AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

The Rapid Preparation of Efficient MoFeCo-Based Bifunctional Electrocatalysts via Joule Heating for Overall Water Splitting

Ao ZhouWei-Jian GuoYue-Qing Wang( )Jin-Tao Zhang( )
Key Laboratory for Colloid and Interface Chemistry Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
Show Author Information

Graphical Abstract

Abstract

Water electrolysis is an available way to obtain green hydrogen. The development of highly efficient electrocatalysts is a current research hotspot for water splitting, but it remains challenging. Herein, we demonstrate the synthesis of a robust bifunctional multi-metal electrocatalysts toward water splitting via the rapid Joule-heating conversion of metal precursors. The composition and morphology were well regulated via altering the ratio of metal precursors. In particular, the trimetal MoC/FeO/CoO/carbon cloth (CC) electrode revealed the outstanding bifunctional electrocatalytic performance due to the unique composition and large electrochemical active surface area. Typically, the MoC/FeO/CoO/CC catalyst needed low overpotentials of 121 and 268 mV to reach 10 mA·cm-2 toward HER and OER in 1 mol·L-1 KOH solution, respectively. When used as both cathode and anode, a small potential of 1.69 V was required to achieve 10 mA·cm-2 for overall water splitting and an impressive stability for 25 h was observed. This facile and rapid Joule heating strategy offers guideline for rational manufacture of bimetal or multi-metal electrocatalysts toward diverse application.

Electronic Supplementary Material

Download File(s)
dhx-28-9-2214007_ESM.pdf (861.4 KB)

References

[1]

Cai S H, Chen X N, Huang M J, Han J Y, Zhou Y W, Li J S. Interfacial engineering of nickel/iron/ruthenium phosphides for efficient overall water splitting powered by solar energy[J]. J. Mater. Chem. A., 2022, 10(2): 772-778.

[2]

Chang J F, Wang G Z, Yang Z Z, Li B Y, Wang Q, Kuliiev R, Orlovskaya N, Gu M, Du Y G, Wang G F, Yang Y. Dual-doping and synergism toward high-performance seawater electrolysis[J]. Adv. Mater., 2021, 33(33): 2101425.

[3]

Wang Y Q, Ma J Z, Wang J, Chen S, Wang H S, Zhang J T. Interfacial scaffolding preparation of hierarchical PBA-based derivative electrocatalysts for efficient water splitting[J]. Adv. Energy Mater., 2019, 9(5): 1802939.

[4]

Wang Y Q, Zhang B H, Pan W, Ma H Y, Zhang J T. 3 D porous nickel-cobalt nitrides supported on nickel foam as efficient electrocatalysts for overall water splitting[J]. ChemSusChem, 2017, 10(21): 4170-4177.

[5]

Gautam J, Liu Y, Gu J, Ma Z Y, Zha J J, Dahal B, Zhang L N, Chishti A N, Ni L B, Diao G W, Wei Y G. Fabrication of polyoxometalate anchored zinc cobalt sulfide nanowires as a remarkable bifunctional electrocatalyst for overall water splitting[J]. Adv. Funct. Mater., 2021, 31(46): 2106147.

[6]

Gu M Z, Deng X Y, Lin M, Wang H, Gao A, Huang X M, Zhang X J. Ultrathin NiCo bimetallic molybdate nanosheets coated CuOx nanotubes: Heterostructure and bimetallic synergistic optimization of the active site for highly efficient overall water splitting[J]. Adv. Energy Mater., 2021, 11(41): 2102361.

[7]

Kim Y, Kim D, Lee J, Lee L. Tuning the electrochemical properties of polymeric cobalt phthalocyanines for efficient water splitting[J]. Adv. Funct. Mater., 2021, 31(41): 2103290.

[8]

Yang H, Liu Y F, Liu X L, Wang X K, Tian H, Waterhouse G, Kruger P, Telfer S, Ma S Q. Large-scale synthesis of N-doped carbon capsules supporting atomically dispersed iron for efficient oxygen reduction reaction electrocatalysis[J]. eScience, 2022, 2: 227-234.

[9]

Li S S, Wang L, Su H, Hong A N, Wang Y X, Yang H J, Ge L, Song W Y, Liu J, Ma T Y, Bu X H, Feng P Y. Electron redistributed S-doped nickel iron phosphides derived from one-step phosphatization of MOFs for significantly boosting electrochemical water splitting[J]. Adv. Funct. Mater., 2022, 32(23): 2200733.

[10]

Li W, Liu J, Guo P F, Li H Z, Fei B, Guo Y H, Pan H G, Sun D L, Fang F, Wu R B. Co/CoP heterojunction on hierarchically ordered porous carbon as a highly efficient electrocatalyst for hydrogen and oxygen evolution[J]. Adv. Energy Mater., 2021, 11(42): 2102134.

[11]

Lin Z P, Xiao B B, Wang Z P, Tao W Y, Shen S J, Huang L A, Zhang J T, Meng F Q, Zhang Q H, Gu L, Zhong W W. Planar-coordination PdSe2 nanosheets as highly active electrocatalyst for hydrogen evolution reaction[J]. Adv. Funct. Mater., 2021, 31(32): 2102321.

[12]

Liu C, Qian J, Ye Y F, Zhou H, Sun C J, Sheehan C, Zhang Z Y, Wan G, Liu Y S, Guo J H, Li S, Shin H, Hwang S, Gunnoe T B, Goddard W A, Zhang S. Oxygen evolution reaction over catalytic single-site Co in a well-defined brookite TiO2 nanorod surface[J]. Nat. Catal., 2021, 4(1): 36-45.

[13]

Liu H X, Li X Y, Chen L L, Zhu X D, Dong P, Chee M, Ye M X, Guo Y H, Shen J F. Monolithic Ni-Mo-B bifunctional electrode for large current water splitting[J]. Adv. Funct. Mater., 2022, 32(4): 2107308.

[14]

Li Y, Jiang K Y, Yang J, Zheng Y Y, Hubner R, Ou Z W, Dong X, He L Q, Wang H L, Li J, Sun Y J, Lu X B, Zhuang X D, Zheng Z K, Liu W. Tungsten oxide/reduced graphene oxide aerogel with low-content platinum as high-performance electrocatalyst for hydrogen evolution reaction[J]. Small, 2021, 17(37): 2102159.

[15]

Peng Y, Liu Q M, Lu B Z, He T, Nichols F, Hu X, Huang T, Huang G, Guzman L, Ping Y, Chen S W. Organically capped iridium nanoparticles as high-performance bifunctional electrocatalysts for full water splitting in both acidic and alkaline media: Impacts of metal-ligand interfacial interactions[J]. ACS Catal., 2021, 11(3): 1179-1188.

[16]

Shan J Q, Ye C, Chen S M, Sun T L, Jiao Y, Liu L M, Zhu C Z, Song L, Han Y, Jaroniec M, Zhu Y H, Zheng Y, Qiao S Z. Short-range ordered iridium single atoms integrated into cobalt oxide spinel structure for highly efficient electrocatalytic water oxidation[J]. J. Am. Chem. Soc., 2021, 143(13): 5201-5211.

[17]

Wang H M, Chen Z N, Wu D S, Cao M N, Sun F F, Zhang H, You H H, Zhuang W, Cao R. Significantly enhanced overall water splitting performance by partial oxidation of Ir through Au modification in core-shell alloy structure[J]. J. Am. Chem. Soc., 2021, 143(12): 4639-4645.

[18]

Wang M J, Xu Y, Peng C K, Chen S Y, Lin Y G, Hu Z W, Sun L, Ding S Y, Pao C W, Shao Q, Huang X Q. Site-specified two-dimensional heterojunction of Pt nanoparticles/metal-organic frameworks for enhanced hydrogen evolution[J]. J. Am. Chem. Soc., 2021, 143(40): 16512-16518.

[19]

Wang T X, Guo L L, Jiang Z, Chen S T, Xu S R, Zhang Y X, Zhang J, Li R J, Peng T Y. Ru-Pincer complex-bridged Cu-porphyrin polymer for robust (photo)electrocatalytic H2 evolution via single-atom active sites[J]. Adv. Funct. Mater., 2021, 31(50): 2107290.

[20]

Wang X D, Wang C, Lai F Y, Sun H X, Yu N, Geng B Y. Self-supported CoFe-P nanosheets as a bifunctional catalyst for overall water splitting[J]. ACS Appl. Nano Mater., 2021, 4(11): 12083-12090.

[21]

Zhang Q, Xiao W, Guo W H, Yang Y X, Lei J L, Luo H Q, Li N B. Macroporous array induced multiscale modulation at the surface/interface of Co(OH)2/NiMo self-supporting electrode for effective overall water splitting[J]. Adv. Funct. Mater., 2021, 31(33): 2102117.

[22]

Liu J C, Wang Y, Liao Y F, Wu C L, Yan Y G, Xie H J, Chen Y G. Heterostructured Ni3S2-Ni3P/NF as a bifunctional catalyst for overall urea-water electrolysis for hydrogen generation[J]. ACS Appl. Mater. Interfaces., 2021, 13(23): 26948-26959.

[23]

Riyajuddin S, Azmi K, Pahuja M, Kumar S, Maruyama T, Bera C, Ghosh K. Super-Hydrophilic hierarchical Ni-foam-graphene-carbon nanotubes-Ni2P-CuP2 nano-architecture as efficient electrocatalyst for overall water splitting[J]. ACS Nano., 2021, 15(3): 5586-5599.

[24]

Tang Y J, Zou Y, Zhu D D. Efficient water oxidation using an Fe-doped nickel telluride-nickel phosphide electrocatalyst by partial phosphating[J]. J. Mater. Chem. A., 2022.

[25]

Wang X Y, Xie Y, Zhou W, Wang X W, Cai Z C, Xing Z P, Li M X, Pan K. The self-supported Zn-doped CoNiP microsphere/thorn hierarchical structures as efficient bifunctional catalysts for water splitting[J]. Electrochim. Acta., 2020, 339: 135933.

[26]

Zhang B, Shan J W, Wang W L, Tsiakaras P, Li Y Y. Oxygen vacancy and core-shell heterojunction engineering of anemone-like CoP@CoOOH bifunctional electrocatalyst for efficient overall water splitting[J]. Small, 2022, 18(12): 2106012.

[27]

Zhang B, Zheng Y J, Ma T, Yang C D, Peng Y F, Zhou Z H, Zhou M, Li S, Wang Y H, Cheng C. Designing MOF nanoarchitectures for electrochemical water splitting[J]. Adv. Mater., 2021, 33(17): 2006042.

[28]

Lv Z, Ma W S, Wang M, Dang J, Jian K L, Liu D, Huang D J. Co-constructing interfaces of multiheterostructure on Mxene (Ti3C2Tx)-modified 3d self-supporting electrode for ultraefficient electrocatalytic HER in alkaline media[J]. Adv. Funct. Mater., 2021, 31(29): 2102576.

[29]

Chen Y, Liu Q, Yao Y, Wu H B, Wang Y X, Zheng H Q, Cui Y J, Qian G D. Engineering different reaction centers on hierarchical Ni/NiFe layered double hydroxide accelerating overall water splitting[J]. ACS Appl. Energy Mater., 2021, 4(9): 9858-9865.

[30]

Dai Z F, Geng H B, Wang J, Luo Y B, Li B, Zong Y, Yang J, Guo Y Y, Zheng Y, Wang X, Yan Q Y. Hexagonal-phase cobalt monophosphosulfide for highly efficient overall water splitting[J]. ACS Nano, 2017, 11(11): 11031-11040.

[31]

Wang X, Zhang L, Liu C P, Ge J J, Zhu J B, Xing W. Recent advances in structural regulation on non-precious metal catalysts for oxygen reduction reaction in alkaline electrolytes[J]. J. Electrochem., 2022, 28(2): 2108501.

[32]

Jiang X, Xie Q F, Lu G X, Wang Y, Liu T F, Liu Y J, Tao X Y, Nai J W. Synthesis of NiSe2/Fe3O4 nanotubes with heteroepitaxy configuration as a high-efficient oxygen evolution electrocatalyst[J]. Small Methods, 2022: 2200377.

[33]

Li L, Guo Y, Wang X R, Liu X W, Lu Y W. Ultraeven Mo-doped CoP nanocrystals as bifunctional electrocatalyst for efficient overall water splitting[J]. Langmuir, 2021, 37(19): 5986-5992.

[34]

Chen Q W, Chen S, Zhao L L, Ma J Z, Wang H S, Zhang J T. Interface coating of iron nitride on carbon cloth for reversible lithium redox in rechargeable battery[J]. Chem. Eng. J., 2022, 431 (1), 133961.

[35]

Cao X Y, Tan D X, Wulan B R, Zhang J T. In situ characterization for boosting electrocatalytic carbon dioxide reduction[J]. Small Methods, 2021, 5(10): 2100700.

[36]

Chen Y N, Egan G C, Wan J Y, Zhu S Z, Jacob R J, Zhou W B, Dai J Q, Wang Y B, Danner V A, Yao Y G, Fu K, Wang Y B, Bao W Z, Li T, Zachariah M R, Hu L B. Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films[J]. Nat. Commun., 2016, 7(1): 1-9.

[37]

Yao Y G, Huang Z N, Xie P F, Lacey S D, Jacob R J, Xie H, Chen F J, Nie A, Pu T C, Rehwoldt M, Yu D W, Zachariah M, Wang C, Li J, Hu L B. Carbothermal shock synthesis of high-entropy-alloy nanoparticles[J]. Science, 2018, 359(6383): 1489-1494.

[38]

Wu H, Lu Q, Zhang J F, Wang J J, Han X P, Zhao N Q, Hu W B, Li J J, Chen Y N, Deng Y D. Thermal shock-activated spontaneous growing of nanosheets for overall water splitting[J]. Nanomicro Lett., 2020, 12(1): 1-12.

[39]

Chen P Z, Xu K, Fang Z W, Tong Y, Wu J C, Lu X L, Peng X, Ding H, Wu C Z, Xie Y. Metallic CO4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction[J]. Angew. Chem. Int. Ed., 2015, 54(49): 14710-14714.

[40]

Dai Z F, Geng H B, Wang J, Luo Y B, Li B, Zong Y, Yang J, Guo Y Y, Zheng Y, Wang X, Yan Q Y. Hexagonal-phase cobalt monophosphosulfide for highly efficient overall water splitting[J]. ACS Nano, 2017, 11(11): 11031-11040.

[41]

Wang P C, Liu X F, Yan Y T, Cao J, Feng J C, Qi J L. Exploring CoP core-shell nanosheets by Fe and Zn dual cation doping as efficient electrocatalysts for overall water splitting[J]. Catal. Sci. Technol., 2020, 10(5): 1395-1400.

[42]

Liu T, Li P, Yao N, Cheng G Z, Chen S L, Luo W, Yin Y D. CoP-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction[J]. Angew. Chem. Int. Ed., 58(14): 4679-4684.

[43]

Lou H, Yu T, Ma J N, Zhang S T, Bergara A, Yang G C. Achieving high hydrogen evolution reaction activity of a Mo2C monolayer[J]. Phys. Chem. Chem. Phys., 2020, 22: 26189-26199.

[44]

Zhang L Y, Zheng Y J, Wang J C, Geng Y, Zhang B, He J J, Xue J M, Frauenheim T, Li M. Ni/Mo bimetallic-oxide-derived heterointerface-rich sulfide nanosheets with Co-doping for efficient alkaline hydrogen evolution by boosting volmer reaction[J]. Small, 2021, 17(10): 2006730.

[45]

Wan J, Wu J B, Gao X, Li T Q, Hu Z M, Yu H M, Huang L. Structure confined porous Mo2C for efficient hydrogen evolution[J]. Adv. Funct. Mater., 2017, 27(45): 1703933.

[46]

Ma H B, Chen Z W, Wang Z L, Singh C V, Jiang Q. Interface engineering of Co/CoMoN/NF heterostructures for high-performance electrochemical overall water splitting[J]. Adv. Sci., 2022, 9(11): 2105313.

[47]

Wang L, Fan J Y, Liu Y, Chen M Y, Lin Y, Bi H C, Liu B X, Shi N E, Xu D D, Bao J C, Han M. Phase-modulation of iron/nickel phosphides nanocrystals “armored”with porous P-doped carbon and anchored on P-doped graphene nanohybrids for enhanced overall water splitting[J]. Adv. Funct. Mater., 2021, 31(30): 2010912.

[48]

Wang L, Fan J Y, Liu Y, Chen M Y, Lin Y, Bi H C, Liu B X, Shi N E, Xu D D, Bao J C, Han M. Phase-modulation of iron/nickel phosphides nanocrystals “armored”with porous P-doped carbon and anchored on P-doped graphene nanohybrids for enhanced overall water splitting[J]. Adv. Funct. Mater., 2021, 31(30): 2010912.

[49]

Zhou X F, Tian Y H, Luo J, Jin B, Wu Z J, Ning X M, Zhan L, Fan X L, Zhou T, Zhang S Q, Zhou X S. MoC quantum dots@N-doped-carbon for low-cost and efficient hydrogen evolution reaction: From electrocatalysis to photocatalysis[J]. Adv. Funct. Mater., 2022: 2201518.

[50]

Cai F F, Guo Y J, Ibrahim J J, Zhang J, Sun Y H. A highly active and stable Pd/MoC catalyst for hydrogen production from methanol decomposition[J]. Appl. Catal. B-Environ., 2021, 299: 120648.

Journal of Electrochemistry
Article number: 2214007
Cite this article:
Zhou A, Guo W-J, Wang Y-Q, et al. The Rapid Preparation of Efficient MoFeCo-Based Bifunctional Electrocatalysts via Joule Heating for Overall Water Splitting. Journal of Electrochemistry , 2022, 28(9): 2214007. https://doi.org/10.13208/j.electrochem.2214007

308

Views

5

Downloads

0

Crossref

19

Scopus

0

CSCD

Altmetrics

Received: 28 June 2022
Revised: 21 July 2022
Published: 23 August 2022
© 2022 Editorial Office of Journal of Electrochemistry
Return