Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
As an electrochemical energy conversion system, fuel cell has the advantages of high energy conversion efficiency and high cleanliness. Oxygen reduction reaction (ORR), as an important cathode reaction in fuel cells, has received extensive attention. At present, the electrocatalysts are still one of the key materials restricting the further commercialization of fuel cells. The fundamental understanding on the catalytic mechanism of ORR is conducive to the development of electrocatalysts with the enhanced activity and high selectivity. This review aims to summarize the in situ characterization techniques used to study ORR. From this perspective, we first briefly introduce the advantages of various in situ techniques in ORR research, including electrochemical scanning tunneling microscopy, infrared spectroscopy, Raman spectroscopy, X-ray absorption spectroscopy, X-ray photoelectron spectroscopy and transmission electron microscopy. Then, the applications of various in situ characterization techniques in characterizing of the catalyst morphological evolution and electronic structure as well as the identification of reactants and intermediates in the catalytic process are summarized. Finally, the future development of in situ technology is outlooked.
Sharaf O Z, Orhan, M F. An overview of fuel cell technology: Fundamentals and applications[J]. Renew. Sust. Enegy Rev., 2014, 32: 810-853.
Steele B C H, Heinzel A. Materials for fuel-cell technologies[J]. Nature, 2001, 414(6861): 345-352.
Debe M K. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012, 486(7401): 43-51.
Badwal S P S, Giddey S, Kulkarni A, Goel J, Basu S. Direct ethanol fuel cells for transport and stationary applications-A comprehensive review[J]. Appl. Energ., 2015, 145: 80-103.
Wang W, Su C, Wu Y Z, Ran R, Shao Z P. Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels[J]. Chem. Rev., 2013, 113(10): 8104-8151.
Wu G, More K L, Johnston C M, Zelenay P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt[J]. Science, 2011, 332(6028): 443-447.
Kuttiyiel K A, Sasaki K, Su D, Wu L J, Zhu Y M, Adzic R R. Gold-promoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction[J]. Nat. Commun., 2014, 5: 5185.
Lu Y Z, Jiang Y Y, Gao X H, Wang X D, Chen W. Strongly coupled Pd nanotetrahedron/tungsten oxide nanosheet hybrids with enhanced catalytic activity and sability as oxygen reduction electrocatalysts[J]. J. Am. Chem. Soc., 2014, 136(33): 11687-11697.
Savadogo O, Lee K, Oishi K, Mitsushima S, Kamiya N, Ota K I. New palladium alloys catalyst for the oxygen reduction reaction in an acid medium[J]. Electrochem. Commun., 2004, 6(2): 105-109.
Wang X, Choi S I, Roling L T, Luo M, Ma C, Zhang L, Chi M F, Liu J Y, Xie Z X, Herron J A, Mavrikakis M, Xia Y N. Palladium-platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction[J]. Nat. Commun., 2015, 6: 7594.
Miner, E M, Fukushima, T, Sheberla, D, Sun L, Surendranath Y, Dinca M. Electro-chemical oxygen reduction catalysed by Ni3(hexaimino-triphenylene)2[J]. Nat. Commun., 2016, 7:10942.
Masa J, Xia W, Muhler M, Schuhmann W. On the role of metals in nitrogen-doped carbon electrocatalysts for oxygen reduction[J]. Angew. Chem. Int. Edit., 2015, 54(35): 10102-10120.
Tang H J, Yin H J, Wang J Y, Yang N L, Wang D, Tang Z Y. Molecular architecture of cobalt porphyrin multilayers on reduced graphene oxide sheets for high-performance oxygen reduction reaction[J]. Angew. Chem. Int. Edit., 2013, 52(21): 5585-5589.
Ding K Q, Cheng F M. Cyclic voltammetrically prepared MnO2-PPy composite material and its electrocatalysis towards oxygen reduction reaction (ORR)[J]. Synthetic Met., 2009, 159(19-20): 2122-2127.
Allen C J, Hwang J, Kautz R, Mukerjee S, Plichta E J, Hendrickson M A, Abraham K M. Oxygen reduction reactions in ionic liquids and the formulation of a general ORR mechanism for Li-air batteries[J]. J. Phys. Chem. C, 2012, 116(39): 20755-20764.
Roche I, Chaǐnet E, Chatenet M, Vondrak J. Carbon-supported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium: physical characterizations and ORR mechanism[J]. J. Phys. Chem. C, 2007, 111(3): 1434-1443.
Kuang F, Zhang D, Li Y J, Wan Y, Hou B R. Electrochemical impedance spectroscopy analysis for oxygen reduction reaction in 3.5% NaCl solution[J]. J. Solid State Electr., 2009, 13(3): 385-390.
Queuedo M C, Galicia G, Mayen-Mondragon R, Llongueras J G. Role of turbulent flow seawater in the corrosion enhancement of an Al-Zn-Mg alloy: an electrochemical impedance spectroscopy (EIS) analysis of oxygen reduction reaction (ORR)[J]. J. Mater. Res. Technol., 2018, 7(2): 149-157.
Feng L Y, Liu Y J, Zhao J X. Iron-embedded boron nitride nanosheet as a promising electrocatalyst for the oxygen reduction reaction (ORR): a density functional theory (DFT) study[J]. J. Power Sources, 2015, 287: 431-438.
Seifitokaldani A, Savadogo O, Perrier M. Density functional theory (DFT) computation of the oxygen reduction reaction (ORR) on titanium nitride (TiN) surface[J]. Electrochim. Acta., 2014, 141: 25-32.
Subbaraman R, Danilovic N, Lopes P P, Tripkovic D, Strmcnik D, Stamenkovic V R, Markovic N M. Origin of anomalous activities for electrocatalysts in alkaline electrolytes[J]. J. Phys. Chem. C, 2012, 116(42): 22231-22237.
Li D G, Wang C, Strmcnik D S, Strmcnik D S, Tripkovic D V, Sun X L, Kang Y J, Chi M F, Snyder J D, van der Vliet D, Tsai Y F, Stamenkovic V R, Sun S H, Markovic N M. Functional links between Pt single crystal morphology and nanoparticles with different size and shape: the oxygen reduction reaction case[J]. Energ. Environ. Sci., 2014, 7(12): 4061-4069.
Wan L J, Moriyama T, Ito M, Uchida H, Watanabe M. In situ STM imaging of surface dissolution and rearrangement of a Pt-Fe alloy electrocatalyst in electrolyte solution[J]. Chem. Commun., 2002(1): 58-59.
Todoroki N, Iijima Y, Takahashi R, Asakimori Y, Wadayama T. Structure and electrochemical stability of Ptenriched Ni/Pt(111) topmost surface prepared by molecular beam epitaxy[J]. J. Electrochem. Soc., 2013, 160(6): F591-F596.
Yoshimoto S, Tada A, Itaya K. In situ scanning tunneling microscopy study of the effect of iron octaethylporphyrin adlayer on the electrocatalytic reduction of O2 on Au (111)[J]. J. Phys. Chem. B, 2004, 108(17): 5171-5174.
Gocyla M, Kuehl S, Shviro M, Heyen H, Selve S, Dunin-Borkowski R E, Heggen M, Strasser P. Shape stability of octahedral PtNi nanocatalysts for electrochemical oxygen reduction reaction studied by in situ transmission electron microscopy[J]. ACS Nano, 2018, 12(6): 5306-5311.
Gatalo M, Ruiz-Zepeda F, Hodnik N, Drazic G, Bele M, Gaberscek M. Insights into thermal annealing of highly-active PtCu3/C oxygen reduction reaction electrocatalyst: An in situ heating transmission electron microscopy study[J]. Nano Energy, 2019, 63: 103892.
Strickland K, Miner E, Jia Q, Tylus U, Ramaswamy N, Liang W T, Sougrati M T, Jaouen F, Mukerjee S. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination[J]. Nat. Commun., 2015, 6: 7343.
Lima F H B, Calegaro M L, Ticianelli E A. Electrocatalytic activity of manganese oxides prepared by thermal decomposition for oxygen reduction[J]. Electrochim. Acta., 2007, 52(11): 3732-3738.
Celorrio V, Leach A S, Huang H L, Hayama S, Freeman A, Inwood D W, Fermin D J, Russell A E. Relationship between Mn oxidation state changes and oxygen reduction activity in (La, Ca) MnO3 as probed by in situ XAS and XES[J]. ACS Catal., 2021, 11(11): 6431-6439.
Merte L R, Behafarid F, Miller D J, Friebel D, Cho S, Mbuga F, Sokaras D, Alonso-Mori R, Weng T C, Nordlund D. Electrochemical oxidation of size-selected Pt nanoparticles studied using in situ high-energy-resolution X-ray absorption spectroscopy[J]. ACS Catal., 2012, 2(11): 2371-2376.
Nayak S, McPherson I J, Vincent K A. Adsorbed intermediates in oxygen reduction on platinum nanoparticles observed by in situ IR spectroscopy[J]. Angew. Chem. Int. Edit., 2018, 57(39): 12855-12858.
Shao M H, Liu P, Adzic R R. Superoxide anion is the intermediate in the oxygen reduction reaction on platinum electrodes[J]. J. Am. Chem. Soc., 2006, 128(23): 7408-7409.
Baranton S, Coutanceau C, Garnier E, Leger J M. How does α-FePc catalysts dispersed onto high specific surface carbon support work towards oxygen reduction reaction (ORR)?[J]. J. Electroanal. Chem., 2006, 590(1): 100-110.
Nayak S, Biedermann P U, Stratmann M, Erbe A. A mechanistic study of the electrochemical oxygen reduction on the model semiconductor n-Ge(100) by ATR-IR and DFT[J]. Phys. Chem. Chem. Phys., 2013, 15(16): 5771-5781.
Frith J T, Russell A E, Garcia-Araez N, Owen J R. An in situ Raman study of the oxygen reduction reaction in ionic liquids[J]. Electrochem. Commun., 2014, 46: 33-35.
Sugimura F, Sakai N, Nakamura T, Nakamura M, Ikeda K, Sakai T, Hoshi N. In situ observation of Pt oxides on the low index planes of Pt using surface enhanced Raman spectroscopy[J]. Phys. Chem. Chem. Phys., 2017, 19(40): 27570-27579.
Wang Y H, Le J B, Li W Q, Wei J, Radjenovic P M, Zhang H, Zhou X S, Cheng J, Tian Z Q, Li J F. In situ spectroscopic insight into the origin of the enhanced performance of bimetallic nanocatalysts towards the oxygen reduction reaction (ORR)[J]. Angew. Chem. Int. Ed., 2019, 58(45): 16062-16066.
Ze H J, Chen X, Wang X T, Wang Y H, Chen Q Q, Lin J S, Zhang Y J, Zhang X G, Tian Z Q, Li J F. Molecular insight of the critical role of Ni in Pt-based nanocatalysts for improving the oxygen reduction reaction probed using an in situ SERS borrowing strategy[J]. J. Am. Chem. Soc., 2021, 143(3): 1318-1322.
Dong J C, Su M, Briega-Martos V, Li L, Le J B, Radjenovic P, Zhou X S, Feliu J M, Tian Z Q, Li J F. Direct in situ Raman spectroscopic evidence of oxygen reduction reaction intermediates at high-index Pt (hkl) surfaces[J]. J. Am. Chem. Soc., 2019, 142(2): 715-719.
Wu J F, Shan S Y, Petkov V, Prasai B, Cronk H, Joseph P, Luo J, Zhong C J. Composition-structure-activity relationships for palladium-alloyed nanocatalysts in oxygen reduction reaction: an ex-situ/in situ high energy X-ray diffraction study[J]. ACS Catal., 2015, 5(9): 5317-5327.
Zhu G Z, Prabhudev S, Yang J, Gabardo C M, Botton G A, Soleymani L. In situ liquid cell TEM study of morphological evolution and degradation of Pt-Fe nanocatalysts during potential cycling[J]. J. Phys. Chem. C, 2014, 118(38): 22111-22119.
Brenet J P. Electrochemical behaviour of metallic oxides[J]. J. Power Sources, 1979, 4(3): 183-190.
Mao L Q, Zhang D, Sotomura T, Nakatsu K, Koshiba N, Ohsaka T. Mechanistic study of the reduction of oxygen in air electrode with manganese oxides as electrocatalysts[J]. Electrochim. Acta., 2003, 48(8): 1015-1021.
Qin H Y, Lin L X, Jia J K, Ni H L, He Y, Wang J, Li A G, Ji Z G, Liu J B. Synchrotron radiation in situ X-ray absorption fine structure and in situ X-ray diffraction analysis of a high-performance cobalt catalyst towards the oxygen reduction reaction[J]. Phys. Chem. Chem. Phys., 2017, 19(45): 30749-30755.
Dong J C, Zhang X G, Briega-Martos V, Jin X, Yang J, Chen S, Yang Z L, Wu D Y, Feliu J M, Williams C T, Tian Z Q, Li J F. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces[J]. Nat. Energy, 2019, 4(1): 60-67.
Friesen B A, Bhattarai A, Mazur U, Hipps K W. Single molecule imaging of oxygenation of cobalt octaethylporphyrin at the solution/solid interface: thermodynamics from microscopy[J]. J. Am. Chem. Soc., 2012, 134(36): 14897-14904.
Hulsken B, Van Hameren R, Gerritsen J W, Khoury T, Thordarson P, Crossley M J, Rowan A E, Nolte R J M, Elemans J A A W, Speller S. Real-time single-molecule imaging of oxidation catalysis at a liquid-solid interface[J]. Nat. Nanotechnol., 2007, 2(5): 285-289.
Gu J Y, Cai Z F, Wang D, Wang L J. Single-molecule imaging of iron-phthalocyanine-catalyzed oxygen reduction reaction by in situ scanning tunneling microscopy[J]. ACS Nano, 2016, 10(9): 8746-8750.
Cai Z F, Wang X, Wang D, Wang L J. Cobalt-porphyrincatalyzed oxygen reduction reaction: A scanning tunneling microscopy study[J]. ChemElectroChem, 2016, 3(12): 2048-2051.
Den Boer D, Li M, Habets T, Iavicoli P, Rowan A E, Nolte R J M, Speller S, Amabilino D B, De Feyter S, Elemans J A A W. Detection of different oxidation states of individual manganese porphyrins during their reaction with oxygen at a solid/liquid interface[J]. Nat. Chem., 2013, 5(7): 621-627.
Patera L L, Bianchini F, Africh C, Dri C, Soldano G, Mariscal M M, Peressi M, Comelli G. Real-time imaging of adatom-promoted graphene growth on nickel[J]. Science, 2018, 359(6381): 1243-1246.
Rahn B, Magnussen O M. Sulfide surface dynamics on Cu(100) and Ag(100) electrodes in the presence of c (2×2) halide adlayers[J]. ChemElectroChem, 2018, 5(20): 3073-3082.
Borfecchia E, Garino C, Gianolio D, Salassa L, Gobetto R, Lamberti C. Monitoring excited state dynamics in cis-[Ru(bpy)2(py)2]2+ by ultrafast synchrotron techniques[J]. Catal. Today., 2014, 229: 34-45.
Ustarroz J, Ornelas I M, Zhang G H, Perry D, Kang M, Bentley C L, Walker M, Unwin P R. Mobility and poisoning of mass-selected platinum nanoclusters during the oxygen reduction reaction[J]. ACS Catal., 2018, 8(8): 6775-6790.
Su H S, Zhang X G, Sun J J, Jin X, Wu D Y, Lian X B, Zhong J H, Ren B. Real-space observation of atomic sitespecific electronic properties of a Pt nanoisland/Au(111) bimetallic surface by tip-enhanced Raman spectroscopy[J]. Angew. Chem. Int. Ed., 2018, 57(40): 13177-13181.
Edmondson J F, Meloni G N, Costantini G, Unwin P R. Synchronous electrical conductance-and electron tunnelling-scanning electrochemical microscopy measurements[J]. ChemElectroChem, 2020, 7(3): 697-706.