AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Alkaline Seawater Electrolysis at Industrial Level:Recent Progress and Perspective

Tao Zhang1,#Yi-Pu Liu2,#Qi-Tong Ye2Hong-Jin Fan1( )
School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228 P. R. China

# Tao Zhang and Yipu Liu contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Industrial hydrogen generation through water splitting, powered by renewable energy such as solar, wind and marine, paves a potential way for energy and environment sustainability. However, state-of-the-art electrolysis using high purity water as hydrogen source at an industrial level would bring about crisis of freshwater resource. Seawater splitting provides a practical path to solve potable water shortage, but still faces great challenges for large-scale industrial operation. Here we summarize recent developments in seawater splitting, covering general mechanisms, design criteria for electrodes, and industrial electrolyzer for direct seawater splitting. Multi-objective optimization methods to address the key challenges of active sites, reaction selectivity, corrosion resistance, and mass transfer ability will be discussed. The recent development in seawater electrolyzer and acquaint efficient strategies to design direct devices for long-time operation are also highlighted. Finally, we provide our own perspective to future opportunities and challenges towards direct seawater electrolysis.

References

[1]

Gray H B. Powering the planet with solar fuel[J]. Nat. Chem., 2009, 1(1): 7-7.

[2]

Turner J A. Sustainable hydrogen production[J]. Science, 2004, 305(5686): 972-974.

[3]

Zhou Y, Hao W, Zhao X X, Zhou J D, Yu H M, Lin B, Liu Z, Pennycook S J, Li S Z, Fan H J. Electronegativity-induced charge balancing to boost stability and activity of amorphous electrocatalysts[J]. Adv. Mater., 2022, 34(20): 2202598.

[4]

Zhang T, Liu Y P, Yu J, Ye Q T, Yang L, Li Y, Fan H J. Biaxial strained MoS2 nanoshells with controllable layers boost alkaline hydrogen evolution[J]. Adv. Mater., 2022, 34 (27): 2202195.

[5]

Jin H Y, Liu X, Vasileff A, Jiao Y, Zhao Y Q, Zheng Y, Qiao S Z. Single-crystal nitrogen-rich two-dimensional Mo5N6 nanosheets for efficient and stable seawater splitting[J]. ACS Nano, 2018, 12(12): 12761-12769.

[6]

Wang C Z, Zhu M Z, Cao Z Y, Zhu P, Cao Y Q, Xu X Y, Xu C X, Yin Z Y. Heterogeneous bimetallic sulfides based seawater electrolysis towards stable industrial-level large current density[J]. Appl. Catal. B, 2021, 291: 120071.

[7]

Dresp S, Dionigi F, Klingenhof M, Strasser P. Direct electrolytic splitting of seawater: Opportunities and challenges[J]. ACS Energy Lett., 2019, 4(4): 933-942.

[8]

Liu S J, Ren S J, Gao R T, Liu X H, Wang L. Atomically embedded Ag on transition metal hydroxides triggers the lattice oxygen towards sustained seawater electrolysis[J]. Nano Energy, 2022, 98: 107212.

[9]

Ke S C, Chen R, Chen G H, Ma X L. Mini review on electrocatalyst design for seawater splitting: Recent progress and perspectives[J]. Energy & Fuels, 2021, 35(16): 12948- 12956.

[10]

Kuang Y, Kenney M J, Meng Y T, Hung W H, Liu Y J, Huang J E, Prasanna R, Li P S, Li Y P, Wang L, Lin M C, McGehee M D, Sun X M, Dai H J. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels[J]. Proc. Natl. Acad. Sci., 2019, 116(14): 6624- 6629.

[11]

Tong W M, Forster M, Dionigi F, Dresp S, Erami R S, Strasser P, Cowan A J, Farràs P. Electrolysis of low-grade and saline surface water[J]. Nat. Energy, 2020, 5(5): 367- 377.

[12]

Yang F N, Luo Y T, Yu Q M, Zhang Z Y, Zhang S, Liu Z B, Ren W C, Cheng H M, Li J, Liu B L. A durable and efficient electrocatalyst for saline water splitting with current density exceeding 2000 mA·cm-2[J]. Adv. Funct. Mater., 2021, 31(21): 2010367.

[13]

Sarno M, Ponticorvo E, Scarpa D. Active and stable gra- phene supporting trimetallic alloy-based electrocatalyst for hydrogen evolution by seawater splitting[J]. Electro- chem. Commun., 2020, 111: 106647.

[14]

Dong G F, Xie F Y, Kou F X, Chen T T, Wang F Y, Zhou Y W, Wu K C, Du S W, Fang M, Ho J C. Nife-layered double hydroxide arrays for oxygen evolution reaction in fresh water and seawater[J]. Mater. Today Energy, 2021, 22: 100883.

[15]

Marini S, Salvi P, Nelli P, Pesenti R, Villa M, Kiros Y. Stable and inexpensive electrodes for the hydrogen evolution reaction[J]. Int. J. Hydrogen Energy, 2013, 38(26): 11484-11495.

[16]

Sun Y Q, Zhang T, Li C C, Xu K, Li Y. Compositional engineering of sulfides, phosphides, carbides, nitrides, oxides, and hydroxides for water splitting[J]. J. Mater. Chem. A, 2020, 8(27): 13415-13436.

[17]

Sriram P, Su D S, Periasamy A P, Manikandan A, Wang S W, Chang H T, Chueh Y L, Yen T J. Hybridizing strong quadrupole gap plasmons using optimized nano- antennas with bilayer MoS2 for excellent photo-electrochemical hydrogen evolution[J]. Adv. Energy Mater., 2018, 8(29): 1801184.

[18]

Dionigi F, Reier T, Pawolek Z, Gliech M, Strasser P. Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis[J]. ChemSusChem, 2016, 9(9): 962-972.

[19]

Bigiani L, Barreca D, Gasparotto A, Andreu T, Verbeeck J, Sada C, Modin E, Lebedev O I, Morante J R, Maccato C. Selective anodes for seawater splitting via functionalization of anganese oxides by a plasma-assisted process[J]. Appl. Catal. B, 2021, 284: 119684.

[20]

Yu L, Zhu Q, Song S W, McElhenny B, Wang D Z, Wu C Z, Qin Z J, Bao J M, Yu Y, Chen S, Ren Z F. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis[J]. Nat. Commun., 2019, 10: 5106.

[21]

Liu P, Chen B, Liang C W, Yao W T, Cui Y Z, Hu S Y, Zou P C, Zhang H, Fan H J, Yang C. Tip-enhanced electric field: A new mechanism promoting mass transfer in oxygen evolution reactions[J]. Adv. Mater., 2021, 33(9): 2007377.

[22]

Kienitz B L, Baskaran H, Zawodzinski T A. Modeling the steady-state effects of cationic contamination on polymer electrolyte membranes[J]. Electrochim. Acta, 2009, 54(6): 1671-1679.

[23]

Bolar S, Shit S, Murmu N C, Kuila T. Progress in theoretical and experimental investigation on seawater electrolysis: Opportunities and challenges[J]. Sustain. Energy Fuels, 2021, 5(23): 5915-5945.

[24]

Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J, Chen H M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives[J]. Chem. Soc. Rev., 2017, 46(2): 337-365.

[25]

Li J H, Liu Y P, Chen H, Zhang Z K, Zou X X. Design of a multilayered oxygen-evolution electrode with high catalytic activity and corrosion resistance for saline water splitting[J]. Adv. Funct. Mater., 2021, 31(27): 2101820.

[26]

Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I B, Nörskov J K, Jaramillo T F. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017, 355(6321): eaad4998.

[27]

Bennett J E. Electrodes for generation of hydrogen and oxygen from seawater[J]. Int. J. Hydrogen Energy, 1980, 5(4): 401-408.

[28]

Trasatti S. Electrocatalysis in the anodic evolution of oxygen and chlorine[J]. Electrochim. Acta, 1984, 29(11): 1503-1512.

[29]

Zhu J, Hu L S, Zhao P X, Lee L Y S, Wong K Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chem. Rev., 2020, 120(2): 851-918.

[30]

Zou X X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chem. Soc. Rev., 2015, 44(15): 5148-5180.

[31]

Gayen P, Saha S, Ramani V. Selective seawater splitting using pyrochlore electrocatalyst[J]. ACS Appl. Energy Mater., 2020, 3(4): 3978-3983.

[32]

Kirk D W, Ledas A E. Precipitate formation during sea water electrolysis[J]. Int. J. Hydrogen Energy, 1982, 7(12): 925-932.

[33]

Lu X Y, Pan J, Lovell E, Tan T H, Ng Y H, Amal R. A sea-change: Manganese doped nickel/nickel oxide electrocatalysts for hydrogen generation from seawater[J]. Energy Environ. Sci., 2018, 11(7): 1898-1910.

[34]

Zhang B, Wang J, Wu B, Guo X W, Wang Y J, Chen D, Zhang Y C, Du K, Oguzie E E, Ma X L. Unmasking chloride attack on the passive film of metals[J]. Nat. Commun., 2018, 9: 2559.

[35]

Scott S B, S?rensen J E, Rao R R, Moon C, Kibsgaard J, Shao-Horn Y, Chorkendorff I. The low overpotential regime of acidic water oxidation part Ⅱ: Trends in metal and oxygen stability numbers[J]. Energy Environ. Sci., 2022, 15(5): 1988-2001.

[36]

Wang C, Shang H Y, Jin L J, Xu H, Du Y K. Advances in hydrogen production from electrocatalytic seawater splitting[J]. Nanoscale, 2021, 13(17): 7897-7912.

[37]

Lan C, Xie H P, Wu Y F, Chen B, Liu T. Nanoengineered, Mo-doped, Ni3S2 electrocatalyst with increased Ni-S coordination for oxygen evolution in alkaline seawater[J]. Energy & Fuels, 2022, 36(5): 2910-2917.

[38]

Hegner F S, Garcés-Pineda F A, González-Cobos J, Rodríguez-García B, Torréns M, Palomares E, López N, Galán-Mascarós J R. Understanding the catalytic selectivity of cobalt hexacyanoferrate toward oxygen evolution in seawater electrolysis[J]. ACS Catal., 2021, 11(21): 13140-13148.

[39]

d’Amore-Domenech R, Leo T J. Sustainable hydrogen production from offshore marine renewable farms: Techno-energetic insight on seawater electrolysis technologies[J]. ACS Sustain. Chem. Eng., 2019, 7(9): 8006-8022.

[40]

You H H, Wu D S, Si D H, Cao M N, Sun F F, Zhang H, Wang H M, Liu T F, Cao R. Monolayer NiIr-layered double hydroxide as a long-lived efficient oxygen evolution catalyst for seawater splitting[J]. J. Am. Chem. Soc., 2022, 144(21): 9254-9263.

[41]

You B, Sun Y J. Innovative strategies for electrocatalytic water splitting[J]. Acc. Chem. Res., 2018, 51(7): 1571- 1580.

[42]

Skúlason E, Tripkovic V, Björketun M E, Gudmundsdóttir S, Karlberg G, Rossmeisl J, Bligaard T, Jónsson H, Nörskov J K. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations[J]. J. Phys. Chem. C, 2010, 114(42): 18182-18197.

[43]

Zheng J J. Binary platinum alloy electrodes for hydrogen and oxygen evolutions by seawater splitting[J]. Appl. Surf. Sci., 2017, 413: 72-82.

[44]

Li H Y, Tang Q W, He B L, Yang P Z. Robust electrocatalysts from an alloyed Pt-Ru-M (M = Cr, Fe, Co, Ni, Mo)- decorated Ti mesh for hydrogen evolution by seawater splitting[J]. J. Mater. Chem. A, 2016, 4(17): 6513-6520.

[45]

Mahmood A, Lin H F, Xie N H, Wang X. Surface confinement etching and polarization matter: A new approach to prepare ultrathin ptagco nanosheets for hydrogen-evolution reactions[J]. Chem. Mater., 2017, 29(15): 6329-6335.

[46]

Chen Y, Zheng X X, Huang X Y, Wang A J, Zhang Q L, Huang H, Feng J J. Trimetallic ptrhco petal-assembled alloyed nanoflowers as efficient and stable bifunctional electrocatalyst for ethylene glycol oxidation and hydrogen evolution reactions[J]. J. Colloid Interface Sci., 2020, 559: 206-214.

[47]

Chen H Y, Niu H J, Han Z, Feng J J, Huang H, Wang A J. Simple fabrication of trimetallic platinum-nickel-cobalt hollow alloyed 3D multipods for highly boosted hydrogen evolution reaction[J]. J. Colloid Interface Sci., 2020, 570: 205-211.

[48]

Wu L B, Zhang F H, Song S W, Ning M H, Zhu Q, Zhou J Q, Gao G H, Chen Z Y, Zhou Q C, Xing X X, Tong T, Yao Y, Bao J M, Yu L, Chen S, Ren Z F. Efficient alkaline water/seawater hydrogen evolution by a nanorod nanoparticle-structured Ni-MoN catalyst with fast water-dissociation kinetics[J]. Adv. Mater., 2022, 34(21): 2201774.

[49]

Jin H Y, Wang X S, Tang C, Vasileff A, Li L Q, Slattery A, Qiao S Z. Stable and highly efficient hydrogen evolution from seawater enabled by an unsaturated nickel surface nitride[J]. Adv. Mater., 2021, 33(13): 2007508.

[50]

Fei H L, Dong J C, Arellano-Jiménez M J, Ye G L, Kim N D, Samuel E L G, Peng Z W, Zhu Z, Qin F, Bao J M, Yacaman M J, Ajayan P M, Chen D L, Tour J M. Atomic cobalt on nitrogen-doped graphene for hydrogen generation[J]. Nat. Commun., 2015, 6: 8668.

[51]

Lei C J, Wang Y, Hou Y, Liu P, Yang J, Zhang T, Zhuang X D, Chen M W, Yang B, Lei L C, Yuan C, Qiu M, Feng X L. Efficient alkaline hydrogen evolution on atomically dispersed Ni-Nx species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics[J]. Energy Environ. Sci., 2019, 12(1): 149- 156.

[52]

Chen W X, Pei J J, He C T, Wan J W, Ren H L, Zhu Y Q, Wang Y, Dong J C, Tian S B, Cheong W C, Lu S Q, Zheng L R, Zheng X S, Yan W S, Zhuang Z B, Chen C, Peng Q, Wang D S, Li Y D. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction[J]. Angew. Chem. Int. Ed., 2017, 56(50): 16086-16090.

[53]

Chen W X, Pei J J, He C T, Wan J W, Ren H L, Wang Y, Dong J C, Wu K L, Cheong W C, Mao J J, Zheng X S, Yan W S, Zhuang Z B, Chen C, Peng Q, Wang D S, Li Y D. Single tungsten atoms supported on MoF-derived N-doped carbon for robust electrochemical hydrogen evolution[J]. Adv. Mater., 2018, 30(30): 1800396.

[54]

Zang W J, Sun T, Yang T, Xi S B, Waqar M, Kou Z K, Lyu Z Y, Feng Y P, Wang J, Pennycook S J. Efficient hydrogen evolution of oxidized Ni-N3 defective sites for alkaline freshwater and seawater electrolysis[J]. Adv. Mater., 2021, 33(8): 2003846.

[55]

Hung W H, Xue B Y, Lin T M, Lu S Y, Tsao I Y. A highly active selenized nickel-iron electrode with layered double hydroxide for electrocatalytic water splitting in saline electrolyte[J]. Mater. Today Energy, 2021, 19: 100575.

[56]

Vos J G, Wezendonk T A, Jeremiasse A W, Koper M T M. MnOx/IrOx as selective oxygen evolution electrocatalyst in acidic chloride solution[J]. J. Am. Chem. Soc., 2018, 140(32): 10270-10281.

[57]

Deng J, Deng D H, Bao X H. Robust catalysis on 2D materials encapsulating metals: Concept, application, and perspective[J]. Adv. Mater., 2017, 29(43): 1606967.

[58]

Yu L, Deng D H, Bao X H. Chain mail for catalysts[J]. Angew. Chem. Int. Ed., 2020, 59(36): 15294-15297.

[59]

Deng J, Ren P J, Deng D H, Bao X H. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction[J]. Angew. Chem. Int. Ed., 2015, 54(7): 2100-2104.

[60]

Zhang T, Sun Y Q, Hang L F, Bai Y, Li X Y, Wen L L, Zhang X M, Lyu X J, Cai W P, Li Y. Large-scale synthesis of Co/CoOx encapsulated in nitrogen-, oxygen-, and sulfur-tridoped three-dimensional porous carbon as efficient electrocatalysts for hydrogen evolution reaction[J]. ACS Appl. Energy Mater., 2018, 1(11): 6250-6259.

[61]

Jadhav A R, Kumar A, Lee J J, Yang T, Na S, Lee J S, Luo Y G, Liu X H, Hwang Y, Liu Y, Lee H. Stable complete seawater electrolysis by using interfacial chloride ion blocking layer on catalyst surface[J]. J. Mater. Chem. A, 2020, 8(46): 24501-24514.

[62]

Zhang T, Bai Y, Sun Y Q, Hang L F, Li X Y, Liu D L, Lyu X J, Li C C, Cai W P, Li Y. Laser-irradiation induced synthesis of spongy auagpt alloy nanospheres with high-index facets, rich grain boundaries and subtle lattice distortion for enhanced electrocatalytic activity[J]. J. Mater. Chem. A, 2018, 6(28): 13735-13742.

[63]

Zhang T, Sun Y Q, Li X J, Li X Y, Liu D L, Liu G Q, Li C C, Fan H J, Li Y. Ptpdag hollow nanodendrites: Template-free synthesis and high electrocatalytic activity for methanol oxidation reaction[J]. Small Methods, 2020, 4(1): 1900709.

[64]

Tu W Z, Luo W J, Chen C L, Chen K, Zhu E B, Zhao Z P, Wang Z L, Hu T, Zai H C, Ke X X, Sui M L, Chen P W, Zhang Q S, Chen Q, Li Y J, Huang Y. Tungsten as “adhesive” in Pt2CuW0.25 ternary alloy for highly durable oxygen reduction electrocatalysis[J]. Adv. Funct. Mater., 2020, 30(6): 1908230.

[65]

Wang H M, Chen Z N, Wu D S, Cao M N, Sun F F, Zhang H, You H H, Zhuang W, Cao R. Significantly enhanced overall water splitting performance by partial oxidation of Ir through Au modification in core-shell alloy structure[J]. J. Am. Chem. Soc., 2021, 143(12): 4639-4645.

[66]

Wu L B, Yu L, Zhang F H, McElhenny B, Luo D, Karim A, Chen S, Ren Z F. Heterogeneous bimetallic phosphide Ni2P-Fe2P as an efficient bifunctional catalyst for water/seawater splitting[J]. Adv. Funct. Mater., 2021, 31(1): 2006484.

[67]

Zhuang L Z, Li J K, Wang K Y, Li Z H, Zhu M H, Xu Z. Structural buffer engineering on metal oxide for long-term stable seawater splitting[J]. Adv. Funct. Mater., 2022, 32(25): 2201127.

[68]

Yang Q F, Cui Y C, Li Q Y, Cai J H, Wang D, Feng L. Nanosheet-derived ultrafine CoRuOx@NC nanoparticles with a core@shell structure as bifunctional electrocatalysts for electrochemical water splitting with high current density or low power input[J]. ACS Sustain. Chem. Eng., 2020, 8(32): 12089-12099.

[69]

Jian J, Yuan L, Qi H, Sun X J, Zhang L, Li H, Yuan H M, Feng S H. Sn-Ni3S2 ultrathin nanosheets as efficient bifunctional water-splitting catalysts with a large current density and low overpotential[J]. ACS Appl. Mater. Interfaces, 2018, 10(47): 40568-40576.

[70]

Yao Y, Zhu Y H, Pan C A Q, Wang C Y, Hu S Y, Xiao W, Chi X, Fang Y R, Yang J, Deng H T, Xiao S Q, Li J B, Luo Z, Guo Y B. Interfacial sp C-O-Mo hybridization originated high-current density hydrogen evolution[J]. J. Am. Chem. Soc., 2021, 143(23): 8720-8730.

[71]

Luo Y T, Zhang Z Y, Chhowalla M, Liu B L. Recent advances in design of electrocatalysts for high-current-density water splitting[J]. Adv. Mater., 2022, 34(16): 2108133.

[72]

Jothi V R, Karuppasamy K, Maiyalagan T, Rajan H, Jung C Y, Yi S C. Corrosion and alloy engineering in rational design of high current density electrodes for efficient water splitting[J]. Adv. Energy Mater., 2020, 10(24): 1904020.

[73]

Feng J R, Lv F, Zhang W Y, Li P H, Wang K, Yang C, Wang B, Yang Y, Zhou J H, Lin F, Wang G C, Guo S J. Iridium-based multimetallic porous hollow nanocrystals for efficient overall-water-splitting catalysis[J]. Adv. Mater., 2017, 29(47): 1703798.

[74]

Wu T, Song E H, Zhang S N, Luo M J, Zhao C D, Zhao W, Liu J J, Huang F Q. Engineering metallic heterostructure based on Ni3N and 2M-MoS2 for alkaline water electrolysis with industry-compatible current density and stability[J]. Adv. Mater., 2022, 34(9): 2108505.

[75]

Wen Q L, Yang K, Huang D J, Cheng G, Ai X M, Liu Y W, Fang J K, Li H Q, Yu L, Zhai T Y. Schottky heterojunction nanosheet array achieving high-current-density oxygen evolution for industrial water splitting electrolyzers[J]. Adv. Energy Mater., 2021, 11(46): 2102353.

[76]

Seenivasan S, Kim D H. Engineering the surface anatomy of an industrially durable NiCo2S4/NiMo2S4/NiO bifunctional electrode for alkaline seawater electrolysis[J]. J. Mater. Chem. A, 2022, 10(17): 9547-9564.

[77]

Carmo M, Fritz D L, Mergel J, Stolten D. A comprehensive review on PEM water electrolysis[J]. Int. J. Hydrogen Energy, 2013, 38(12): 4901-4934.

[78]

Schalenbach M, Lueke W, Stolten D. Hydrogen diffusivity and electrolyte permeability of the zirfon perl separator for alkaline water electrolysis[J]. J. Electrochem. Soc., 2016, 163(14): F1480-F1488.

[79]

Zhang Z, Jiang C, Li P, Yao K G, Zhao Z L, Fan J T, Li H, Wang H J. Benchmarking phases of ruthenium dichalcogenides for electrocatalysis of hydrogen evolution: Theoretical and experimental insights[J]. Small, 2021, 17(13): 2007333.

[80]

Dresp S, Dionigi F, Loos S, de Araujo J F, Spöri C, Gliech M, Dau H, Strasser P. Direct electrolytic splitting of seawater: Activity, selectivity, degradation, and recovery studied from the molecular catalyst structure to the electrolyzer cell level[J]. Adv. Energy Mater., 2018, 8(22): 1800338.

[81]

Laguna-Bercero M A. Recent advances in high temperature electrolysis using solid oxide fuel cells: A review[J]. J. Power Sources, 2012, 203: 4-16.

[82]

Abbasi E A J, Sahu H, Javadpour S M, Goharimanesh M. Interpretable machine learning for developing high-performance organic solar cells[J]. Mater. Today Energy, 2022, 25: 100969.

[83]

Allam O, Kuramshin R, Stoichev Z, Cho B W, Lee S W, Jang S S. Molecular structure-redox potential relationship for organic electrode materials: Density functional theory-machine learning approach[J]. Mater. Today Energy, 2020, 17: 100482.

Journal of Electrochemistry
Article number: 2214006
Cite this article:
Zhang T, Liu Y-P, Ye Q-T, et al. Alkaline Seawater Electrolysis at Industrial Level:Recent Progress and Perspective. Journal of Electrochemistry, 2022, 28(10): 2214006. https://doi.org/10.13208/j.electrochem.2214006

171

Views

1

Downloads

0

Crossref

8

Scopus

0

CSCD

Altmetrics

Received: 27 June 2022
Revised: 04 August 2022
Published: 30 September 2022
© 2022 Editorial Office of Journal of Electrochemistry
Return