Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Deep eutectic solvents (DESs) have been reported as a type of solvent for the controllable synthesis of metal nanostructures. Interestingly, flower-like palladium (Pd) nanoparticles composed of staggered nanosheets and nanospheres are spontaneously transformed into three-dimensional (3D) network nanostructures in choline chloride-urea DESs using ascorbic acid as a reducing agent. Systematic studies have been carried out to explore the formation mechanism, in which DESs itself acts as a solvent and soft template for the formation of 3D flower-like network nanostructures (FNNs). The amounts of hexadecyl trimethyl ammonium bromide and sodium hydroxide also play a crucial role in the anisotropic growth and generation of Pd-FNNs. The low electrocatalytic performance of Pd is one of the major challenges hindering the commercial application of fuel cells. Whereas, the 3D Pd-FNNs with lower surface energy and abundant grain boundaries exhibited the enhanced electrocatalytic activity and stability toward formic acid oxidation, by which the mass activity and specific activity were 2.7 and 1.4 times higher than those of commercial Pd black catalyst, respectively. Therefore, the current strategy provides a feasible route for the synthesis of unique Pd-based nanostructures.
Zhang S, Xia R, Su Y, Zou Y, Hu C, Yin G, Hensen E J M, Ma X, Lin Y. 2D surface induced self-assemble of Pd nanocrystals into nanostrings for enhanced formic acid electroxidation[J]. J. Mater. Chem. A, 2020, 8(33):17128–17135.
Ding J, Liu Z, Liu X R, Liu B, Liu J, Deng Y D, Han X P, Hu W B, Zhong C. Tunable periodically ordered mesoporosity in palladium membranes enables exceptional enhancement of intrinsic electrocatalytic activity for formic acid oxidation[J]. Angew. Chem. Int. Ed., 2020, 59(13): 5092–5101.
Huang L, Zhan M, Wang Y C, Lin Y F, Liu S, Yuan T, Yang H, Sun S G. Syntheses of carbon paper supported high-index faceted Pt nanoparticles and their performance in direct formic acid fuel cells[J]. J. Electrochem., 2016, 22(2): 123–128.
Jiang M C, Meng X M, Zhang W L, Huang H W, Wang F Q, Wang S, Ouyang Y R, Yuan W Y, Zhang L Y. Facile synthesis of heterophase sponge-like Pd toward enhanced formic acid oxidation[J]. Electrochem. Commun., 2021, 126(1): 107004–107008.
Lv F, Huang B L, Feng J R, Zhang W Y, Wang K, Li N, Zhou J H, Zhou P, Yang W X, Du Y P, Su D, Guo S J. A highly efficient atomically thin curved PdIr bimetallene electrocatalyst[J]. Natl. Sci. Rev., 2021, 8(9): 1–11.
Zheng J Z, Zeng H J, Tan C H, Zhang T M, Zhao B, Guo W, Wang H B, Sun Y H, Jiang L. Coral-like PdCu alloy nanoparticles act as stable electrocatalysts for highly efficient formic acid oxidation[J]. ACS Sustainable Chem. Eng., 2019, 7(18): 15354–15360.
Zhang J M, Shen L F, Jiang Y X, Sun S G. Random alloy and intermetallic nanocatalysts in fuel cell reactions[J]. Nanoscale, 2020, 12(38): 19557–19581.
Perales-Rondon J V, Ferre-Vilaplana A, Feliu J M, Herrero E. Oxidation mechanism of formic acid on the bismuth adatom-modified Pt(111) surface[J]. J. Am. Chem. Soc., 2014, 136(38): 13110–13113.
Zhang J M, Wang R X, Nong R J, Li Y, Zhang X J, Zhang P Y, Fan Y J. Hydrogen co-reduction synthesis of PdPtNi alloy nanoparticles on carbon nanotubes as enhanced catalyst for formic acid electrooxidation[J]. Int. J. Hydrogen Energy, 2017, 42(10): 7226–7234.
Shen T, Zhang J J, Chen K, Deng S F, Wang D L. Recent progress of palladium-based electrocatalysts for the formic acid oxidation reaction[J]. Energ. Fuel., 2020, 34(8): 9137–9153.
Yan Y C, Li X, Tang M, Zhong H, Huang J B, Bian T, Jiang Y, Han Y, Zhang H, Yang D R. Tailoring the edge sites of 2D Pd nanostructures with different fractal dimensions for enhanced electrocatalytic performance[J]. Adv. Sci., 2018, 5(8): 1800430–1800436.
Ren M J, Zou L L, Chen J, Yuan T, Huang Q H, Zhang H F, Yang H, Feng S L. Electrocatalytic oxidation of formic acid on Pd/Ni heterostructured catalyst[J]. J. Electrochem., 2012, 18(6): 515–520.
Xiao C, Tian N, Zhou Z Y, Sun S G. Electrochemical preparations and applications of nano-catalysts with high-index facets[J]. J. Electrochem., 2020, 26(1): 61–72.
Zhang L Y, Ouyang Y, Wang S, Gong Y, Jiang M, Yuan W, Li C M. Ultrafast synthesis of uniform 4–5 atoms-thin layered tremella-like Pd nanostructure with extremely large electrochemically active surface area for formic acid oxidation[J]. J. Power Sources, 2020, 447(1): 227248–227254.
Poerwoprajitno A R, Gloag L, Cheong S, Gooding J J, Tilley R D. Synthesis of low- and high-index faceted metal (Pt, Pd, Ru, Ir, Rh) nanoparticles for improved activity and stability in electrocatalysis[J]. Nanoscale, 2019, 11(9): 18995–19011.
Xu B Y, Zhang Y, Li L G, Shao Q, Huang X Q. Recent progress in low-dimensional palladium-based nanostructures for electrocatalysis and beyond[J]. Coordin. Chem. Rev., 2022, 459(5): 214388–214419.
Xiao C, Lu B A, Xue P, Tian N, Zhou Z Y, Lin X, Lin W F, Sun S G. High-index-facet- and high-surface-energy nanocrystals of metals and metal oxides as highly efficient catalysts[J]. Joule, 2020, 4(12):2562–2598.
Gong Y, Liu X, Gong Y, Wu D, Xu B, Bi L, Zhang L Y, Zhao X S. Synthesis of defect-rich palladium-tin alloy nanochain networks for formic acid oxidation[J]. J. Colloid Interf. Sci., 2018, 530(11):189–195.
Xu Y, Xu R, Cui J H, Liu Y, Zhang B. One-step synthesis of three-dimensional Pd polyhedron networks with enhanced electrocatalytic performance[J]. Chem. Commun., 2012, 48(32): 3881–3883.
Yuan T, Chen H Y, Ma X, Feng J J, Yuan P X, Wang A J. Simple synthesis of self-supported hierarchical AuPd alloyed nanowire networks for boosting electrocatalytic activity toward formic acid oxidation[J]. J. Colloid Interf. Sci., 2018, 513(3): 324–330.
Zhang X F, Chen Y, Zhang L, Wang A J, Wu L J, Wang Z G, Feng J J. Poly-L-lysine mediated synthesis of palladium nanochain networks and nanodendrites as highly efficient electrocatalysts for formic acid oxidation and hydrogen evolution[J]. J. Colloid Interf. Sci., 2018, 516(4): 325–331.
Cui X, Xiao P, Wang J, Zhou M, Guo W L, Yang Y, He Y J, Wang Z W, Yang Y K, Zhang Y H, Lin Z Q. Highly branched metal alloy networks with superior activities for the methanol oxidation reaction[J]. Angew. Chem. Int. Ed., 2017, 56(16): 4488–4493.
Zhang Q B, Hua Y X. Electrochemical synthesis of copper nanoparticles using cuprous oxide as a precursor in choline chloride-urea deep eutectic solvent: nucleation and growth mechanism[J]. Phys. Chem. Chem. Phys., 2014, 16(48): 27088–27095.
Kumar-Krishnan S, Prokhorov E, Arias de Fuentes O, Ramõrez M, Bogdanchikova N, Sanchez I C, Mota-Morales J D, Luna-Barcenas G. Temperature-induced Au nanostructure synthesis in a nonaqueous deep-eutectic solvent for high performance electrocatalysis[J]. J. Mater. Chem., 2015, 3(31): 15869–15875.
Wagle D V, Zhao H, Baker G A. Deep eutectic solvents: sustainable media for nanoscale and functional materials[J]. Acc. Chem. Res., 2014, 47(8): 2299–2308.
Wei L, Fan Y J, Tian N, Zhou Z Y, Zhao X Q, Mao B W, Sun S G. Electrochemically shape-controlled synthesis in deep eutectic solvents—A new route to prepare Pt nanocrystals enclosed by high-index facets with high catalytic activity[J]. J. Phys. Chem. C, 2012, 116(2): 2040–2044.
Wei L, Fan Y J, Wang H H, Tian N, Zhou Z Y, Sun S G. Electrochemically shape-controlled synthesis in deep eutectic solvents of Pt nanoflowers with enhanced activity for ethanol oxidation[J]. Electrochim. Acta, 2012, 76(8): 468–474.
Wei L, Xu C D, Huang L, Zhou Z Y, Chen S P, Sun S G. Electrochemically shape-controlled synthesis of Pd concave disdyakis triacontahedra in deep eutectic solvent[J]. J. Phys. Chem. C, 2016, 120(29): 15569–15577.
Yin X, Chen Q Y, Tian P, Zhang P, Zhang Z Y, Voyles P M, Wang X D. Ionic layer epitaxy of nanometer-thick palladium nanosheets with enhanced electrocatalytic properties[J]. Chem. Mater., 2018, 30(10): 3308–3314.
Jana R, Subbarao U, Peter S C. Ultrafast synthesis of flower-like ordered Pd3Pb nanocrystals with superior electrocatalytic activities towards oxidation of formic acid and ethanol[J]. J. Power Sources, 2016, 301(1): 160–169.
Shan J F, Lei Z, Wu W, Tan Y Y, Cheng N C, Sun X L. Highly active and durable ultrasmall Pd nanocatalyst encapsulated in ultrathin silica layers by selective deposition for formic acid oxidation[J]. ACS Appl. Mater. Interfaces, 2019, 11(46): 43130–43137.
Huang H W, Ruditskiy A, Choi S I, Zhang L, Liu J Y, Ye Z Z, Xia Y N. One-pot synthesis of penta-twinned palladium nanowires and their enhanced electrocatalytic properties[J]. ACS Appl. Mater. Interfaces, 2017, 9(36): 31203–31212.
Saravani H, Farsadrooh M, Mollashahi M S, Hajnajafi M, Douk A S. Two-dimensional engineering of Pd nanosheets as advanced electrocatalysts toward formic acid oxidation[J]. Int. J. Hydrogen Energ., 2020, 45(41): 21232–21240.
Lou Y Y, Xiao C, Fang J, Sheng T, Ji L, Zheng Q, Xu B B, Tian N, Sun S G. The high activity of step sites on Pd nanocatalysts in electrocatalytic dechlorination[J]. Phys. Chem. Chem. Phys., 2022, 24(6): 3896–3904.
Yu N F, Tian N, Zhou Z Y, Sheng T, Lin W F, Ye J Y, Liu S, Ma H B, Sun S G. Pd nanocrystals with continuously tunable high-index facets as a model nanocatalyst[J]. ACS Catal., 2019, 9(4): 3144–3152.
Xiao C, Tian N, Li W Z, Qu X M, Du J H, Lu B A, Xu B B, Zhou Z Y, Sun S G. Shape transformations of Pt nanocrystals enclosed with high-index facets and low-index facets[J]. CrystEngComm, 2021, 23(38): 6655–6660.
Shen T, Chen S J, Zeng R, Gong M X, Zhao T H, Lu Y, Liu X P, Xiao D D, Yang Y, Hu J P, Wang D L, Xin H L, Abruna H D. Tailoring the antipoisoning performance of Pd for formic acid electrooxidation via an ordered PdBi intermetallic[J]. ACS Catal., 2020, 10(17): 9977–9985.
Shi Y F, Lyu Z H, Cao Z M, Xie M H, Xia Y N. How to remove the capping agent from Pd nanocubes without destructing their surface structure for the maximization of catalytic activity?[J]. Angew. Chem. Int. Ed., 2020, 59(43): 19129–19135.
Rettenmaier C, Aran-Ais R M, Timoshenko J, Rizo R, Jeon H S, Kuhl S, Chee S W, Bergmann A, Cuenya B R. Enhanced formic acid oxidation over SnO2-decorated Pd nanocubes[J]. ACS Catal., 2020, 10(1): 14540–14551.
Mondal S, Raj C R. Electrochemical dealloying-assisted surface-engineered Pd-based bifunctional electrocatalyst for formic acid oxidation and oxygen reduction[J]. ACS Appl. Mater. Interfaces, 2019, 11(15): 14110–14119.
Wang W C, He T O, Yang X L, Liu Y M, Wang C Q, Li J, Xiao A D, Zhang K, Shi X T, Jin M S. General synthesis of amorphous PdM (M = Cu, Fe, Co, Ni) alloy nanowires for boosting HCOOH dehydrogenation[J]. Nano Lett., 2021, 21(8): 3458–3464.
Shi W, Park A H, Xu S, Yoo P J, Kwon Y U. Continuous and conformal thin TiO2-coating on carbon support makes Pd nanoparticles highly efficient and durable electrocatalyst[J]. Appl. Catal. B-Environ., 2021, 284(5): 119715–119724.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).