AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Highly Dispersed Pt Nanoparticles Root in Single-Atom Fe Sites in LDHs toward Efficient Methanol Oxidation

Qing-Cheng Menga,#Lin-Bo Jina,#Meng-Ze MaaXue-Qing GaobAi-Bing Chenb( )Dao-Jin Zhoua( )Xiao-Ming Suna( )
State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China

#These authors contribute equally to this work.

Show Author Information

Graphical Abstract

Abstract

Active and durable electrocatalysts for methanol oxidation reaction are of critical importance to the commercial viability of direct methanol fuel cell, which has already attracted growing popularities. However, current methanol oxidation electrocatalysts fall far short of expectations and suffer from excessive use of noble metal, mediocre activity, and rapid decay. Here we report the Pt anchored on NiFe-LDHs surface hybrid for stable methanol oxidation in alkaline media. Based on the high intrinsic methanol oxidation activity of Pt nanoparticles, the substrates NiFe-LDHs further enhanced anti-poisoning ability and maintained unaffected stability after 200,000 s cycle test compared to commercial Pt/C catalyst. The use of NiFe-LDHs is believed to play the decisive role to evenly disperse Pt nanoparticles on their surface using single atomic dispersed Fe as anchoring sites, making full use of abundant OH groups and subsequent facilitating the oxidative removal of carbonaceous poison on neighboring Pt sites. This work highlights the specialty of NiFe-LDHs in improving the overall efficiency of methanol oxidation reaction.

Electronic Supplementary Material

Download File(s)
dhx-29-2-2215007_EMS.pdf (2 MB)

References

[1]

Shao M F, Ning F Y, Zhao J W, Wei M, Evans D G, Duan X. Hierarchical layered double hydroxide microspheres with largely enhanced performance for ethanol electrooxidation[J]. Adv. Funct. Mater., 2013, 23(28): 3513–3518.

[2]

Xu C W, Wang H, Shen P K, Jiang S P. Highly ordered Pd nanowire arrays as effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells[J]. Adv. Mater., 2007, 19(23): 4256–4259.

[3]

Arico A S, Srinivasan S, Antonucci V. DMFCs: From fundamental aspects to technology development[J]. Fuel Cells, 2001, 1(2): 133–161.

[4]

Zhao X, Yin M, Ma L, Liang L, Liu C P, Liao J H, Lu T H, Xing W. Recent advances in catalysts for direct methanol fuel cells[J]. Energy Environ. Sci., 2011, 4(8): 2736–2753.

[5]

Wasmus S, Küver A. Methanol oxidation and direct methanol fuel cells: A selective review[J]. J. Electroanal. Chem., 1999, 461(1–2): 14–31.

[6]

Yang C C, Chiu S J, Chien W C. Development of alkaline direct methanol fuel cells based on crosslinked PVA polymer membranes[J]. J. Power Sources., 2006, 162(1): 21–29.

[7]

Li Z H, Shao M F, An H L, Wang Z X, Xu S M, Wei M, Evans D G, Duan X. Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions[J]. Chem. Sci., 2015, 6(11): 6624–6631.

[8]

Yu E H, Scott K, Reeve R W. A study of the anodic oxidation of methanol on Pt in alkaline solutions[J]. J. Electroanal. Chem., 2003, 547(1): 17–24.

[9]

Qi L, Yin Y, Shi W Y, Liu J G, Xing D M, Liu F Q, Hou Z J, Gu J, Ming P W, Zou Z G. Intermittent microwave synthesis of nanostructured Pt/TiN-graphene with high catalytic activity for methanol oxidation[J]. Int. J. Hydrog. Energy., 2014, 39(28): 16036–16042.

[10]

Yang J, Hübner R, Zhang J W, Wan H, Zheng Y Y, Wang H L, Qi H Y, He L Q, Li Y, Dubale A A, Sun Y J, Liu Y T, Peng D L, Meng Y Z, Zheng Z K, Rossmeisl J, Liu W. A robust PtNi nano frame/N-doped graphene aerogel electrocatalyst with both high activity and stability[J]. Angew. Chem., Int. Ed., 2021, 60(17): 9590–9597.

[11]

Huang W J, Wang H T, Zhou J G, Wang J, Duchesne P N, Muir D, Zhang P, Han N, Zhao F P, Zeng M, Zhong J, Jin C H, Li Y G, Lee S T, Dai H J. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene[J]. Nat. Commun., 2015, 6: 10035.

[12]

Reddington E, Sapienza A, Gurau B, Viswanathan R, Sarangapani S, Smotkin E S, Mallouk T E. Combinatorial electrochemistry: A highly parallel, optical screening method for discovery of better electrocatalysts[J]. Science, 1998, 280(5370): 1735–1737.

[13]

Tso C P, Zhung C M, Shih Y H, Tseng Y M, Wu S C, Doong R A. Stability of metal oxide nanoparticles in aqueous solutions[J]. Water Sci. Technol., 2010, 61(1): 127–133.

[14]

Li L, Hu L P, Li J, Wei Z D. Enhanced stability of Pt nanoparticle electrocatalysts for fuel cells[J]. Nano Res., 2015, 8(2): 418–440.

[15]

Kakati N, Maiti J, Lee S H, Jee S H, Viswanathan B, Yoon Y S. Anode catalysts for direct methanol fuel cells in acidic media: Do we have any alternative for Pt or Pt-Ru?[J]. Chem. Rev., 2014, 114(24): 12397–12429.

[16]

Xiong L K, Sun Z T, Zhang X, Zhao L, Huang P, Chen X W, Jin H D, Sun H, Lian Y B, Deng Z, Rümmerli M H, Yin W J, Zhang D, Wang S, Peng Y. Octahedral gold-silver nanoframes with rich crystalline defects for efficient methanol oxidation manifesting a co-promoting effect[J]. Nat. Commun., 2019, 10: 3782.

[17]

Zhang Z Q, Liu J P, Wang J, Wang Q, Wang Y H, Wang K, Wang Z, Gu M, Tang Z H, Lim J, Zhao T S, Ciucci F. Single-atom catalyst for high-performance methanol oxidation[J]. Nat. Commun., 2021, 12(1): 5235.

[18]

Teng X A, Shan A X, Zhu Y C, Wang R M, Lau W M. Promoting methanol-oxidation-reaction by loading PtNi nano-catalysts on natural graphitic-nano-carbon[J]. Electrochim. Acta, 2020, 353: 136542.

[19]

Meng Y, Wang H L, Dai Y H, Zheng J W, Yu H, Zhou C M, Yang Y H. Modulating the electronic property of Pt nanocatalyst on rGo by iron oxides for aerobic oxidation of glycerol[J]. Catal. Commun., 2020, 144: 106073.

[20]

Chen A C, Holt-hindle P. Platinum-based nanostructured materials: Synthesis, properties, and applications[J]. Chem. Rev., 2010, 110(6): 3767–3804.

[21]

Guo C X, Zhang L Y, Miao J W, Zhang J T, Li C M. DNA-functionalized graphene to guide growth of highly active Pd nanocrystals as efficient electrocatalyst for direct formic acid fuel cells[J]. Adv. Energy Mater., 2013, 3(2): 167–171.

[22]

Wang Z H, Xie W F, Zhang F F, Xia J F, Gong S D, Xia Y Z. Facile synthesis of PtPdPt nanocatalysts for methanol oxidation in alkaline solution[J]. Electrochim. Acta, 2016, 192: 400–406.

[23]

Li Y J, Sun Y J, Qin Y N, Zhang W Y, Wang L, Luo M C, Yang H, Guo S J. Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials[J]. Adv. Energy Mater., 2020, 10(11): 1903120.

[24]

Yuan X L, Jiang B, Cao M H, Zhang C Y, Liu X Z, Zhang Q H, Lyu F L, Gu L, Zhang Q. Porous Pt nanoframes decorated with Bi(OH)3 as highly efficient and stable electrocatalyst for ethanol oxidation reaction[J]. Nano Res., 2020, 13(1): 265–272.

[25]

Zhang K F, Wang H F, Qiu J, Wu J A, Wang H J, Shao J W, Deng Y Q, Yan L F. Multi-dimensional Pt/Ni(OH)2/nitrogen-doped graphene nanocomposites with low platinum content for methanol oxidation reaction with highly catalytic performance[J]. Chem. Eng. J., 2021, 421: 127786.

[26]

Sideris P J, Nielsen U G, Gan Z H, Grey C P. Mg/Al ordering in layered double hydroxides revealed by multinuclear NMR spectroscopy[J]. Science, 2008, 321(5885): 113–117.

[27]

Zhou D J, Li P S, Lin X, McKinley A, Kuang Y, Liu W, Lin W F, Sun X M, Duan X. Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: Identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly[J]. Chem. Soc. Rev., 2021, 50(15): 8790–8817.

[28]

Zhou D J, Wang S Y, Jia Y, Xiong X Y, Yang H B, Liu S, Tang J L, Zhang J M, Liu D, Zheng L R, Kuang Y, Sun X M, Liu B. NiFe hydroxide lattice tensile strain: Enhancement of adsorption of oxygenated intermediates for efficient water oxidation catalysis[J]. Angew. Chem. Int. Ed., 2019, 58(3): 736–740.

[29]

Li P S, Wang M Y, Duan X X, Zheng L R, Cheng X P, Zhang Y F, Kuang Y, Li Y P, Ma Q, Feng Z X, Liu W, Sun X M. Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides[J]. Nat. Commun., 2019, 10: 1711.

[30]

Zhou D J, Xiong X Y, Cai Z, Han N N, Jia Y, Xie Q XD, Duan X X, Xie T H, Zheng X L, Sun X M, Duan X. Flame-engraved nickel-iron layered double hydroxide nanosheets for boosting oxygen evolution reactivity[J]. Small Methods, 2018, 2(7): 1800083.

[31]

Feng H P, Yu J F, Tang L, Wang J J, Dong H R, Ni T, Tang J, Tang W W, Zhu X, Liang C. Improved hydrogen evolution activity of layered double hydroxide by optimizing the electronic structure[J]. Appl. Catal. B., 2021, 297: 120478.

[32]

Han Y C, Li P F, Liu J, Wu S L, Ye Y X, Tian Z F, Liang C H. Strong Fe3+-O(h)-Pt interfacial interaction induced excellent stability of Pt/NiFe-LDH/rGO electrocatalysts[J]. Sci. Rep., 2018, 8: 1359.

[33]

Zhang J F, Liu J Y, Xi L F, Yu Y F, Chen N, Sun S H, Wang W C, Lange K M, Zhang B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction[J]. J. Am. Chem. Soc., 2018, 140(11): 3876–3879.

[34]

Zhu H Y, Gu C D, Ge X, Tu J P. Targeted growth of Pt on 2D atomic layers of Ni-Al hydroxide: Assembly of the Pt/exfoliated Ni-Al hydroxide sheet/graphene composite as electrocatalysts for methanol oxidation reactions[J]. Electrochim. Acta, 2016, 222: 938–945.

[35]

Ishikawa Y, Liao M S, Cabrera C R. Energetics of H2O dissociation and COads+OHads reaction on a series of Pt-M mixed metal clusters: A relativistic density-functional study[J]. Surf Sci., 2002, 513(1): 98–110.

[36]

Fan G L, Li F, Evans D G, Duan X. Catalytic applications of layered double hydroxides: Recent advances and perspectives[J]. Chem. Soc. Rev., 2014, 43(20): 7040–7066.

[37]

Li P S, Duan X X, Kuang Y, Li Y P, Zhang G X, Liu W, Sun X M. Tuning electronic structure of NiFe layered double hydroxides with vanadium doping toward high efficient electrocatalytic water oxidation[J]. Adv. Energy Mater., 2018, 8(15): 1703341.

[38]

Xie F, Ma L, Gan M Y, He H M, Hu L Q, Jiang M H, Zhang H H. One-pot construction of the carbon spheres embellished by layered double hydroxide with abundant hydroxyl groups for Pt-based catalyst support in methanol electrooxidation[J]. J. Power Sources, 2019, 420: 73–81.

[39]

Lin Y H, Cui X L, Yen C, Wai C M. Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells[J]. J. Phys. Chem. B., 2005, 109(30): 14410–14415

[40]

Tao L, Shi Y L, Huang Y C, Chen R, Zhang Y Q, Huo J, Zou Y Q, Yu G, Luo J, Dong C L, Wang S Y. Interface engineering of Pt and CeO2 nanorods with unique interaction for methanol oxidation[J]. Nano Energy, 2018, 53: 604–612.

[41]

Huang L, Zhang X P, Wang Q Q, Han Y J, Fang Y X, Dong S J. Shape-control of Pt-Ru nanocrystals: Tuning surface structure for enhanced electrocatalytic methanol oxidation[J]. J. Am. Chem. Soc., 2018, 140(3): 1142–1147.

[42]

Tian H, Yu Y H, Wang Q, Li J, Rao P, Li R S, Du Y L, Jia C M, Luo J M, Deng P L, Shen Y J, Tian X L. Recent advances in two-dimensional Pt based electrocatalysts for methanol oxidation reaction[J]. Int. J. Hydrog. Energy, 2021, 46(61): 31202–31215.

[43]

Bai G L, Liu C, Gao Z, Lu B Y, Tong X L, Guo X Y, Yang N J. Atomic carbon layers supported Pt nanoparticles for minimized CO poisoning and maximized methanol oxidation[J]. Small, 2019, 15(38): 1902951.

[44]

Zhou D J, Cai Z, Bi Y M, Tian W L, Luo M, Zhang Q, Xie Q X, Wang J D, Li Y P, Kuang Y, Duan X, Bajdich M, Siahrostami S, Sun X M. Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets[J]. Nano Res., 2018, 11(3): 1358–1368.

[45]

Cai Z, Zhou D J, Wang M Y, Bak S M, Wu Y S, Wu Z S, Tian Y, Xiong X Y, Li Y P, Liu W, Siahrostami S, Kuang Y, Yang X Q, Duan H H, Feng Z X, Wang H L, Sun X M. Introducing Fe2+ into nickel-iron layered double hydroxide: Local structure modulated water oxidation activity[J]. Angew. Chem., Int. Ed., 2018, 57(30): 9392–9396.

[46]

van Drunen J, Pilapil B K, Makonnen Y, Beauchemin D, Gates B D, Jerkiewicz G. Electrochemically active nickel foams as support materials for nanoscopic platinum electrocatalysts[J]. ACS Appl. Mater. Inter., 2014, 6(15): 12046–12061.

Journal of Electrochemistry
Article number: 2215007
Cite this article:
Meng Q-C, Jin L-B, Ma M-Z, et al. Highly Dispersed Pt Nanoparticles Root in Single-Atom Fe Sites in LDHs toward Efficient Methanol Oxidation. Journal of Electrochemistry , 2023, 29(2): 2215007. https://doi.org/10.13208/j.electrochem.2215007

185

Views

6

Downloads

0

Crossref

4

Scopus

0

CSCD

Altmetrics

Received: 28 June 2022
Revised: 19 July 2022
Accepted: 20 September 2022
Published: 26 September 2022
© 2023 Xiamen University and Chinese Chemical Society.

This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Return