AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Electrochemical Syntheses of Nanomaterials and Small Molecules for Electrolytic Hydrogen Production

Jia-Qi WeiXiao-Dong ChenShu-Zhou Li( )
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
Show Author Information

Graphical Abstract

Abstract

Hydrogen is a clean, efficient, renewable energy resource and the most promising alternative to fossil fuels for future carbon-neutral energy supply. Therefore, sustainable hydrogen production is highly attractive and urgently demanded, especially via water electrolysis that has clean, abundant precursors and zero emission. However, current water electrolysis is hindered by the sluggish kinetics and low cost/energy efficiency of both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this regard, electrochemical synthesis offers prospects to raise the efficiency and benefit of water electrolysis by fabricating advanced electrocatalysts and providing more efficient/value-adding co-electrolysis alternatives. It is an eco-friendly and facile fabrication method for materials ranging from molecular to nano scales via electrolysis or other electrochemical operations. In this review, we firstly introduce the basic concepts, design protocols, and typical methods of electrochemical synthesis. Then, we summarize the applications and advances of electrochemical synthesis in the field of electrocatalytic water splitting. We focus on the synthesis of nanostructured electrocatalysts towards more efficient HER, as well as electrochemical oxidation of small molecules to replace OER for more efficient and/or value-adding co-electrolysis with HER. We systematically discuss the relationship between electrochemical synthetic conditions and the product morphology, selectivity to enlighten future explorations. Finally, challenges and perspectives for electrochemical synthesis towards advanced water electrolysis, as well as other energy conversion and storage applications are featured.

References

[1]

Zhu J, Hu L S, Zhao P X, Lee L Y S, Wong K Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chem. Rev., 2020, 120(2): 851-918.

[2]

Vesborg P C K, Seger B, Chorkendorff I B. Recent development in hydrogen evolution reaction catalysts and their practical implementation[J]. J. Phys. Chem. Lett., 2015, 6(6): 951-957.

[3]

Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I B, Nörskov J K, Jaramillo T F. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017, 355(6321): eaad4998.

[4]

Zou X X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chem. Soc. Rev., 2015, 44(15): 5148-5180.

[5]

Dubouis N, Grimaud A. The hydrogen evolution reaction: From material to interfacial descriptors[J]. Chem. Sci., 2019, 10(40): 9165-9181.

[6]

Zheng Y, Jiao Y, Jaroniec M, Qiao S Z. Advancing the eletcrochemistry of the hydrogen-evolution reaction through combining experiment and theory[J]. Angew. Chem. Int. Ed., 2015, 54(1): 52-65.

[7]

Li Y, Luo Z Y, Ge J J, Liu C P, X W. Research progress in hydrogen evolution low noble/non-precious metal catalysts of water electrolysis[J]. J. Electrochem., 2018, 24(6): 572-588.

[8]

Leech M C, Lam K. A practical guide to electrosynthesis[J]. Nat. Rev. Chem., 2022, 6(4): 275-286.

[9]

Li G R, Xu H, Lu X F, Feng J X, Tong Y X, Su C Y. Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage[J]. Nanoscale, 2013, 5(10): 4056-4069.

[10]

Liu R, Duay J, Lee S B. Electrochemical formation mechanism for the controlled synthesis of heterogeneous MnO2/poly(3, 4-ethylenedioxythiophene) nanowires[J]. ACS Nano, 2011, 5(7): 5608-5619.

[11]

Petrii O A. Electrosynthesis of nanostructures and nanomaterials[J]. Russ. Chem. Rev., 2015, 84(2): 159-193.

[12]

Therese G H A, Kamath P V. Electrochemical synthesis of metal oxides and hydroxides[J]. Chem. Mater., 2000, 12(5): 1195-1204.

[13]

Xu Y, Zhang B. Recent advances in electrochemical hydrogen production from water assisted by alternative oxidation reactions[J]. ChemElectroChem, 2019, 6(13): 3214-3226.

[14]

Liu K W, Zhang C L, Sun Y D, Zhang G H, Shen X C, Zou F, Zhang H C, Wu Z W, Wegener E C, Taubert C J, Miller J T, Peng Z M, Zhu Y. High-performance transition metal phosphide alloy catalyst for oxygen evolution reaction[J]. ACS Nano, 2018, 12(1): 158-167.

[15]

Li Y, Wei X F, Chen L S, Shi J L. Electrocatalytic hydrogen production trilogy[J]. Angew. Chem. Int. Ed., 2021, 60(36): 19550-19571.

[16]

You B, Han G Q, Sun Y J. Electrocatalytic and photocatalytic hydrogen evolution integrated with organic oxidation[J]. Chem. Commun., 2018, 54(47): 5943-5955.

[17]

Yan M, Kawamata Y, Baran P S. Synthetic organic electrochemical methods since 2000: On the verge of a renaissance[J]. Chem. Rev., 2017, 117(21): 13230-13319.

[18]

Chen L S, Shi J L. Co-electrolysis toward value-added chemicals[J]. Sci. China Mater., 2022, 65(1): 1-9.

[19]

Garlyyev B, Xue S, Fichtner J, Bandarenka A S, Andronescu C. Prospects of value-added chemicals and hydrogen via electrolysis[J]. ChemSusChem, 2020, 13(10): 2513-2521.

[20]

Pletcher D, Walsh F C. Industrial electrochemistry[M]. America: Springer Dordrecht, 1993.

[21]

Heard D M, Lennox A J J. Electrode materials in modern organic electrochemistry[J]. Angew. Chem. Int. Ed., 2020, 59(43): 18866-18884.

[22]

Izutsu K. Electrochemistry in nonaqueous solutions[M]. America: John Wiley & Sons, Inc., 2002.

[23]

Campos-Martin J M, Blanco-Brieva G, Fierro J L G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process[J]. Angew. Chem. Int. Ed., 2006, 45(42): 6962-6984.

[24]

Yount J, Piercey D G. Electrochemical synthesis of high-nitrogen materials and energetic materials[J]. Chem. Rev., 2022, 122(9): 8809-8840.

[25]

Jovic V D, Jovic B M, Pavlovic M G. Electrodeposition of Ni, Co and Ni-Co alloy powders[J]. Electrochim. Acta, 2006, 51(25): 5468-5477.

[26]

Wang J, Polleux J, Lim J, Dunn B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles[J]. J. Phys. Chem. C, 2007, 111(40): 14925-14931.

[27]

Mai L Q, Minhas-Khan A, Tian X C, Hercule K M, Zhao Y L, Lin X, Xu X. Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance[J]. Nat. Commun., 2013, 4: 2923.

[28]

Ahn S H, Hwang S J, Yoo S J, Choi I, Kim H J, Jang J H, Nam S W, Lim T H, Lim T, Kim S K, Kim J J. Electrodeposited Ni dendrites with high activity and durability for hydrogen evolution reaction in alkaline water electrolysis[J]. J. Mater. Chem., 2012, 22(30): 15153-15159.

[29]

Gurrappa I, Binder L. Electrodeposition of nanostructured coatings and their characterization—a review[J]. Sci. Technol. Adv. Mater., 2008, 9(4): 043001.

[30]

Lahiri A, Endres F. Review—electrodeposition of nanostructured materials from aqueous, organic and ionic liquid electrolytes for Li-ion and Na-ion batteries: A comparative review[J]. J. Electrochem. Soc., 2017, 164(9): D597-D612.

[31]

Walsh F C, de Leon C P. A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: an established and diversifying technology[J]. Trans. Inst. Met., 2014, 92(2): 83-98.

[32]

Zheng J X, Kim M S, Tu Z Y, Choudhury S, Tang T, Archer L A. Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries[J]. Chem. Soc. Rev., 2020, 49(9): 2701-2750.

[33]

Wu W M, Zhang C S, Hou S G. Electrochemical exfoliation of graphene and graphene-analogous 2D nanosheets[J]. J. Mater. Sci., 2017, 52(18): 10649-10660.

[34]

Ambrosi A, Pumera M. Exfoliation of layered materials using electrochemistry[J]. Chem. Soc. Rev., 2018, 47(19): 7213-7224.

[35]

Yang Y C, Hou H S, Zou G Q, Shi W, Shuai H L, Li J Y, Ji X B. Electrochemical exfoliation of graphene-like two-dimensional nanomaterials[J]. Nanoscale, 2019, 11(1): 16-33.

[36]

Zhang Q Y, Mei L, Cao X H, Tang Y X, Zeng Z Y. Intercalation and exfoliation chemistries of transition metal dichalcogenides[J]. J. Mater. Chem. A, 2020, 8(31): 15417-15444.

[37]

Yang S, Zhang P P, Nia A S, Feng X L. Emerging 2D materials produced via electrochemistry[J]. Adv. Mater., 2020, 32(10): 1907857.

[38]

Liu F M, Zhang L, Wang L, Cheng F Y. The electrochemical tuning of transition metal-based materials for electrocatalysis[J]. Electrochem. Energy Rev., 2021, 4(1): 146-168.

[39]

Baumgärtner M E, Raub C J. The electrodeposition of platinum and platinum alloys[J]. Platin. Met. Rev., 1988, 32(4): 188-197.

[40]

Ring L, Pollet B G, Chatenet M, Abbou S, Küpper K, Schmidt M, Huck M, Gries A, Steinhart M, Schäfer H. From bad electrochemical practices to an environmental and waste reducing approach for the generation of active hydrogen evolving electrodes[J]. Angew. Chem. Int. Ed., 2019, 58(48): 17383-17392.

[41]

Yang F Z, Xu S K, Yao S B, Chen B Y, Zheng X Q, Zhong X H, Zhou S M. A study on the electrodeposition of palladium and it’s nucleation[J]. J. Electrochem., 1997, (1): 103-108.

[42]

Edison T N J I, Atchudan R, Karthik N, Chandrasekaran S, Perumal S, Raja P B, Perumal V, Lee Y R. Deep eutectic solvent assisted electrosynthesis of ruthenium nanoparticles on stainless steel mesh for electrocatalytic hydrogen evolution reaction[J]. Fuel, 2021, 297: 120786.

[43]

Wang S J, Zou X L, Lu Y, Rao S C, Xie X L, Pang Z Y, Lu X G, Xu Q, Zhou Z F. Electrodeposition of nano-nickel in deep eutectic solvents for hydrogen evolution reaction in alkaline solution[J]. Int. J. Hydrog. Energy, 2018, 43(33): 15673-15686.

[44]

Smith E L, Abbott A P, Ryder K S. Deep eutectic solvents (DESs) and their applications[J]. Chem. Rev., 2014, 114(21): 11060-11082.

[45]

Zhou M, Dick J E, Bard A J. Electrodeposition of isolated platinum atoms and clusters on bismuth-characterization and electrocatalysis[J]. J. Am. Chem. Soc., 2017, 139 (48): 17677-17682.

[46]

Zhou M, Bao S J, Bard A J. Probing size and substrate effects on the hydrogen evolution reaction by single isolated Pt atoms, atomic clusters, and nanoparticles[J]. J. Am. Chem. Soc., 2019, 141(18): 7327-7332.

[47]

Stanca S E, Vogt O, Zieger G, Ihring A, Dellith J, Undisz A, Rettenmayr M, Schmidt H. Electrochemical growth mechanism of nanoporous platinum layers[J]. Commun. Chem., 2021, 4(1): 98.

[48]

Dehcheshmeh M S, Kiani A. Synthesis of Pt nano catalyst in the presence of carbon monoxide: superior activity towards hydrogen evolution reaction[J]. Int. J. Hydrog. Energy, 2019, 44(43): 23969-23974.

[49]

Cheng H E, Li W L, Yang Z P. Enhancement of hydrogen evolution reaction by Pt nanopillar-array electrode in alkaline media and the effect of nanopillar length on the electrode efficiency[J]. Int. J. Hydrog. Energy, 2019, 44(57): 30141-30150.

[50]

Brimaud S, Behm R J. Electrodeposition of a Pt monolayer film: Using kinetic limitations for atomic layer epitaxy[J]. J. Am. Chem. Soc., 2013, 135(32): 11716-11719.

[51]

Chen X X, Li N, Eckhard K, Stoica L, Xia W, Assmann J, Muhler M, Schuhmann W. Pulsed electrodeposition of Pt nanoclusters on carbon nanotubes modified carbon materials using diffusion restricting viscous electrolytes[J]. Electrochem. Commun., 2007, 9(6): 1348-1354.

[52]

Hussein H E M, Maurer R J, Amari H, Peters J J P, Meng L C, Beanland R, Newton M E, Macpherson J V. Tracking metal electrodeposition dynamics from nucleation and growth of a single atom to a crystalline nanoparticle[J]. ACS Nano, 2018, 12(7): 7388-7396.

[53]

Huang K, Shin K, Henkelman G, Crooks R M. Correlating surface structures and electrochemical activity using shape-controlled single-Pt nanoparticles[J]. ACS Nano, 2021, 15(11): 17926-17937.

[54]

Glasscott M W, Dick J E. Fine-tuning porosity and time-resolved observation of the nucleation and growth of single platinum nanoparticles[J]. ACS Nano, 2019, 13(4): 4572-4581.

[55]

Ye F, Li J J, Wang T T, Liu Y, Wei H J, Li J L, Wang X D. Electrocatalytic properties of platinum catalysts prepared by pulse electrodeposition method using SnO2 as an assisting reagent[J]. J. Phys. Chem. C, 2008, 112(33): 12894-12898.

[56]

Ohyama J, Sato T, Yamamoto Y, Arai S, Satsuma A. Size specifically high activity of Ru nanoparticles for hydrogen oxidation reaction in alkaline electrolyte[J]. J. Am. Chem. Soc., 2013, 135(21): 8016-8021.

[57]

He Y P, Sheng Q L, Zheng J B. Double-template electrosynthesis of platinum nanomaterials for sensing application[J]. Sens. Actuators B Chem., 2012, 166: 89-96.

[58]

Li Y J, Zhang H C, Xu T H, Lu Z Y, Wu X C, Wan P B, Sun X M, Jiang L. Under-water superaerophobic pine-shaped Pt nanoarray electrode for ultrahigh-performance hydrogen evolution[J]. Adv. Funct. Mater., 2015, 25(11): 1737-1744.

[59]

Tavakkoli M, Holmberg N, Kronberg R, Jiang H, Sainio J, Kauppinen E I, Kallio T, Laasonen K. Electrochemical activation of single-walled carbon nanotubes with pseudo-atomic-scale platinum for the hydrogen evolution reaction[J]. ACS Catal., 2017, 7(5): 3121-3130.

[60]

Dudin P V, Snowden M E, Macpherson J V, Unwin P R. Electrochemistry at nanoscale electrodes: Individual single-walled carbon nanotubes (SWNTs) and SWNT-templated metal nanowires[J]. ACS Nano, 2011, 5(12): 10017-10025.

[61]

Ye S H, Luo F Y, Zhang Q L, Zhang P Y, Xu T T, Wang Q, He D S, Guo L C, Zhang Y, He C X, Ouyang X P, Gu M, Liu J H, Sun X L. Highly stable single Pt atomic sites anchored on aniline-stacked graphene for hydrogen evolution reaction[J]. Energy Environ. Sci., 2019, 12(3): 1000-1007.

[62]

Xu G R, Hui J J, Huang T, Chen Y, Lee J M. Platinum nanocuboids supported on reduced graphene oxide as efficient electrocatalyst for the hydrogen evolution reaction[J]. J. Power Sources, 2015, 285: 393-399.

[63]

Zhang H B, An P F, Zhou W, Guan B Y, Zhang P, Dong J C, Lou X W D. Dynamic traction of latticeconfined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction[J]. Sci. Adv., 2018, 4(1): eaao6657.

[64]

Wang Y H, Chen L, Yu X M, Wang Y G, Zheng G F. Superb alkaline hydrogen evolution and simultaneous electricity generation by Pt-decorated Ni3N nanosheets[J]. Adv. Energy Mater., 2017, 7(2): 1601390.

[65]

Bose C S C, Rajeshwar K. Efficient electrocatalyst assemblies for proton and oxygen reduction: The electrosynthesis and characterization of polypyrrole films containing nanodispersed platinum particles[J]. J. Electroanal. Chem., 1992, 333(1-2): 235-256.

[66]

Zhou C F, Liu Z W, Yan Y S, Du X S, Mai Y W, Ringer S. Electro-synthesis of novel nanostructured pedot films and their application as catalyst support[J]. Nanoscale Res. Lett., 2011, 6: 364.

[67]

Nieminen J J, Hatay I, Ge P Y, Méndez M A, Murtomäki L, Girault H H. Hydrogen evolution catalyzed by electrodeposited nanoparticles at the liquid/liquid interface[J]. Chem. Commun., 2011, 47(19): 5548-5550.

[68]

Aslan E, Patir I H, Ersoz M. Cu nanoparticles electrodeposited at liquid-liquid interfaces: A highly efficient catalyst for the hydrogen evolution reaction[J]. Chem. Eur. J., 2015, 21(12): 4585-4589.

[69]

Xiao H, Zhang J J, Zhao M, Ma J C, Li Y, Hu T J, Zheng Z F, Jia J F, Wu H S. Electric field-assisted synthesis of Pt, carbon quantum dots-coloaded graphene hybrid for hydrogen evolution reaction[J]. J. Power Sources, 2020, 451: 227770.

[70]

Xiao H, Xue S F, Zhang J J, Zhao M, Ma J C, Chen S, Zheng Z F, Jia J F, Wu H S. Facile electrolytic synthesis of Pt and carbon quantum dots coloaded multiwall carbon nanotube as highly efficient electrocatalyst for hydrogen evolution and ethanol oxidation[J]. Chem. Eng. J., 2021, 408: 127271.

[71]

Liu L, Wang Y, Zhao Y Z, Wang Y, Zhang Z L, Wu T, Qin W J, Liu S J, Jia B R, Wu H Y, Zhang D Y, Qu X H, Chhowalla M, Qin M L. Ultrahigh Pt-mass-activity hydrogen evolution catalyst electrodeposited from bulk Pt[J]. Adv. Funct. Mater., 2022, 32(20): 2112207.

[72]

Cao Z M, Chen Q L, Zhang J W, Li H Q, Jiang Y Q, Shen S Y, Fu G, Lu B A, Xie Z X, Zheng L S. Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction[J]. Nat. Commun., 2017, 8: 15131.

[73]

Isarain-Chávez E, Baró M D, Alcantara C, Pané S, Sort J, Pellicer E. Micelle-assisted electrodeposition of mesoporous Fe-Pt smooth thin films and their electrocatalytic activity towards the hydrogen evolution reaction[J]. Chem-SusChem, 2018, 11(2): 367-375.

[74]

Palaniappan R, Ingram D C, Botte G G. Hydrogen evolution reaction kinetics on electrodeposited Pt-M (M = Ir, Ru, Rh, and Ni) cathodes for ammonia electrolysis[J]. J. Electrochem. Soc., 2014, 161(1): E12-E22.

[75]

Xu W, Du D W, Lan R, Humphreys J, Miller D N, Walker M, Wu Z C, Irvine J T S, Tao S W. Electrodeposited NiCu bimetal on carbon paper as stable non-noble anode for efficient electrooxidation of ammonia[J]. App. Cat. B Environ., 2018, 237: 1101-1109.

[76]

Cherevko S, Kulyk N, Chung C H. Nanoporous Pt@AuxCu100-x by hydrogen evolution assisted electrodeposition of AuxCu100-x and galvanic replacement of Cu with Pt: Electrocatalytic properties[J]. Langmuir, 2012, 28(6): 3306-3315.

[77]

Eiler K, Suriñach S, Sort J, Pellicer E. Mesoporous Ni-rich Ni-Pt thin films: Electrodeposition, characterization and performance toward hydrogen evolution reaction in acidic media[J]. App. Cat. B Environ., 2020, 265: 118597.

[78]

Xu L, Cao L L, Xu W, Pei Z H. One-step electrosynthesis of NiFe-NF electrodes for highly efficient overall water splitting[J]. Appl. Surf. Sci., 2020, 503: 144122.

[79]

Glasscott M W, Pendergast A D, Goines S, Bishop A R, Hoang A T, Renault C, Dick J E. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis[J]. Nat. Commun., 2019, 10: 2650.

[80]

Lee J K, Yi Y, Lee H J, Uhm S, Lee J. Electrocatalytic activity of Ni nanowires prepared by galvanic electrodeposition for hydrogen evolution reaction[J]. Catal. Today, 2009, 146(1-2): 188-191.

[81]

Shao Q, Wang Y, Yang S Z, Lu K Y, Zhang Y, Tang C Y, Song J, Feng Y G, Xiong L K, Peng Y, Li Y F, Xin H L L, Huang X Q. Stabilizing and activating metastable nickel nanocrystals for highly efficient hydrogen evolution electrocatalysis[J]. ACS Nano, 2018, 12(11): 11625-11631.

[82]

Wen X D, Yang X Y, Li M, Bai L, Guan J Q. Co/CoOx nanoparticles inlaid onto nitrogen-doped carbon-graphene as a trifunctional electrocatalyst[J]. Electrochim. Acta, 2019, 296: 830-841.

[83]

Chang T Y, Zhang B H, Cong W B, Luo Y. Study on hydrogen evolution performance of nickel-tin electrode[J]. J. Electrochem., 2002, (3): 343-347.

[84]

Lu S G, Li Q, Liu Q G, Lu C, Dang B, Yang H X. The hydrogen evolution reaction on the hydrogen storage alloy electrode[J]. J. Electrochem., 1998, (3): 265-272.

[85]

Yu W Z, Ma J, Chu Y M, Zhu H Z, Wang H J, Liu S C. Hydrogen evolution reaction on nanocrystalline Co-Mo/Ni composite-coated electrodes[J]. J. Electrochem., 1996, (1): 47-53.

[86]

Wu Z X, Wang J, Guo J P, Zhu J, Wang D L. Recent progresses in molybdenum-based electrocatalysts for the hydrogen evolution reaction[J]. J. Electrochem., 2016, 22(2): 192-204.

[87]

Ding L, Li K, Xie Z Q, Yang G Q, Yu S L, Wang W T, Yu H R, Baxter J, Meyer H M, Cullen D A, Zhang F Y. Constructing ultrathin W-doped nife nanosheets via facile electrosynthesis as bifunctional electrocatalysts for efficient water splitting[J]. ACS Appl. Mater. Interfaces, 2021, 13(17): 20070-20080.

[88]

Zhang L, Liu B R, Zhang N, Ma M M. Electrosynthesis of Co3O4 and Co(OH)2 ultrathin nanosheet arrays for efficient electrocatalytic water splitting in alkaline and neutral media[J]. Nano Res., 2018, 11(1): 323-333.

[89]

Xiao P, Sk M A, Thia L, Ge X M, Lim R J, Wang J Y, Lim K H, Wang X. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction[J]. Energy Environ. Sci., 2014, 7(8): 2624-2629.

[90]

Lu Z P, Sepunaru L. Electrodeposition of iron phosphide film for hydrogen evolution reaction[J]. Electrochim. Acta, 2020, 363: 137167.

[91]

Xing J H, Li H, Cheng M M C, Geyer S M, Ng K Y S. Electro-synthesis of 3D porous hierarchical Ni-Fe phosphate film/Ni foam as a high-efficiency bifunctional electrocatalyst for overall water splitting[J]. J. Mater. Chem. A, 2016, 4(36): 13866-13873.

[92]

Chen M X, Qi J, Zhang W, Cao R. Electrosynthesis of NiPx nanospheres for electrocatalytic hydrogen evolution from a neutral aqueous solution[J]. Chem. Commun., 2017, 53(40): 5507-5510.

[93]

Lin C Y, Huang S C, Lin Y G, Hsu L C, Yi C T. Electrosynthesized Ni-P nanospheres with high activity and selectivity towards photoelectrochemical plastics reforming[J]. Appl. Catal. B Environ., 2021, 296: 120351.

[94]

Jiang N, You B, Sheng M L, Sun Y J. Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting[J]. Angew. Chem. Int. Ed., 2015, 54(21): 6251-6254.

[95]

Jiang N, You B, Boonstra R, Rodriguez I M T, Sun Y J. Integrating electrocatalytic 5-hydroxymethylfurfural oxidation and hydrogen production via Co-P-derived electrocatalysts[J]. ACS Energy Lett., 2016, 1(2): 386-390.

[96]

Aliyev A S, Elrouby M, Cafarova S F. Electrochemical synthesis of molybdenum sulfide semiconductor[J]. Mater. Sci. Semicond. Process., 2015, 32: 31-39.

[97]

Gopalakrishnan D, Damien D, Li B, Gullappalli H, Pillai V K, Ajayan P M, Shaijumon M M. Electrochemical synthesis of luminescent MoS2 quantum dots[J]. Chem. Commun., 2015, 51(29): 6293-6296.

[98]

Cao Y. Roadmap and direction toward high-performance MoS2 hydrogen evolution catalysts[J]. ACS Nano, 2021, 15(7): 11014-11039.

[99]

Murugesan S, Akkineni A, Chou B P, Glaz M S, Bout D A V, Stevenson K J. Room temperature electrodeposition of molybdenum sulfide for catalytic and photoluminescence applications[J]. ACS Nano, 2013, 7(9): 8199-8205.

[100]

Gao Y, Zhou J, Liu Y W, Chen S L. Hydrogen evolution properties on individual MoS2 nanosheets[J]. J. Electrochem., 2016, 22(6): 590-595.

[101]

Tan S M, Pumera M. Bottom-up electrosynthesis of highly active tungsten sulfide (WS3-x) films for hydrogen evolution[J]. ACS Appl. Mater. Interfaces, 2016, 8(6): 3948-3957.

[102]

Tan S M, Pumera M. Electrosynthesis of bifunctional WS3-x/reduced graphene oxide hybrid for hydrogen evolution reaction and oxygen reduction reaction electrocatalysis[J]. Chem. Euro. J., 2017, 23(35): 8510-8519.

[103]

Jo S, Lee K B, Sohn J I. Direct electrosynthesis of selective transition-metal chalcogenides as functional catalysts with a tunable activity for efficient water electrolysis[J]. ACS Sustain. Chem. Eng., 2021, 9(44): 14911-14917.

[104]

Chen W S, Gu J J, Liu Q L, Yang M Z, Zhan C, Zang X N, Pham T A, Liu G X, Zhang W, Zhang D, Dunn B, Wang Y M. Two-dimensional quantum-sheet films with sub-1.2 nm channels for ultrahigh-rate electrochemical capacitance[J]. Nat. Nanotechnol., 2022, 17(2): 153-158.

[105]

Wang H T, Lu Z Y, Kong D S, Sun J, Hymel T M, Cui Y. Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution[J]. ACS Nano, 2014, 8(5): 4940-4947.

[106]

Michalsky R, Zhang Y J, Peterson A A. Trends in the hydrogen evolution activity of metal carbide catalysts[J]. ACS Catal., 2014, 4(5): 1274-1278.

[107]

Fan X J, Peng Z W, Ye R Q, Zhou H Q, Guo X. M3C (M: Fe, Co, Ni) nanocrystals encased in graphene nanoribbons: An active and stable bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions[J]. ACS Nano, 2015, 9(7): 7407-7418.

[108]

Jiang R, Fan J H, Hu L Y, Dou Y P, Mao X H, Wang D H. Electrochemically synthesized N-doped molybdenum carbide nanoparticles for efficient catalysis of hydrogen evolution reaction[J]. Electrochim. Acta, 2018, 261: 578-587.

[109]

Fan J H, Dou Y P, Jiang R, Du K F, Deng B W, Wang D H. Electro-synthesis of tungsten carbide containing catalysts in molten salt for efficiently electrolytic hydrogen generation assisted by urea oxidation[J]. Int. J. Hydrog. Energy, 2021, 46(28): 14932-14943.

[110]

Malakzadeh M, Raoof J B, Ghafarnejad A, Ojani R. In-situ electrosynthesis Cu-PtBTC MOF-derived nanocomposite modified glassy carbon electrode for highly performance electrocatalysis of hydrogen evolution reaction[J]. J. Electroanal. Chem., 2021, 900: 115716.

[111]

Varsha M V, Nageswaran G. Review—direct electrochemical synthesis of metal organic frameworks[J]. J. Electrochem. Soc., 2020, 167(15): 155527.

[112]

Babar P T, Lokhande A C, Jo E, Pawar B S, Gang M G, Pawar S M, Kim J H. Facile electrosynthesis of Fe (Ni/Co) hydroxyphosphate as a bifunctional electrocatalyst for efficient water splitting[J]. J. Ind. Eng. Chem., 2019, 70: 116-123.

[113]

Liu L, Hai Y, Gong Y. A facile electrosynthesis of terephthalate (tp)-based metal-organic framework, Ni3(OH)2 (H2O)2(tp)2 with superior catalytic activity for hydrogen evolution reaction[J]. Eur. J. Inorg. Chem., 2020, 2020(44): 4215-4224.

[114]

Liberman I, Ifraemov R, Shimoni R, Hod I. Localized electrosynthesis and subsequent electrochemical mapping of catalytically active metal-organic frameworks[J]. Adv. Funct. Mater., 2022, 32(19): 2112517.

[115]

Zhou K L, Wang Z L, Han C B, Ke X X, Wang C H, Jin Y H, Zhang Q Q, Liu J B, Wang H, Yan H. Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction[J]. Nat. Commun., 2021, 12(1): 3783.

[116]

Tiwari J N, Sultan S, Myung C W, Yoon T, Li N N, Ha M R, Harzandi A M, Park H J, Kim D Y, Chandrasekaran S S, Lee W G, Vij V, Kang H J, Shin T J, Shin H S, Lee G, Lee Z, Kim K S. Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity[J]. Nat. Energy, 2018, 3(9): 773-782.

[117]

Chia X Y, Sutrisnoh N A A, Pumera M. Tunable Pt-MoSx hybrid catalysts for hydrogen evolution[J]. ACS Appl. Mater. Interfaces, 2018, 10(10): 8702-8711.

[118]

Jiang R, Deng B W, Pi L, Hu L Y, Chen D, Dou Y P, Mao X H, Wang D H. Molten electrolyte-modulated electrosynthesis of multi-anion Mo-based lamellar nanohybrids derived from natural minerals for boosting hydrogen evolution[J]. ACS Appl. Mater. Interfaces, 2020, 12(52): 57870-57880.

[119]

Song F Z, Li W, Han G Q, Sun Y J. Electropolymerization of aniline on nickel-based electrocatalysts substantially enhances their performance for hydrogen evolution[J]. ACS Appl. Energy Mater., 2018, 1(1): 3-8.

[120]

Chen Z F, Ye S R, Wilson A R, Ha Y C, Wiley B J. Optically transparent hydrogen evolution catalysts made from networks of copper-platinum core-shell nanowires[J]. Energy Environ. Sci., 2014, 7(4): 1461-1467.

[121]

Subbaraman R, Tripkovic D, Strmcnik D, Chang K C, Uchimura M, Paulikas A P, Stamenkovic V, Markovic N M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces[J]. Science, 2011, 334(6060): 1256-1260.

[122]

Li L, Wang B, Zhang G W, Yang G, Yang T, Yang S, Yang S C. Electrochemically modifying the electronic structure of IrO2 nanoparticles for overall electrochemical water splitting with extensive adaptability[J]. Adv. Energy Mater., 2020, 10(30): 2001600.

[123]

Park J, Kim H, Jin K, Lee B J, Park Y S, Kim H, Park I, Yang K D, Jeong H Y, Kim J, Hong K T, Jang H W, Kang K, Nam K T. A new water oxidation catalyst: lithium manganese pyrophosphate with tunable Mn valency[J]. J. Am. Chem. Soc., 2014, 136(11): 4201-4211.

[124]

Wang H T, Lu Z Y, Xu S C, Kong D S, Cha J J, Zheng G Y, Hsu P C, Yan K, Bradshaw D, Prinz F B, Cui Y. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction[J]. Proc. Natl. Acad. Sci. U.S.A., 2013, 110(49): 19701-19706.

[125]

Meng J, Liu F M, Yan Z H, Cheng F Y, Li F J, Chen J. Spent alkaline battery-derived manganese oxides as efficient oxygen electrocatalysts for Zn-air batteries[J]. Inorg. Chem. Front., 2018, 5(9): 2167-2173.

[126]

Wang H T, Xu S C, Tsai C, Li Y Z, Liu C, Zhao J, Liu Y Y, Yuan H Y, Abild-Pedersen F, Prinz F B, Nörskov J K, Cui Y. Direct and continuous strain control of catalysts with tunable battery electrode materials[J]. Science, 2016, 354(6315): 1031-1036.

[127]

Tang C, Zhang R, Lu W B, Wang Z, Liu D N, Hao S, Du G, Asiri A M, Sun X P. Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst[J]. Angew. Chem. Int. Ed., 2017, 56(3): 842-846.

[128]

Liu H, Liu Y, Li M, Liu X, Luo J. Transition-metal-based electrocatalysts for hydrazine-assisted hydrogen production[J]. Mater.Today Adv., 2020, 7: 100083.

[129]

Wang J M, Ma X, Liu T T, Liu D N, Hao S, Du G, Kong R M, Asiri A M, Sun X P. NiS2 nanosheet array: A high-active bifunctional electrocatalyst for hydrazine oxidation and water reduction toward energy-efficient hydrogen production[J]. Mater. Today Energy, 2017, 3: 9-14.

[130]

Zhang J Y, Wang H M, Tian Y F, Yan Y, Xue Q, He T, Liu H F, Wang C D, Chen Y, Xia B Y. Anodic hydrazine oxidation assists energy-efficient hydrogen evolution over a bifunctional cobalt perselenide nanosheet electrode[J]. Angew. Chem. Int. Ed., 2018, 57(26): 7649-7653.

[131]

Li Y P, Zhang J H, Liu Y, Qian Q Z, Li Z Y, Zhu Y, Zhang G Q. Partially exposed RuP2 surface in hybrid structure endows its bifunctionality for hydrazine oxidation and hydrogen evolution catalysis[J]. Sci. Adv., 2020, 6(44): eabb4197.

[132]

Qian Q Z, Zhang J H, Li J M, Li Y P, Jin X, Zhu Y, Liu Y, Li Z Y, El-Harairy A, Xiao C, Zhang G Q, Xie Y. Artificial heterointerfaces achieve delicate reaction kinetics towards hydrogen evolution and hydrazine oxidation catalysis[J]. Angew. Chem. Int. Ed., 2021, 60(11): 5984-5993.

[133]

Liu Y, Zhang J H, Li Y P, Qian Q Z, Li Z Y, Zhang G Q. Realizing the synergy of interface engineering and chemical substitution for Ni3N enables its bifunctionality toward hydrazine oxidation assisted energy-saving hydrogen production[J]. Adv. Funct. Mater., 2021, 31(35): 2103673.

[134]

Wang Z Y, Xu L, Huang F Z, Qu L B, Li J T, Owusu K A, Liu Z, Lin Z F, Xiang B H, Liu X, Zhao K N, Liao X B, Yang W, Cheng Y B, Mai L Q. Copper-nickel nitride nanosheets as efficient bifunctional catalysts for hydrazine-assisted electrolytic hydrogen production[J]. Adv. Energy Mater., 2019, 9(21): 1900390.

[135]

Sun F, Qin J S, Wang Z Y, Yu M Z, Wu X H, Sun X M, Qiu J S. Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation[J]. Nat. Commun., 2021, 12(1): 4182.

[136]

Yu Q P, Chi J Q, Liu G S, Wang X Y, Liu X B, Li Z J, Deng Y, Wang X P, Wang L. Dual-strategy of hetero-engineering and cation doping to boost energy-saving hydrogen production via hydrazine-assisted seawater electrolysis[J]. Sci. China Mater., 2022, 65(6): 1539-1549.

[137]

Yu Z P, Xu J Y, Meng L J, Liu L F. Efficient hydrogen production by saline water electrolysis at high current densities without the interfering chlorine evolution[J]. J. Mater. Chem. A, 2021, 9(39): 22248-22253.

[138]

Deng K, Mao Q Q, Wang W X, Wang P, Wang Z Q, Xu Y, Li X N, Wang H J, Wang L. Defect-rich low-crystalline Rh metallene for efficient chlorine-free H2 production by hydrazine-assisted seawater splitting[J]. App. Catal. B Environ., 2022, 310: 121338.

[139]

Liu Y, Zhang J H, Li Y P, Qian Q Z, Li Z Y, Zhu Y, Zhang G Q. Manipulating dehydrogenation kinetics through dual-doping Co3N electrode enables highly efficient hydrazine oxidation assisting self-powered H2 production[J]. Nat. Commun., 2020, 11(1): 1853.

[140]

Liu X J, He J, Zhao S Z, Liu Y P, Zhao Z, Luo J, Hu G Z, Sun X M, Ding Y. Self-powered H2 production with bifunctional hydrazine as sole consumable[J]. Nat. Commun., 2018, 9: 4365.

[141]

Liu T T, Liu D N, Qu F L, Wang D X, Zhang L, Ge R X, Hao S, Ma Y J, Du G, Asiri A M, Chen L, Sun X P. Enhanced electrocatalysis for energy-efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter[J]. Adv. Energy Mater., 2017, 7(15): 1700020.

[142]

Yu Z Y, Lang C C, Gao M R, Chen Y, Fu Q Q, Duan Y, Yu S H. Ni-Mo-O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis[J]. Energy Environ. Sci., 2018, 11(7): 1890-1897.

[143]

Zhang L S, Wang L P, Lin H P, Liu Y X, Ye J Y, Wen Y Z, Chen A, Wang L, Ni F L, Zhou Z Y, Sun S G, Li Y Y, Zhang B, Peng H S. A lattice-oxygen-involved reaction pathway to boost urea oxidation[J]. Angew. Chem. Int. Ed., 2019, 58(47): 16820-16825.

[144]

Wang C, Lu H L, Mao Z Y, Yan C L, Shen G Z, Wang X F. Bimetal schottky heterojunction boosting energy-saving hydrogen production from alkaline water via urea electrocatalysis[J]. Adv. Funct. Mater., 2020, 30(21): 20000556.

[145]

Hu S N, Wang S Q, Feng C Q, Wu H M, Zhang J J, Mei H. Novel MOF-derived nickel nitride as high-performance bifunctional electrocatalysts for hydrogen evolution and urea oxidation[J]. ACS Sustainable Chem. Eng., 2020, 8(19): 7414-7422.

[146]

Chen N, Du Y X, Zhang G, Lu W T, Cao F F. Amorphous nickel sulfoselenide for efficient electrochemical urea-assisted hydrogen production in alkaline media[J]. Nano Energy, 2021, 81: 105605.

[147]

Xu W, Lan R, Du D W, Humphreys J, Walker M, Wu Z C, Wang H T, Tao S W. Directly growing hierarchical nickel-copper hydroxide nanowires on carbon fibre cloth for efficient electrooxidation of ammonia[J]. App. Cat. B Environ., 2017, 218: 470-479.

[148]

Wu F C, Ou G, Yang J, Li H N, Gao Y X, Chen F M, Wang Y, Shi Y M. Bifunctional nickel oxide-based nanosheets for highly efficient overall urea splitting[J]. Chem. Commun., 2019, 55(46): 6555-6558.

[149]

Xu Q L, Qian G F, Yin S B, Yu C, Chen W, Yu T Q, Luo L, Xia Y J, Tsiakaras P. Design and synthesis of highly performing bifunctional Ni-NiO-MoNi hybrid catalysts for enhanced urea oxidation and hydrogen evolution reactions[J]. ACS Sustainable Chem. Eng., 2020, 8(18): 7174-7181.

[150]

Wu Y T, Wang H, Ren J W, Xu X, Wang X Y, Wang R F. Electrocatalyst based on Ni2P nanoparticles and NiCoP nanosheets for efficient hydrogen evolution from urea wastewater[J]. J. Colloid Interface Sci., 2022, 608: 2932-2941.

[151]

Sacré N, Duca M, Garbarino S, Imbeault R, Wang A, Youssef A H, Galipaud J, Hufnagel G, Ruediger A, Roué L, Guay D. Tuning Pt-Ir interactions for NH3 electrocatalysis[J]. ACS Catal., 2018, 8(3): 2508-2518.

[152]

Zhou Y F, Zhang G Q, Yu M C, Wang X J, Lv J L, Yang F L. Free-standing 3D porous N-doped graphene aerogel supported platinum nanocluster for efficient hydrogen production from ammonia electrolysis[J]. ACS Sustain. Chem. Eng., 2018, 6(7): 8437-8446.

[153]

Gwak J, Choun M, Lee J. Alkaline ammonia electrolysis on electrodeposited platinum for controllable hydrogen production[J]. ChemSusChem, 2016, 9(4): 403-408.

[154]

Sun H Y, Xu G R, Li F M, Hong Q L, Jin P J, Chen P, Chen Y. Hydrogen generation from ammonia electrolysis on bifunctional platinum nanocubes electrocatalysts[J]. J. Energy Chem., 2020, 47: 234-240.

[155]

Xue Q, Zhao Y, Zhu J Y, Ding Y, Wang T J, Sun H Y, Li F M, Chen P, Jin P J, Yin S B, Chen Y. PtRu nanocubes as bifunctional electrocatalysts for ammonia electrolysis[J]. J. Mater. Chem. A, 2021, 9(13): 8444-8451.

[156]

Shilpa N, Pandikassala A, Krishnaraj P, Walko P S, Devi R N, Kurungot S. Co-Ni layered double hydroxide for the electrocatalytic oxidation of organic molecules: An approach to lowering the overall cell voltage for the water splitting process[J]. ACS Appl. Mater. Interfaces, 2022, 14(14): 16222-16232.

[157]

Wei J C, Shi L, Wu X. Simultaneous hydrogen and (NH4)2SO4 productions from desulfurization wastewater electrolysis using MEA electrolyser[J]. J. Electrochem., 2022, 28(5): 4-12.

[158]

Miller H A, Lavacchi A, Vizza F. Storage of renewable energy in fuels and chemicals through electrochemical reforming of bioalcohols[J]. Curr. Opin. Electrochem., 2020, 21: 140-145.

[159]

Arshad F, Ul-Haq T, Hiussain I, Sher F. Recent advances in electrocatalysts toward alcohol-assisted, energy-saving hydrogen production[J]. ACS Appl. Mater. Interfaces, 2021, 4(9): 8685-8701.

[160]

Coutanceau C, Baranton S. Electrochemical conversion of alcohols for hydrogen production: A short overview[J]. WIREs Energy Environ., 2016, 5(4): 388-400.

[161]

Wu T X, Zhu X G, Wang G Z, Zhang Y X, Zhang H M, Zhao H J. Vapor-phase hydrothermal growth of single crystalline NiS2 nanostructure film on carbon fiber cloth for electrocatalytic oxidation of alcohols to ketones and simultaneous H2 evolution[J]. Nano Res., 2018, 11(2): 1004-1017.

[162]

Bambagioni V, Bevilacqua M, Bianchini C, Filippi J, Lavacchi A, Marchionni A, Vizza F, Shen P K. Self-sustainable production of hydrogen, chemicals, and energy from renewable alcohols by electrocatalysis[J]. ChemSusChem, 2010, 3(7): 851-855.

[163]

Chen Y X, Lavacchi A, Miller H A, Bevilacqua M, Filippi J, Innocenti M, Marchionni A, Oberhauser W, Wang L, Vizza F. Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis[J]. Nat. Commun., 2014, 5: 4036.

[164]

Miller H A, Bellini M, Vizza F, Hasenöhrl C, Tilley R D. Carbon supported Au-Pd core-shell nanoparticles for hydrogen production by alcohol electroreforming[J]. Catal. Sci. Technol., 2016, 6(18): 6870-6878.

[165]

Zhao X J, Dai L, Qin Q, Pei F, Hu C Y, Zheng N F. Self-supported 3D PdCu alloy nanosheets as a bifunctional catalyst for electrochemical reforming of ethanol[J]. Small, 2017, 13(12): 1602970.

[166]

Dai L, Qin Q, Zhao X J, Xu C F, Hu C Y, Mo S G, Wang Y O, Lin S C, Tang Z C, Zheng N F. Electrochemical partial reforming of ethanol into ethyl acetate using ultrathin Co3O4 nanosheets as a highly selective anode catalyst[J]. ACS Cent. Sci., 2016, 2(8): 538-544.

[167]

Zhou C H C, Beltramini J N, Fan Y X, Lu G Q M. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals[J]. Chem. Soc. Rev., 2008, 37(3): 527-549.

[168]

Lam C H, Bloomfield A J, Anastas P T. A switchable route to valuable commodity chemicals from glycerol via electrocatalytic oxidation with an earth abundant metal oxidation catalyst[J]. Green Chem., 2017, 19(8): 1958-1968.

[169]

Li Y, Wei X F, Chen L S, Shi J L, He M Y. Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions[J]. Nat. Commun., 2019, 10: 5335.

[170]

Zheng J, Chen X L, Zhong X, Li S Q, Liu T Z, Zhuang G L, Li X N, Deng S W, Mei D H, Wang J G. Hierarchical porous NC@CuCo nitride nanosheet networks: Highly efficient bifunctional electrocatalyst for overall water splitting and selective electrooxidation of benzyl alcohol[J]. Adv. Funct. Mater., 2017, 27(46): 1704169.

[171]

Si D, Xiong B Y, Chen L S, Shi J L. Highly selective and efficient electrocatalytic synthesis of glycolic acid in coupling with hydrogen evolution[J]. Chem. Catal., 2021, 1(4): 941-955.

[172]

Liu W J, Xu Z R, Zhao D T, Pan X Q, Li H C, Hu X, Fan Z Y, Wang W K, Zhao G H, Jin S, Huber G W, Yu H Q. Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis[J]. Nat. Commun., 2020, 11(1): 265.

[173]

Lin C, Zhang P J, Wang S Y, Zhou Q L, Na B, Li H Q, Tian J Y, Zhang Y, Deng C, Meng L Q, Wu J X, Liu C Z, Hu J Y, Zhang L M. Engineered porous Co-Ni alloy on carbon cloth as an efficient bifunctional electrocatalyst for glucose electrolysis in alkaline environment[J]. J. Alloys Compd., 2020, 823: 153784.

[174]

Deng X H, Xu G Y, Zhang Y J, Wang L, Zhang J J, Li J F, Fu X Z, Luo J L. Understanding the roles of electrogenerated Co3+ and Co4+ in selectivity-tuned 5-hydroxymethylfurfural oxidation[J]. Angew. Chem. Int. Ed., 2021, 60(37): 20535-20542.

[175]

Huang Y, Chong X D, Liu C B, Liang Y, Zhang B. Boosting hydrogen production by anodic oxidation of primary amines over a NiSe nanorod electrode[J]. Angew. Chem. Int. Ed., 2018, 57(40): 13163-13166.

[176]

Fu N K, Sauer G S, Saha A, Loo A, Lin S. Metal-catalyzed electrochemical diazidation of alkenes[J]. Science, 2017, 357(6351): 575-579.

[177]

Sauermann N, Mei R H, Ackermann L. Electrochemical C-H amination by cobalt catalysis in a renewable solvent[J]. Angew. Chem. Int. Ed., 2018, 57(18): 5090-5094.

[178]

Wen Q L, Lin Y, Yang Y, Gao R J, Ouyang N Q, Ding D F, Liu Y W, Zhai T Y. In situ chalcogen leaching manipulates reactant interface toward efficient amine electrooxidation[J]. ACS Nano, 2022, 16(6): 9572-9582.

[179]

You B, Jiang N, Liu X, Sun Y J. Simultaneous H2 generation and biomass upgrading in water by an efficient noble-metal-free bifunctional electrocatalyst[J]. Angew. Chem. Int. Ed., 2016, 55(34): 9913-9917.

[180]

You B, Liu X, Jiang N, Sun Y J. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization[J]. J. Am. Chem. Soc., 2016, 138(41): 13639-13646.

[181]

Mika L T, Cséfalvay E, Németh A. Catalytic conversion of carbohydrates to initial platform chemicals: Chemistry and sustainability[J]. Chem. Rev., 2018, 118(2): 505-613.

[182]

Zhang Z H, Huber G W. Catalytic oxidation of carbohydrates into organic acids and furan chemicals[J]. Chem. Soc. Rev., 2018, 47(4): 1351-1390.

[183]

Weber R S. Effective use of renewable electricity for making renewable fuels and chemicals[J]. ACS Catal., 2019, 9(2): 946-950.

[184]

Pasta M, La Mantia F, Cui Y. Mechanism of glucose electrochemical oxidation on gold surface[J]. Electrochim. Acta, 2010, 55(20): 5561-5568.

[185]

Cui H F, Ye J S, Liu X, Zhang W D, Sheu F S. Pt-Pb alloy nanoparticle/carbon nanotube nanocomposite: A strong electrocatalyst for glucose oxidation[J]. Nanotechnology, 2006, 17(9): 2334-2339.

[186]

Zakrzewska M E, Bogel-Lukasik E, Bogel-Lukasik R. Ionic liquid-mediated formation of 5-hydroxymethylfurfural—a promising biomass-derived building block[J]. Chem. Rev., 2011, 111(2): 397-417.

[187]

Moreau C, Belgacem M N, Gandini A. Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers[J]. Top. Catal., 2004, 27(1-4): 11-30.

[188]

Perry S C, Pangotra D, Vieira L, Csepei L I, Sieber V, Wang L, de León C P, Walsh F C. Electrochemical synthesis of hydrogen peroxide from water and oxygen[J]. Nat. Rev. Chem., 2019, 3(7): 442-458.

[189]

Shi X J, Siahrostami S, Li G L, Zhang Y R, Chakthranont P, Studt F, Jaramillo T F, Zheng X L, Nörskov J K. Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide[J]. Nat. Commun., 2017, 8: 701.

[190]

Fuku K, Sayama K. Efficient oxidative hydrogen peroxide production and accumulation in photoelectrochemical water splitting using a tungsten trioxide/bismuth vanadate photoanode[J]. Chem. Commun., 2016, 52(31): 5406-5409.

[191]

Kelly S R, Shi X J, Back S, Vallez L, Park S Y, Siahrostami S, Zheng X L, Nørskov J K. ZnO as an active and selective catalyst for electrochemical water oxidation to hydrogen peroxide[J]. ACS Catal., 2019, 9(5): 4593-4599.

[192]

Izgorodin A, Izgorodina E, MacFarlane D R. Low overpotential water oxidation to hydrogen peroxide on a MnOx catalyst[J]. Energy Environ. Sci., 2012, 5(11): 9496-9501.

[193]

Wei J Q, Zhong L X, Xia H R, Lü Z S, Diao C Z, Zhang W, Li X, Du Y H, Xi S B, Salanne M, Chen X D, Li S Z. Metal-ion oligomerization inside electrified carbon micropores and its effect on capacitive charge storage[J]. Adv. Mater., 2022, 34(4): 2107439.

[194]

Li Y H, Ozden A, Leow W R, Ou P F, Huang J N E, Wang Y H, Bertens K, Xu Y, Liu Y, Roy C, Jiang H, Sinton D, Li C Z, Sargent E H. Redox-mediated electrosynthesis of ethylene oxide from CO2 and water[J]. Nat. Catal., 2022, 5(3): 185-192.

[195]

Wang Y T, Li T L, Yu Y F, Zhang B. Electrochemical synthesis of nitric acid from nitrogen oxidation[J]. Angew. Chem. Int. Ed., 2022, 61(12): e202115409.

[196]

Guo Y, Zhang S C, Zhang R, Wang D H, Zhu D M, Wang X W, Xiao D W, Li N, Zhao Y W, Huang Z D, Xu W J, Chen S M, Song L, Fan J, Chen Q, Zhi C Y. Electrochemical nitrate production via nitrogen oxidation with atomically dispersed Fe on N-doped carbon nanosheets[J]. ACS Nano, 2021, 16(1): 655-663.

[197]

Jeanmairet G, Rotenberg B, Salanne M. Microscopic simulations of electrochemical double-layer capacitors[J]. Chem. Rev., 2022, 122(12): 10860-10898.

Journal of Electrochemistry
Article number: 2214012
Cite this article:
Wei J-Q, Chen X-D, Li S-Z. Electrochemical Syntheses of Nanomaterials and Small Molecules for Electrolytic Hydrogen Production. Journal of Electrochemistry, 2022, 28(10): 2214012. https://doi.org/10.13208/j.electrochem.2214012

196

Views

3

Downloads

0

Crossref

9

Scopus

0

CSCD

Altmetrics

Received: 14 July 2022
Revised: 31 July 2022
Published: 31 August 2022
© 2022 Editorial Office of Journal of Electrochemistry
Return