Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Developing high-performance and low-cost electrocatalysts for oxygen evolution reaction (OER) is the key to implementing polymer electrolyte membrane water electrolyzer (PEMWE) for hydrogen production. To date, iridium (Ir) is the state-of-the-art OER catalyst, but still suffers from the insufficient activity and scarce earth abundance, which results in high cost both in stack and electricity. Design low-Ir catalysts with enhanced activity and stability that can match the requirements of high current and long-term operation in PEMWE is thus highly desired, which necessitate a deep understanding of acidic OER mechanisms, unique insights of material design strategies, and reliable performance evaluation norm, especially for durability. With these demand in mind, we in this review firstly performed a systematic summary on the currently recognized acidic OER mechanism on both activity expression (i.e. the adsorbate evolution mechanism, the lattice oxygen mediated mechanism and the multi-active center mechanism) and inactivation (i.e. active species dissolution, evolution of crystal phase and morphology, as well as catalyst shedding and active site blocking), which can provide guidance for material structural engineering towards higher performance in PEMWE devices. Subsequently, we critically reviewed several types of low-Ir OER catalysts recently reported, i.e. multimetallic alloy oxide, supported, spatially structured and single site catalysts, focusing on how the performance has been regulated and the underlying structure-performance relationship. Lastly, the commonly used indicators for catalyst stability evaluation, wide accepted deactivation characterization techniques and the lifetime probing methods mimicking the practical operation condition of PEMWE are introduced, hoping to provide a basis for catalyst screening. In the end, few suggestions on exploring future low-Ir OER catalysts that can be applied in the PEMWE system are proposed.
Lagadec M F, Grimaud A. Water electrolysers with closed and open electrochemical systems[J]. Nat. Mater., 2020, 19(11): 1140-1150.
Zheng Y R, Vernieres J, Wang Z B, Zhang K, Hochfilzer D, Krempl K, Liao T W, Presel F, Altantzis T, Fatermans J, Scott S B, Secher N M, Moon C, Liu P, Bals S, Van Aert S, Cao A, Anand M, Norskov J K, Kibsgaard J, Chorkendorff I. Monitoring oxygen production on mass-selected iridium-tantalum oxide electrocatalysts[J]. Nat. Energy, 2022, 7(1): 55-64.
Seitz L C, Dickens C F, Nishio K, Hikita Y, Montoya J, Doyle A, Kirk C, Vojvodic A, Hwang H Y, Norskov J K, Jaramillo T F. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction[J]. Science, 2016, 353(6303): 1011-1014.
Lin C, Li J L, Li X P, Yang S, Luo W, Zhang Y J, Kim S H, Kim D H, Shinde S S, Li Y F, Liu Z P, Jiang Z, Lee J H. In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation[J]. Nat. Catal., 2021, 4(12): 1012-1023.
Shi Z P, Wang X, Ge J J, Liu C P, Xing W. Fundamental understanding of the acidic oxygen evolution reaction: mechanism study and state-of-the-art catalysts[J]. Nano-scale, 2020, 12(25): 13249-13275.
Hegge F, Lombeck F, Cruz Ortiz E, Bohn L, von Holst M, Kroschel M, Hübner J, Breitwieser M, Strasser P, Vierrath S. Efficient and stable low iridium loaded anodes for PEM water electrolysis made possible by nanofiber interlayers[J]. ACS Appl. Energy Mater., 2020, 3(9): 8276-8284.
Park S A, Kim K S, Kim Y T. Electrochemically activated iridium oxide black as promising electrocatalyst having high activity and stability for oxygen evolution reaction[J]. ACS Energy Lett., 2018, 3(5): 1110-1115.
Dickens C F, Nörskov J K. A Theoretical Investigation into the role of surface defects for oxygen evolution on RuO2[J]. J. Phys. Chem. C, 2017, 121(34): 18516-18524.
Rong X, Parolin J, Kolpak A M. A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution[J]. ACS Catalysis, 2016, 6(2): 1153-1158.
Kasian O, Geiger S, Stock P, Polymeros G, Breitbach B, Savan A, Ludwig A, Cherevko S, Mayrhofer K J J. On the origin of the improved ruthenium stability in RuO2-IrO2 mixed oxides[J]. J. Electrochem. Soc., 2016, 163(11): F3099-F3104.
Cherevko S, Geiger S, Kasian O, Kulyk N, Grote J P, Savan A, Shrestha B R, Merzlikin S, Breitbach B, Ludwig A, Mayrhofer K J J. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability[J]. Cataly. Today, 2016, 262: 170-180.
Binninger T, Mohamed R, Waltar K, Fabbri E, Levecque P, Kotz R, Schmidt T J. Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts[J]. Sci. Rep., 2015, 5: 12167.
Cherevko S, Zeradjanin A R, Topalov A A, Kulyk N, Katsounaros I, Mayrhofer K J J. Dissolution of noble metals during oxygen evolution in acidic media[J]. ChemCatChem, 2014, 6(8): 2219-2223.
Danilovic N, Subbaraman R, Chang K C, Chang S H, Kang Y J, Snyder J, Paulikas A P, Strmcnik D, Kim Y T, Myers D, Stamenkovic V R, Markovic N M. Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments[J]. J. Phys. Chem. Lett., 2014, 5(14): 2474-2478.
Man I C, Su H Y, Calle-Vallejo F, Hansen H A, Martínez J I, Inoglu N G, Kitchin J, Jaramillo T F, Nörskov J K, Rossmeisl J. Universality in oxygen evolution electrocatalysis on oxide surfaces[J]. ChemCatChem, 2011, 3(7): 1159-1165.
Reier T, Nong H N, Teschner D, Schlögl R, Strasser P. Electrocatalytic oxygen evolution reaction in acidic environments-reaction mechanisms and catalysts[J]. Adv. Energy Mater., 2017, 7(1): 1601275.
Koper MTM. Theory of multiple proton-electron transfer reactions and its implications for electrocatalysis[J]. Chem. Sci., 2013, 4(7): 2710-2723.
Koper M T M. Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis[J]. J. Electroanal. Chem., 2011, 660(2): 254-260.
Rossmeisl J, Logadottir A, Nörskov J K. Electrolysis of water on (oxidized) metal surfaces[J]. Chem. Phys., 2005, 319(1-3): 178-184.
Dau H, Limberg C, Reier T, Risch M, Roggan S, Strasser P. The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis[J]. ChemCatChem, 2010, 2(7): 724-761.
Li A, Kong S, Guo C, Ooka H, Adachi K, Hashizume D, Jiang Q, Han H, Xiao J, Nakamura R. Enhancing the stability of cobalt spinel oxide towards sustainable oxygen evolution in acid[J]. Nat. Catal., 2022, 5(2): 109-118.
Fabbri E, Habereder A, Waltar K, Kötz R, Schmidt T J. Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction[J]. Catal. Sci. Technol., 2014, 4(11): 3800-3821.
Mefford J T, Rong X, Abakumov A M, Hardin W G, Dai S, Kolpak A M, Johnston K P, Stevenson K J. Water electrolysis on La1-xSrxCoO3-δ perovskite electrocatalysts[J]. Nat. Commun., 2016, 7: 11053.
Yoo J S, Rong X, Liu Y, Kolpak A M. Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites[J]. ACS Catal., 2018, 8(5): 4628-4636.
Grimaud A, Diaz-Morales O, Han B, Hong W T, Lee Y L, Giordano L, Stoerzinger K A, Koper M T M, Shao-Horn Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution[J]. Nat. Chem., 2017, 9(5): 457-465.
Song F, Busch M M, Lassalle-Kaiser B, Hsu C S, Petku-cheva E, Bensimon M, Chen H M, Corminboeuf C, Hu X. An unconventional iron nickel catalyst for the oxygen evolution reaction[J]. ACS Cent. Sci., 2019, 5(3): 558-568.
Yoo J S, Rong X, Liu Y, Kolpak A M. Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites[J]. ACS Catal., 2018, 8(5): 4628-4636.
Grimaud A, Diaz-Morales O, Han B, Hong W T, Lee Y L, Giordano L, Stoerzinger K A, Koper M T M, Shao-Horn Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution[J]. Nat. Chem., 2017, 9(5): 457-465.
Koper M T M. Theory of multiple proton-electron transfer reactions and its implications for electrocatalysis[J]. Chem. Sci., 2013, 4(7): 2710-2723.
Li A, Ooka H, Bonnet N, Hayashi T, Sun Y, Jiang Q, Li C, Han H, Nakamura R. Stable potential windows for long-term electrocatalysis by manganese oxides under acidic conditions[J]. Angew. Chem.-Int. Edit., 2019, 58(15): 5054-5058.
Zhang R, Dubouis N, Ben Osman M, Yin W, Sougrati M T, Corte DAD, Giaume D, Grimaud A. A Dissolution/pre-cipitation equilibrium on the surface of iridium-based perovskites controls their activity as oxygen evolution reaction catalysts in acidic media[J]. Angew. Chem. Int. Ed., 2019, 58(14): 4571-4575.
Kasian O, Grote J P, Geiger S, Cherevko S, Mayrhofer K J J. The common intermediates of oxygen evolution and dissolution reactions during water electrolysis on iridium[J]. Angew. Chem. Int. Ed., 2018, 57(9): 2488-2491.
Geiger S, Kasian O, Ledendecker M, Pizzutilo E, Mingers A M, Fu W T, Diaz-Morales O, Li Z, Oellers T, Fruchter L, Ludwig A, Mayrhofer K J J, Koper M T M, Cherevko S. The stability number as a metric for electrocatalyst stability benchmarking[J]. Nat. Catal., 2018, 1(7): 508-515.
Cao L L, Luo Q Q, Chen J J, Wang L, Lin Y, Wang H J, Liu X K, Shen X Y, Zhang W, Liu W, Qi Z M, Jiang Z, Yang J L, Yao T. Dynamic oxygen adsorption on single-atomic ruthenium catalyst with high performance for acidic oxygen evolution reaction[J]. Nat. Commun., 2019, 10(1): 4849.
Yao Y C, Hu S L, Chen W X, Huang Z Q, Wei W C, Yao T, Liu R R, Zang K T, Wang X Q, Wu G, Yuan W J, Yuan T W, Zhu B Q, Liu W, Li Z J, He D S, Xue Z G, Wang Y, Zheng X S, Dong J C, Chang C R, Chen Y X, Hong X, Luo J, Wei S Q, Li W X, Strasser P, Wu Y E, Li Y D. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis[J]. Nat. Catal., 2019, 2(4): 304-313.
Wen Y Z, Chen P N, Wang L, Li S Y, Wang Z Y, Abed J, Mao X N, Min Y M, Dinh C T, De Luna P, Huang R, Zhang L S, Wang L, Wang L P, Nielsen R J, Li H H, Zhuang T T, Ke C C, Voznyy O, Hu Y F, Li Y Y, Goddard W A, Zhang B, Peng H S, Sargent E H. Stabilizing highly active Ru sites by suppressing lattice oxygen participation in acidic water oxidation[J]. J. Am. Chem. Soc., 2021, 143(17): 6482-6490.
Park J, Sa Y J, Baik H, Kwon T, Joo S H, Lee K. Iridium-based multimetallic nanoframe@nanoframe structure: an efficient and robust electrocatalyst toward oxygen evolution reaction[J]. ACS Nano, 2017, 11(6): 5500-5509.
Zeng F, Mebrahtu C, Liao L, Beine A K, Palkovits R. Stability and deactivation of OER electrocatalysts: a review[J]. J. Energy Chem., 2022, 69: 301-329.
Martelli G N, Ornelas R, Faita G. Deactivation mechanisms of oxygen evolviong anodes at high current densities[J]. Electrochim. Acta, 1994, 39(11/12): 1151-1158.
Edgington J, Schweitzer N, Alayoglu S, Seitz L C. Constant change: exploring dynamic oxygen evolution reaction catalysis and material transformations in strontium zinc iridate perovskite in acid[J]. J. Am. Chem. Soc., 2021, 143(26): 9961-9971.
Hayashi T, Bonnet-Mercier N, Yamaguchi A, Suetsugu K, Nakamura R. Electrochemical characterization of ma-nganese oxides as a water oxidation catalyst in proton exchange membrane electrolysers[J]. R. Soc. Open Sci., 2019, 6(5): 190122.
Kirshenbaum M J, Richter M H, Dasog M. Electrochemical water oxidation in acidic solution using titanium diboride (TiB2) catalyst[J]. ChemCatChem, 2019, 11(16): 3877-3881.
Lu X Y, Zhao C A. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities[J]. Nat. Commun., 2015, 6: 6616.
Angulo A, van der Linde P, Gardeniers H, Modestino M, Fernández Rivas D. Influence of bubbles on the energy conversion efficiency of electrochemical reactors[J]. Joule, 2020, 4(3): 555-579.
Alia S M, Shulda S, Ngo C, Pylypenko S, Pivovar B S. Iridium-based nanowires as highly active, oxygen evolution reaction electrocatalysts[J]. ACS Catal., 2018, 8(3): 2111-2120.
Sun W, Song Y, Gong X Q, Cao L M, Yang J. An efficiently tuned d-orbital occupation of IrO2 by doping with Cu for enhancing the oxygen evolution reaction activity[J]. Chem. Sci., 2015, 6(8): 4993-4999.
Feng J R, Lv F, Zhang W Y, Li P H, Wang K, Yang C, Wang B, Yang Y, Zhou J H, Lin F, Wang G C, Guo S J. Iridium-based multimetallic porous hollow nanocrystals for efficient overall-water-splitting catalysis[J]. Adv. Mater., 2017, 29(47): 1703798.
Li N, Cai L, Wang C, Lin Y, Huang J Z, Sheng H Y, Pan H B, Zhang W, Ji Q Q, Duan H L, Hu W, Zhang W H, Hu F C, Tan H, Sun Z H, Song B, Jin S, Yan W S. Identification of the active-layer structures for acidic oxygen evolution from 9R-BaIrO3 electrocatalyst with enhanced iridium mass activity[J]. J. Am. Chem. Soc., 2021, 143(43): 18001-18009.
Wang H M, Chen Z N, Wu D S, Cao M N, Sun F F, Zhang H, You H H, Zhuang W, Cao R. Significantly enhanced overall water splitting performance by partial oxidation of Ir through Au modification in core-shell alloy structure[J]. J. Am. Chem. Soc., 2021, 143(12): 4639-4645.
Zhao F, Wen B, Niu W H, Chen Z, Yan C, Selloni A, Tully C G, Yang X F, Koel B E. Increasing iridium oxide activity for the oxygen evolution reaction with hafnium modification[J]. J. Am. Chem. Soc., 2021, 143(38): 15616-15623.
Wang Y B, Hou S, Ma R P, Jiang J D, Shi Z P, Liu C P, Ge J J, Xing W. Modulating crystallinity and surface electronic structure of IrO2 via gadolinium doping to promote acidic oxygen evolution[J]. ACS Sustain. Chem. Eng., 2021, 9(32): 10710-10716.
Liu X H, Xi S B, Kim H, Kumar A, Lee J, Wang J, Tran N Q, Yang T, Shao X D, Liang M F, Kim M G, Lee H. Restructuring highly electron-deficient metal-metal oxides for boosting stability in acidic oxygen evolution reaction[J]. Nat. Commun., 2021, 12(1): 5676.
Jiang G, Yu H M, Li Y H, Yao D W, Chi J, Sun S C, Shao Z G. Low-loading and highly stable membrane electrode based on an Ir@WOxNR ordered array for PEM water electrolysis[J]. ACS Appl. Mater. Interfaces, 2021, 13(13): 15073-15082.
Li G Q, Li K, Yang L, Chang J F, Ma R P, Wu Z J, Ge J J, Liu C P, Xing W. Boosted performance of Ir species by employing tin as the support toward oxygen evolution reaction[J]. ACS Appl. Mater. Interfaces, 2018, 10(44): 38117-38124.
Sun W, Zhou Z H, Zaman W Q, Cao L M, Yang J. Rational manipulation of IrO2 lattice strain on α-MnO2 nanorods as a highly efficient water-splitting catalyst[J]. ACS Appl. Mater. Interfaces, 2017, 9(48): 41855-41862.
Regmi Y N, Tzanetopoulos E, Zeng G S, Peng X, Kushner D I, Kistler T A, King L A, Danilovic N. Supported oxygen evolution catalysts by design: toward lower precious metal loading and improved conductivity in proton exchange membrane water electrolyzers[J]. ACS Catal., 2020, 10(21): 13125-13135.
Oh H S, Nong H N, Reier T, Gliech M, Strasser P. Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers[J]. Chem. Sci., 2015, 6(6): 3321-3328.
Tackett B M, Sheng W C, Kattel S, Yao S Y, Yan B H, Kuttiyiel K A, Wu Q Y, Chen J G G. Reducing iridium loading in oxygen evolution reaction electrocatalysts using core-shell particles with nitride cores[J]. ACS Catal., 2018, 8(3): 2615-2621.
Li G Q, Li S T, Xiao M L, Ge J J, Liu C P, Xing W. Nanoporous IrO2 catalyst with enhanced activity and durability for water oxidation owing to its micro/mesoporous structure[J]. Nanoscale, 2017, 9(27): 9291-9298.
Lim J, Park D, Jeon S S, Roh C W, Choi J, Yoon D, Park M, Jung H, Lee H. Ultrathin IrO2 nanoneedles for electrochemical water oxidation[J]. Adv. Funct. Mater., 2018, 28(4): 1704796.
Jiang B, Guo Y N, Kim J, Whitten A E, Wood K, Kani K, Rowan A E, Henzie J, Yamauchi Y. Mesoporous metallic iridium nanosheets[J]. J. Am. Chem. Soc., 2018, 140(39): 12434-12441.
Dang Q, Lin H P, Fan Z L, Ma L, Shao Q, Ji Y J, Zheng F F, Geng S Z, Yang S Z, Kong N N, Zhu W X, Li Y Y, Liao F, Huang X Q, Shao M W. Iridium metallene oxide for acidic oxygen evolution catalysis[J]. Nat. Commun., 2021, 12(1): 6007.
Fan Z L, Ji Y J, Shao Q, Geng S Z, Zhu W X, Liu Y, Liao F, Hu Z W, Chang Y C, Pao C W, Li Y Y, Kang Z H, Shao M W. Extraordinary acidic oxygen evolution on new phase 3R-iridium oxide[J]. Joule, 2021, 5(12): 3221-3234.
Shan J Q, Ye C, Chen S M, Sun T L, Jiao Y, Liu L M, Zhu C Z, Song L, Han Y, Jaroniec M, Zhu Y H, Zheng Y, Qiao S Z. Short-range ordered iridium single atoms integrated into cobalt oxide spinel structure for highly efficient electrocatalytic water oxidation[J]. J. Am. Chem. Soc., 2021, 143(13): 5201-5211.
Shi Z P, Wang Y, Li J, Wang X, Wang Y B, Li Y, Xu W L, Jiang Z, Liu C P, Xing W, Ge J J. Confined Ir single sites with triggered lattice oxygen redox: toward boosted and sustained water oxidation catalysis[J]. Joule, 2021, 5(8): 2164-2176.
Yin J, Jin J, Lu M, Huang B L, Zhang H, Peng Y, Xi P X, Yan C H. Iridium single atoms coupling with oxygen vacancies boosts oxygen evolution reaction in acid media[J]. J. Am. Chem. Soc., 2020, 142(43): 18378-18386.
Su H, Zhou W L, Zhou W, Li Y L, Zheng L R, Zhang H, Liu M H, Zhang X X, Sun X, Xu Y Z, Hu F C, Zhang J, Hu T D, Liu Q H, Wei S Q. In-situ spectroscopic observation of dynamic-coupling oxygen on atomically dispersed iridium electrocatalyst for acidic water oxidation[J]. Nat. Commun., 2021, 12(1): 6118.
Hao S Y, Sheng H Y, Liu M, Huang J Z, Zheng G K, Zhang F, Liu X N, Su Z W, Hu J J, Qian Y, Zhou L N, He Y, Song B, Lei L C, Zhang X W, Jin S. Torsion strained iridium oxide for efficient acidic water oxidation in proton exchange membrane electrolyzers[J]. Nat. Nanotechnol., 2021, 16(12): 1371-1377.
Pi Y C, Shao Q, Wang P T, Guo J, Huang X Q. General formation of monodisperse IrM (M = Ni, Co, Fe) bimeta-llic nanoclusters as bifunctional electrocatalysts for acidic overall water splitting[J]. Adv. Funct. Mater., 2017, 27(27): 1700886.
Hao S Y, Wang Y H, Zheng G K, Qiu L S, Xu N, He Y, Lei L C, Zhang X W. Tuning electronic correlations of ultra-small IrO2 nanoparticles with La and Pt for enhanced oxygen evolution performance and long-durable stability in acidic media[J]. Appl. Catal. B, 2020, 266: 118643.
Jin Z Y, Lv J, Jia H L, Liu W H, Li H L, Chen Z H, Lin X, Xie G Q, Liu X J, Sun S H, Qiu H J. Nanoporous Al-Ni-Co-Ir-Mo high-entropy alloy for record-high water splitting activity in acidic environments[J]. Small, 2019, 15(47): e1904180.
Yang L, Yu G T, Ai X, Yan W S, Duan H L, Chen W, Li X T, Wang T, Zhang C H, Huang X R, Chen J S, Zou X X. Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers[J]. Nat. Commun., 2018, 9(1): 5236.
Shang C Y, Cao C, Yu D Y, Yan Y, Lin Y T, Li H L, Zheng T T, Yan X P, Yu W C, Zhou S M, Zeng J. Electron correlations engineer catalytic activity of pyrochlore iridates for acidic water oxidation[J]. Adv. Mater., 2019, 31(6): e1805104.
Zhang Q, Liang X, Chen H, Yan W S, Shi L, Liu Y P, Li J Y, Zou X X. Identifying key structural subunits and their synergism in low-iridium triple perovskites for oxygen evolution in acidic media[J]. Chem. Mater., 2020, 32(9): 3904-3910.
Reier T, Pawolek Z, Cherevko S, Bruns M, Jones T, Teschner D, Selve S, Bergmann A, Nong H N, Schlogl R, Mayrhofer K J J, Strasser P. Molecular insight in structure and activity of highly efficient, low-Ir Ir-Ni oxide catalysts for electrochemical water splitting (OER)[J]. J. Am. Chem. Soc., 2015, 137(40): 13031-13040.
Nong H N, Reier T, Oh H S, Gliech M, Paciok P, Vu T H T, Teschner D, Heggen M, Petkov V, Schlögl R, Jones T, Strasser P. A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core-shell electrocatalysts[J]. Nat. Catal., 2018, 1(11): 841-851.
Oh H S, Nong H N, Reier T, Bergmann A, Gliech M, Ferreira de Araujo J, Willinger E, Schlogl R, Teschner D, Strasser P. Electrochemical catalyst-support effects and their stabilizing role for IrOx nanoparticle catalysts during the oxygen evolution reaction[J]. J. Am. Chem. Soc., 2016, 138(38): 12552-12563.
Wang Z B, Zheng Y R, Chorkendorff I, Nörskov J K. Acid-stable oxides for oxygen electrocatalysis[J]. ACS Energy Lett., 2020, 5(9): 2905-2908.
English J T, Wilkinson D P. The superior electrical conductivity and anodic stability of vanadium-doped Ti4O7[J]. J. Electrochem. Soc., 2021, 168(10): 103509.
Zhao S, Stocks A, Rasimick B, More K, Xu H. Highly active, durable dispersed iridium nanocatalysts for PEM water electrolyzers[J]. J. Electrochem. Soc.,2018, 165(2): F82-F89.
Zhao S, Stocks A, Rasimick B, More K, Xu H. Highly active, durable dispersed iridium nanocatalysts for PEM water electrolyzers[J]. J. Electrochem. Soc., 2018, 165(2): F82-F89.
Faustini M, Giraud M, Jones D, Rozière J, Dupont M, Porter T R, Nowak S, Bahri M, Ersen O, Sanchez C, Boissière C, Tard C, Peron J. Hierarchically structured ultraporous iridium-based materials: a novel catalyst architecture for proton exchange membrane water electrolyzers[J]. Adv. Energy Mater., 2019, 9(4): 1802136.
Knoppel J, Mockl M, Escalera-Lopez D, Stojanovski K, Bierling M, Bohm T, Thiele S, Rzepka M, Cherevko S. On the limitations in assessing stability of oxygen evolution catalysts using aqueous model electrochemical cells[J]. Nat. Commun., 2021, 12(1): 2231.
Kim Y T, Lopes P P, Park S A, Lee A Y, Lim J, Lee H, Back S, Jung Y, Danilovic N, Stamenkovic V, Erlebacher J, Snyder J, Markovic N M. Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts[J]. Nat. Commun., 2017, 8(1): 1449.
Wu G, Zheng X S, Cui P X, Jiang H Y, Wang X Q, Qu Y T, Chen W X, Lin Y, Li H, Han X, Hu Y M, Liu P G, Zhang Q H, Ge J J, Yao Y C, Sun R B, Wu Y, Gu L, Hong X, Li Y D. A general synthesis approach for amorphous noble metal nanosheets[J]. Nat. Commun., 2019, 10(1): 4855.
Gao J J, Xu C Q, Hung S F, Liu W, Cai W Z, Zeng Z P, Jia C M, Chen H M, Xiao H, Li J, Huang Y Q, Liu B. Breaking long-range order in iridium oxide by alkali ion for efficient water oxidation[J]. J. Am. Chem. Soc., 2019, 141(7): 3014-3023.
Alia S M, Stariha S, Borup R L. Electrolyzer durability at low catalyst loading and with dynamic operation[J]. J. Electrochem. Soc., 2019, 15(166): F1164-F1172.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).