AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Recent Advances in Exploring Highly Active & Durable PGM-Free Oxygen Reduction Catalysts

Yuan LiMiao-Ying ChenBang-An Lu( )Jia-Nan Zhang( )
College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China
Show Author Information

Graphical Abstract

Abstract

In order to reduce the considerable usage of expensive but scarce platinum at the cathode in proton exchange membrane fuel cells (PEMFCs), it is necessary to pursue alternatives to platinum. The most promising platinum group metal (PGM)-free catalysts for oxygen reduction reaction (ORR) are atomically dispersed, and nitrogen-coordinated metal site catalysts denoted as M-N-C (M = Fe, Co, or Mn, etc.). Over the last few decades, there have been great advances in these catalysts with high ORR activity and promising initial fuel cell performance approaching traditional Pt/C catalysts. However, the stability of these highly active Fe-N-C catalysts under practical fuel cell conditions is still far from satisfactory. This review highlights recent advances in synthesizing efficient PGM-free catalysts for the ORR in PEMFCs, emphasizing our efforts on confinement strategies and spin state regulation methods. We also summarize several effective methods of improving mass and intrinsic activities. Furthermore, significant research efforts toward understanding the degradation mechanisms are made and the results are summarized, such as metal leaching, carbon corrosion, protonation, and micropore flooding. We also document several mitigation strategies to improve the lifetime of PGM-free catalysts, including controlling S1/S2 in Fe-N-C catalysts, using non-iron-based catalysts, enhancing metal-nitrogen bonds, improving the corrosion resistance of carbon carriers, and using buffered protonated liquids. Finally, the remaining challenges and possible solutions to the current atomic dispersion M-N-C catalyst are proposed in detail.

References

[1]

Banham D, Ye S, Pei K, Ozaki J, Kishimoto T, Imashiro Y. A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells[J]. J. Power Sources, 2015, 285: 334–348.

[2]

Wan X, Liu X F, Shui J L. Stability of PGM-free fuel cell catalysts: degradation mechanisms and mitigation strategies[J]. Prog. Nat. Sci., 2020, 30(6): 721–731.

[3]

Chen Z Y, Niu H, Ding J, Liu H, Chen P H, Lu Y H, Lu Y R, Zuo W B, Han L, Guo Y Z, Hung S F, Zhai Y M. Unraveling the origin of sulfur-doped Fe-N-C single-atom catalyst for enhanced oxygen reduction activity: effect of iron spin-state tuning[J]. Angew. Chem. In. Ed., 2021, 60(48): 25404–25410.

[4]

Jiao L, Li J K, Richard L L, Sun Q, Stracensky T, Liu E R, Sougrati M T, Zhao Z P, Yang F, Zhong S C, Xu H, Mukerjee S, Huang Y, Cullen D A, Park J H, Ferrandon M, Myers D J, Jaouen F, Jia Q Y. Chemical vapour deposition of Fe-N-C oxygen reduction catalysts with full utilization of dense Fe-N4 sites[J]. Nat. Mater., 2021, 20(10): 1385–1391.

[5]

Wan X, Liu X F, Li Y C, Yu R H, Zheng L R, Yan W S, Wang H, Xu M, Shui J L. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells[J]. Nat. Catal., 2019, 2(3): 259–268.

[6]

Mehmood A, Gong M J, Jaouen F, Roy A, Zitolo A, Khan A, Sougrati M T, Primbs M, Bonastres A M, Fongalland D, Drazic G, Strasser P, Kucernak A. High loading of single atomic iron sites in Fe-NC oxygen reduction catalysts for proton exchange membrane fuel cells[J]. Nat. Catal., 2022, 5(4): 311–323.

[7]

Li J Z, Chen M J, Cullen D A, Hwang S, Wang M Y, Li B Y, Liu K X, Karakalos S, Lucero M, Zhang H G, Lei C, Xu H, Sterbinsky G E, Feng Z X, Su D, More K L, Wang G F, Wang Z B, Wu G. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells[J]. Nat. Catal., 2018, 1(12): 935–945.

[8]

Zhang H G, Chung H T, Cullen D A, Wagner S, Kramm U I, More K L, Zelenay P, Wu G. High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites[J]. Energy Environ. Sci., 2019, 12(8): 2548–2558.

[9]

He Y H, Hwang S, Cullen D A, Uddin M A, Langhorst L, Li B Y, Karakalos S, Kropf A J, Wegener E C, Sokolowski J, Chen M J, Myers D, Su D, More K L, Wang G F, Litster S, Wu G. Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy[J]. Energy Environ. Sci., 2019, 12(1): 250–260.

[10]

Yin H B, Xia H C, Zhao S Y, Li K X, Zhang J N, Mu S C. Atomic level dispersed metal-nitrogen-carbon catalyst toward oxygen reduction reaction: synthesis strategies and chemical environmental regulation[J]. Energy Environ. Mater., 2021, 4(1): 5–18.

[11]

Zhao S Y, Yin H B, Xia H C, Qu G, Yi S S, Pang H, Yan W F, Zhang J N, Mu S C. The assembling principle and strategies of high-density atomically dispersed catalysts[J]. Chem. Eng. J., 2021: 417.

[12]

Guo S Y, Yuan P F, Zhang J A, Jin P B, Sun H M, Lei K X, Pang X C, Xu Q, Cheng F Y. Atomic-scaled cobalt encapsulated in P,N-doped carbon sheaths over carbon nanotubes for enhanced oxygen reduction electrocatalysis under acidic and alkaline media[J]. Chem. Commun., 2017, 53(71): 9862–9865.

[13]

Zhao S N, Li J K, Wang R, Cai J M, Zang S Q. Electronically and geometrically modified single-atom Fe sites by adjacent Fe nanoparticles for enhanced oxygen reduction[J]. Adv. Mater., 2022, 34(5): e2107291.

[14]

Schulenburg H, Stankov S, Schunemann V, Radnik J, Dorbandt I, Fiechter S, Bogdanoff P, Tributsch H. Catalysts for the oxygen reduction from heat-treated iron(Ⅲ) tetramethoxyphenylporphyrin chloride: structure and stability of active sites[J]. J. Phys. Chem. B, 2003, 107(34): 9034–9041.

[15]
Litster S, Wu G, Xu H. Advanced PGM-free cathode engineering for high power density and durability[C]//2021 US DOE Hydrogen and Fuel Cell Technologies Annual Review Meeting, Pittsburgh: Carnegie Mellon University, 2021.
[16]

Proietti E, Jaouen F, Lefevre M, Larouche N, Tian J, Herranz J, Dodelet J P. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells[J]. Nat. Commun., 2011, 2: 416.

[17]

Chen G B, An Y, Liu S W, Sun F F, Qi H Y, Wu H F, He Y H, Liu P, Shi R, Zhang J, Kuc A, Kaiser U, Zhang T R, Heine T, Wu G, Feng X L. Highly accessible and dense surface single metal FeN4 active sites for promoting the oxygen reduction reaction[J]. Energy Environ. Sci., 2022, 15(6): 2619–2628.

[18]

Guo J N, Li B J, Zhang Q Y, Liu Q T, Wang Z L, Zhao Y F, Shui J L, Xiang Z H. Highly accessible atomically dispersed Fe-Nx sites electrocatalyst for proton-exchange membrane fuel cell[J]. Adv. Sci., 2021, 8(5): 2002249.

[19]

Choi C H, Baldizzone C, Grote J P, Schuppert A K, Jaouen F, Mayrhofer K J J. Stability of fe-N-C catalysts in acidic medium studied by operando spectroscopy[J]. Angew. Chem. Int. Ed., 2015, 54(43): 12753–12757.

[20]

Du L, Prabhakaran V, Xie X H, Park S, Wang Y, Shao Y Y. Low-PGM and PGM-free catalysts for proton exchange membrane fuel cells: stability challenges and material solutions[J]. Adv. Mater., 2021, 33(6): e1908232.

[21]

Cheng W Z, Yuan P F, Lv Z R, Guo Y Y, Qiao Y Y, Xue X Y, Liu X, Bai W L, Wang K X, Xu Q, Zhang J N. Boosting defective carbon by anchoring well-defined atomically dispersed metal-N4 sites for ORR, OER, and Zn-air batteries[J]. Appl. Catal. B, 2020, 260.

[22]

Cheng W Z, Liang J L, Yin H B, Wang Y J, Yan W F, Zhang J N. Bifunctional iron-phtalocyanine metal-organic framework catalyst for ORR, OER and rechargeable zinc-air battery[J]. Rare Metals, 2020, 39(7): 815–823.

[23]

Guo Y Y, Yuan P F, Zhang J N, Hu Y F, Amiinu I S, Wang X, Zhou J G, Xia H C, Song Z B, Xu Q, Mu S C. Carbon nanosheets containing discrete Co-Nx-By-C active sites for efficient oxygen electrocatalysis and rechargeable Zn-air batteries[J]. ACS Nano, 2018, 12(2): 1894–1901.

[24]

Guo Y Y, Yuan P F, Zhang J A, Xia H C, Cheng F Y, Zhou M F, Li J, Qiao Y Y, Mu S C, Xu Q. Co2P-CoN double active centers confined in N-doped carbon nanotube: heterostructural engineering for trifunctional catalysis toward HER, ORR, OER, and Zn-air batteries driven water splitting[J]. Adv. Funct. Mater., 2018, 28(51): 1805641.

[25]

Qiao Y Y, Yuan P F, Hu Y F, Zhang J N, Mu S C, Zhou J H, Li H, Xia H C, He J, Xu Q. Sulfuration of an Fe-N-C catalyst containing FexC/Fe species to enhance the catalysis of oxygen reduction in acidic media and for use in flexible Zn-air batteries[J]. Adv. Mater., 2018, 30(46): e1804504.

[26]

Wang M, Zhang C T, Meng T, Pu Z H, Jin H H, He D P, Zhang J N, Mu S C. Iron oxide and phosphide encapsulated within N,P-doped microporous carbon nanofibers as advanced tri-functional electrocatalyst toward oxygen reduction/evolution and hydrogen evolution reactions and zinc-air batteries[J]. J. Power Sources, 2019, 413: 367–375.

[27]

Xue X Y, Yang H, Yang T, Yuan P F, Li Q, Mu S C, Zheng X L, Chi L F, Zhu J, Li Y G, Zhang J N, Xu Q. N,P-coordinated fullerene-like carbon nanostructures with dual active centers toward highly-efficient multi-functional electrocatalysis for CO2RR, ORR and Zn-air battery[J]. J. Mater. Chem. A, 2019, 7(25): 15271–15277.

[28]

Yang G G, Zhu J W, Yuan P F, Hu Y F, Qu G, Lu B A, Xue X Y, Yin H B, Cheng W Z, Cheng J Q, Xu W J, Li J, Hu J S, Mu S C, Zhang J N. Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity[J]. Nat. Commun., 2021, 12(1): 1734.

[29]

Yin H B, Yuan P F, Lu B A, Xia H C, Guo K, Yang G G, Qu G, Xue D P, Hu Y F, Cheng J Q, Mu S C, Zhang J N. Phosphorus-driven electron delocalization on edge-type FeN4 active sites for oxygen reduction in acid medium[J]. ACS Catal., 2021, 11(20): 12754–12762.

[30]

Zhu J W, Li W Q, Li S H, Zhang J, Zhou H, Zhang C T, Zhang J A, Mu S C. Defective N/S-codoped 3D cheese-like porous carbon nanomaterial toward efficient oxygen reduction and Zn-air batteries[J]. Small, 2018, 14(21): e1800563.

[31]

Qu X M, Han Y, Chen Y H, Lin J X, Li G, Yang J, Jiang Y X, Sun S G. Stepwise pyrolysis treatment as an efficient strategy to enhance the stability performance of Fe-Nx/C electrocatalyst towards oxygen reduction reaction and proton exchange membrane fuel cell[J]. Appl. Catal. B-Environ., 2021, 295: 120311.

[32]

Wang X X, Cullen D A, Pan Y T, Hwang S, Wang M Y, Feng Z X, Wang J Y, Engelhard M H, Zhang H G, He Y H, Shao Y Y, Su D, More K L, Spendelow J S, Wu G. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells[J]. Adv. Mater., 2018, 30(11): 1706758.

[33]

Lai Q X, Zheng L R, Liang Y Y, He J P, Zhao J X, Chen J H. Metal-organic-framework-derived Fe-N/C electrocatalyst with five-coordinated Fe-Nx Sites for advanced oxygen reduction in acid media[J]. ACS Catal., 2017, 7(3): 1655–1663.

[34]

Yu L, Deng D H, Bao X H. Chain mail for catalysts[J]. Angew. Chem. Int. Ed., 2020, 59(36): 15294–15297.

[35]

Yang G G, Zhu J W, Yuan P F, Hu Y F, Qu G, Lu B A, Xue X Y, Yin H B, Cheng W Z, Cheng J Q, Xu W J, Li J, Hu J S, Mu S C, Zhang J N. Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity[J]. Nat. Commun., 2021, 12(1): 1734.

[36]

Xie X H, He C, Li B Y, He Y H, Cullen D A, Wegener E C, Kropf A J, Martinez U, Cheng Y W, Engelhard M H, Bowden M E, Song M, Lemmon T, Li X S, Nie Z M, Liu J, Myers D J, Zelenay P, Wang G F, Wu G, Ramani V, Shao Y Y. Performance enhancement and degradation mechanism identification of a single-atom Co-N-C catalyst for proton exchange membrane fuel cells[J]. Nat. Catal., 2020, 3(12): 1044–1054.

[37]

Liu G, Li X G, Popov B N. Stability study of nitrogen-modified carbon composite catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells[J]. ECS Trans., 2009, 25(1): 1251–1259.

[38]

Liu G, Li X G, Ganesan P, Popov B N. Studies of oxygen reduction reaction active sites and stability of nitrogen-modified carbon composite catalysts for PEM fuel cells[J]. Electrochim. Acta, 2010, 55(8): 2853–2858.

[39]

Chenitz R, Kramm U I, Lefevre M, Glibin V, Zhang G X, Sun S H, Dodelet J P. A specific demetalation of Fe-N4 catalytic sites in the micropores of NC-Ar + NH3 is at the origin of the initial activity loss of the highly active Fe/N/C catalyst used for the reduction of oxygen in PEM fuel cells[J]. Energy Environ. Sci., 2018, 11(2): 365–382.

[40]

Prabhakaran V, Wang G X, Parrondo J, Ramani V. Contribution of electrocatalyst support to PEM oxidative degradation in an operating PEFC[J]. J. Electrochem. Soc., 2016, 163(14): F1611–F1617.

[41]

Zhao L, Zhu J B, Zheng Y, Xiao M L, Gao R, Zhang Z, Wen G B, Dou H Z, Deng Y P, Yu A P, Wang Z B, Chen Z W. Materials engineering toward durable electrocatalysts for proton exchange membrane fuel cells[J]. Adv. Energy Mater., 2021, 12(2): 2102665.

[42]

Wang X L, Yang C, Wang X G, Zhu H W, Cao L J, Chen A Y, Gu L, Zhang Q H, Zheng L R, Liang H P. Green synthesis of a highly efficient and stable single-atom iron catalyst anchored on nitrogen-doped carbon nanorods for the oxygen reduction reaction[J]. ACS Sustainable Chem. Eng., 2020, 9(1): 137–146.

[43]

Goellner V, Baldizzone C, Schuppert A, Sougrati M T, Mayrhofer K, Jaouen F. Degradation of Fe/N/C catalysts upon high polarization in acid medium[J]. Phys. Chem. Chem. Phys., 2014, 16(34): 18454–18462.

[44]

Choi C H, Baldizzone C, Polymeros G, Pizzutilo E, Kasian O, Schuppert A K, Sahraie N R, Sougrati M T, Mayrhofer K J J, Jaouen F. Minimizing operando demetallation of Fe-N-C electrocatalysts in acidic medium[J]. ACS Catal., 2016, 6(5): 3136–3146.

[45]

Chen Z, Jiang S, Kang G, Nguyen D, Schatz G C, Van duyne R P. Operando characterization of iron phthalocyanine deactivation during oxygen reduction reaction using electrochemical tip-enhanced Raman spectroscopy[J]. J. Am. Chem. Soc., 2019, 141(39): 15684–15692.

[46]

Snitkoff-sol R Z, Friedman A, Honig H C, Yurko Y, Kozhushner A, Zachman M J, Zelenay P, Bond A M, Elbaz L. Quantifying the electrochemical active site density of precious metal-free catalysts in situ in fuel cells[J]. Nat. Catal., 2022, 5(2): 163–170.

[47]

Wei X, Wang R Z, Zhao W, Chen G, Chai M R, Zhang L, Zhang J J. Recent research progress in PEM fuel cell electrocatalyst degradation and mitigation strategies[J]. EnergyChem, 2021, 3(5): 100061.

[48]

He Y H, Wu G. PGM-Free oxygen-reduction catalyst development for proton-exchange membrane fuel cells: Challenges, solutions, and promises[J]. Acc. Mater. Res., 2022, 3(2): 224–236.

[49]

Choi C H, Lim H K, Chung M W, Chon G, Sahraie N R, Altin A, Sougrati M T, Stievano L, Oh H S, Park E S, Luo F, Strasser P, Drazic G, Mayrhofer K J J, Kim H, Jaouen F. The Achilles’ heel of iron-based catalysts during oxygen reduction in an acidic medium[J]. Energy Environ. Sci., 2018, 11(11): 3176–3182.

[50]

Herranz J, Jaouen F, Lefevre M, Kramm U I, Proietti E, Dodelet J P, Bogdanoff P, Fiechter S, Abs-wurmbach I, Bertrand P, Arruda T M, Mukerjee S. Unveiling N-protonation and anion-binding effects on Fe/N/C-catalysts for O2 reduction in PEM fuel cells[J]. J. Phys. Chem. C, 2011, 115(32): 16087–16097.

[51]

Lefèvre M, Dodelet J P. Fe-based catalysts for the reduction of oxygen in polymer electrolyte membrane fuel cell conditions: Determination of the amount of peroxide released during electroreduction and its influence on the stability of the catalysts[J]. Electrochim. Acta, 2003, 48(19): 2749–2760.

[52]

Preger Y, Gerken J B, Biswas S, Anson C W, Johnson M R, Root T W, Stahl S S. Quinone-mediated electrochemical O2 reduction accessing high power density with an off-electrode Co-N/C Catalyst[J]. Joule, 2018, 2(12): 2722–2731.

[53]

Zhang P Y, Wang Y C, You Y Z, Yuan J Y, Zhou Z Y, Sun S G. Generation pathway of hydroxyl radical in Fe/N/C-based oxygen reduction electrocatalysts under acidic media[J]. J. Phys. Chem. Lett., 2021, 12(32): 7797–7803.

[54]

Gubler L, Dockheer S M, Koppenol W H. Radical (HO, H and HOO) formation and ionomer degradation in polymer electrolyte fuel cells[J]. J. Electrochem. Soc., 2011, 158(7): B755–B769.

[55]

Li J K, Sougrati M T, Zitolo A, Ablett J M, Oguz I C, Mineva T, Matanovic I, Atanassov P, Huang Y, Zenyuk I, Di cicco A, Kumar K, Dubau L, Maillard F, Drazic G, Jaouen F. Identification of durable and non-durable FeNx sites in Fe-N-C materials for proton exchange membrane fuel cells[J]. Nat. Catal., 2020, 4(1): 10–19.

[56]

Wang X X, Swihart M T, Wu G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation[J]. Nat. Catal., 2019, 2(7): 578-589.

[57]

Mamtani K, Jain D, Zemlyanov D, Celik G, Luthman J, Renkes G, Co A C, Ozkan U S. Probing the oxygen reduction reaction active sites over nitrogen-doped carbon nanostructures (CNx) in acidic media using phosphate anion[J]. ACS Catal., 2016, 6(10): 7249–7259.

[58]

Rauf M, Zhao Y D, Wang Y C, Zheng Y P, Chen C, Yang X D, Zhou Z Y, Sun S G. Insight into the different ORR catalytic activity of Fe/N/C between acidic and alkaline media: Protonation of pyridinic nitrogen[J]. Electrochem. Commun., 2016, 73: 71–74.

[59]

Yang N, Peng L L, Li L, Li J, Liao Q, Shao M H, Wei Z D. Theoretically probing the possible degradation mechanisms of an FeNC catalyst during the oxygen reduction reaction[J]. Chem. Sci., 2021, 12(37): 12476–12484.

[60]

Zhang G X, Chenitz R, Lefèvre M, Sun S H, Dodelet J P. Is iron involved in the lack of stability of Fe/N/C electrocatalysts used to reduce oxygen at the cathode of PEM fuel cells?[J]. Nano Energy, 2016, 29: 111–125.

[61]

Choi J Y, Yang L J, Kishimoto T, Fu X G, Ye S Y, Chen Z W, Banham D. Is the rapid initial performance loss of Fe/N/C non precious metal catalysts due to micropore flooding?[J]. Energy Environ. Sci., 2017, 10(1): 296–305.

[62]

Chenitz R, Kramm U I, Lefevre M, Glibin V, Zhang G X, Sun S H, Dodelet J P. A specific demetalation of Fe-N4 catalytic sites in the micropores of NC-Ar + NH3 is at the origin of the initial activity loss of the highly active Fe/N/C catalyst used for the reduction of oxygen in PEM fuel cells[J]. Energy Environ. Sci., 2018, 11(2): 365–382.

[63]

Mustain W E, Chatenet M, Page M, Kim Y S. Durability challenges of anion exchange membrane fuel cells[J]. Energy Environ. Sci., 2020, 13(9): 2805–2838.

[64]

Deng D H, Yu L, Chen X Q, Wang G X, Jin L, Pan X L, Deng J, Sun G Q, Bao X H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2013, 52(1): 371–375.

[65]

Bhosale A C, Rengaswamy R. Interfacial contact resistance in polymer electrolyte membrane fuel cells: Recent developments and challenges[J]. Renew. Sust. Energ. Rev., 2019, 115: 109351.

[66]

Banham D, Kishimoto T, Sato T, Kobayashi Y, Narizuka K, Ozaki J I, Zhou Y, Marquez E, Bai K, Ye S. New insights into non-precious metal catalyst layer designs for proton exchange membrane fuel cells: Improving performance and stability[J]. J. Power Sources, 2017, 344: 39–45.

[67]

Kumar K, Dubau L, Mermoux M, Li J K, Zitolo A, Nelayah J, Jaouen F, Maillard F. On the influence of oxygen on the degradation of Fe-N-C catalysts[J]. Angew. Chem. Int. Ed., 2020, 59(8): 3235–3243.

[68]

Miao Z P, Wang X M, Zhao Z L, Zuo W B, Chen S Q, Li Z Q, He Y H, Liang J S, Ma F, Wang H L, Lu G, Huang Y H, Wu G, Li Q. Improving the stability of non-noble-metal M-N-C catalysts for proton-exchange-membrane fuel cells through M–N bond length and coordination regulation[J]. Adv. Mater., 2021, 33(39): e2006613.

[69]

Chen Y C, Matanovic I, Weiler E, Atanassov P, Artyushkova K. Mechanism of oxygen reduction reaction on transition metal-nitrogen-carbon catalysts: Establishing the role of nitrogen-containing active sites[J]. ACS Appl. Energy Mater., 2018, 1(11): 5948–5953.

[70]

Zhang G X, Yang X H, Dubois M, Herraiz M, Chenitz R, Lefevre M, Cherif M, Vidal F, Glibin V P, Sun S H, Dodelet J P. Non-PGM electrocatalysts for PEM fuel cells: Effect of fluorination on the activity and stability of a highly active NC-Ar + NH3 catalyst[J]. Energy Environ. Sci., 2019, 12(10): 3015–3037.

[71]

Chang J F, Wang G Z, Wang M Y, Wang Q, Li B Y, Zhou H, Zhu Y M, Zhang W, Omer M, Orlovskaya N, Ma Q, Gu M, Feng Z X, Wang G F, Yang Y. Improving Pd-N-C fuel cell electrocatalysts through fluorination-driven rearrangements of local coordination environment[J]. Nat. Energy, 2021, 6(12): 1144–1153.

[72]

Gupta S, Zhao S, Wang X X, Hwang S, Karakalos S, Devaguptapu S V, Mukherjee S, Su D, Xu H, Wu G. Quaternary FeCoNiMn-based nanocarbon electrocatalysts for bifunctional oxygen reduction and evolution: promotional role of Mn doping in stabilizing carbon[J]. ACS Catal., 2017, 7(12): 8386–8393.

[73]

Luo E G, Zhang H, Wang X, Gao L Q, Gong L Y, Zhao T, Jin Z, Ge J J, Jiang Z, Liu C P, Xing W. Single-atom Cr-N4 sites designed for durable oxygen reduction catalysis in acid media[J]. Angew. Chem. Int. Ed., 2019, 58(36): 12469–12475.

[74]

Luo F, Roy A R, Silvioli L, Cullen D A, Zitolo A, Sougrati M T, Oguz I C, Mineva T, Teschner D, Wagner S, Wen J, Dionigi F, Kramm U I, Rossmeisl J, Jaouen F, Strasser P. P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction[J]. Nat. Mater., 2020, 19(11): 1215–1223.

[75]

Wang T Z, Cao X J, Qin H Y, Shang L, Zheng S Y, Fang F, Jiao L F. P-block atomically dispersed antimony catalyst for highly efficient oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2021, 60(39): 21237–21241.

[76]

Hu H, Wang J J, Cui B F, Zheng X R, Lin J G, Deng Y D, Han X P. Atomically dispersed selenium sites on nitrogen-doped carbon for efficient electrocatalytic oxygen reduction[J]. Angew. Chem. Int. Ed., 2022, 61(3): e202114441.

[77]

Zhu J W, Mu S C. Active site engineering of atomically dispersed transition metal-heteroatom-carbon catalysts for oxygen reduction[J]. Chem. Commun.,2021, 57(64): 7869–7881.

[78]

Jin H H, Zhu J W, Yu R H, Li W Q, Ji P X, Liang L H, Liu B S, Hu C X, He D P, Mu S C. Tuning the Fe-N4 sites by introducing Bi–O bonds in a Fe-N-C system for promoting the oxygen reduction reaction[J]. J. Mater. Chem. A, 2022, 10(2): 664–671.

[79]

Ma L G, Li J L, Zhang Z W, Yang H, Mu X Q, Gu X Y, Jin H H, Chen D, Yan S L, Liu S L, Mu S C. Atomically dispersed dual Fe centers on nitrogen-doped bamboo-like carbon nanotubes for efficient oxygen reduction[J]. Nano Res.,2021, 15(3): 1966–1972.

[80]

Zhang J, Zhang J J, He F, Chen Y J, Zhu J W, Wang D L, Mu S C, Yang H Y. Defect and doping Co-engineered non-metal nanocarbon ORR electrocatalyst[J]. Nano-Micro Lett.,2021, 13(1): 65.

Journal of Electrochemistry
Article number: 2215002
Cite this article:
Li Y, Chen M-Y, Lu B-A, et al. Recent Advances in Exploring Highly Active & Durable PGM-Free Oxygen Reduction Catalysts. Journal of Electrochemistry, 2023, 29(1): 2215002. https://doi.org/10.13208/j.electrochem.2215002

431

Views

18

Downloads

0

Crossref

7

Scopus

0

CSCD

Altmetrics

Received: 30 May 2022
Revised: 13 June 2022
Accepted: 21 June 2022
Published: 05 July 2022
© 2023 Xiamen University and Chinese Chemical Society.

This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Return