and label-free detection of breast cancer exosomal miRNA21[J]. Anal. Chem., 2021, 93(46): 15501-15507.

[64]

Tian B Z, Cohen-Karni T, Qing Q, Duan X J, Xie P, Lieber C M. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes[J]. Science, 2010, 329(5993): 830-834.

[65]

Jenkins E P W, Finch A, Gerigk M, Triantis I F, Watts C, Malliaras G G. Electrotherapies for glioblastoma[J]. Adv. Sci., 2021, 8(18): 2100978.

[66]

Yu R J, Ying Y L, Gao R, Long Y T. Confined nanopipette sensing: From single molecules, single nanoparticles, to single cells[J]. Angew. Chem. Int. Ed., 2019, 58(12): 3706-3714.

Journal of Electrochemistry
Article number: 2108491
Cite this article:
Mu Z-Y, Ding M-N. Recent Advances in Electrical Transport Spectroscopy for the in Situ Measurement of Electrochemical Interfaces. Journal of Electrochemistry, 2022, 28(3): 2108491. https://doi.org/10.13208/j.electrochem.210849
Metrics & Citations  
Article History
Copyright
Return