AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

CoNi-based Bimetal-organic Framework Derived Carbon Composites Multifunctionally Modified Separators for Lithium-Sulfur Batteries

Yan-Jie Wanga,#Hong-Yu Chenga,#Ji-Yue HouaWen-Hao YangRong-Wei HuangaZhi-Cong NiaZi-Yi ZhuaYing Wanga,bKe-Yi WeicYi-Yong Zhanga( )Xue Lia( )
National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
College of Intelligent Manufacture, PanZhihua University, Panzhihua 617000, China
Yunnan ZhongYan Industry Co., Ltd. Technology Center, Kunming 650231, China

#These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The commercial application of lithium-sulfur batteries (LSB) is still limited by the irreversible capacity fading caused by the shuttle of lithium polysulfides (LIPS). To address this issue, a bimetal (nickel, cobalt)-organic framework (MOF) derived carbon, (Ni, Co)/C, was prepared to modify the separator. The multifunctionally modified separator effectively captures LIPS, ensuring the stability and reversibility of sulfur fixation, while providing catalytic activity and improving ionic conductivity. The cobalt metal has a larger coordination number, more pore structure distribution, larger specific surface area, more surface C=O, and smaller particle size to achieve a large and rapid chemical sulfur fixation. The high conductivity provided by nickel, and the catalytic activity and the ability to block LIPS shuttling enabled the reversibility of sulfur inhibition. The synergistic effect of cobalt-nickel bimetals significantly improves the cycling stability and rate capability of LSB. At a current density of 1 C, the capacity of the (Ni, Co)/C modified separator battery could reach 1035.6 mAh·g–1 in the first cycle, the capacity remained at 662.2 mAh·g–1 after 500 cycles, and the capacity retention rate was 63.9%.

Electronic Supplementary Material

Download File(s)
dhx-29-3-2217002_ESM.pdf (694 KB)

References

[1]

Wei Z Z, Zhang N X, Wu F, Chen R J. Progress and prospects on multifunctional coating separators for lithium-sulfur battery[J]. J. Electrochem., 2020, 26(5): 716-730.

[2]

Lin J X, Qu X M, Wu X H, Peng J, Zhou S Y, Li J T, Zhou Y, Mo Y X, Ding M J, Huang L, Sun S G. NiCo2O4/CNF separator modifiers for trapping and catalyzing polysulfides for high-performance lithium-sulfur batteries with high sulfur loadings and lean electrolytes[J]. ACS Sustainable Chem. Eng., 2021, 9(4): 1804-1813.

[3]

Wu F, Ye Y S, Chen R J, Qian J, Zhao T, Li L, Li W H. Systematic effect for an ultralong cycle lithium-sulfur battery[J]. Nano Lett., 2015, 15(11): 7431-7439.

[4]

Wu F, Qian J, Chen R J, Ye Y S, Sun Z G, Xing Y, Li L. Light-weight functional layer on a separator as a polysulfide immobilizer to enhance cycling stability for lithium-sulfur batteries[J]. J. Mater. Chem., 2016, 4(43): 17033-17041.

[5]

Ye Z Q, Jiang Y, Feng T, Wang Z H, Li L, Wu F, Chen R J. Curbing polysulfide shuttling by synergistic engineering layer composed of supported Sn4P3 nanodots electrocatalyst in lithium-sulfur batteries[J]. Nano Energy, 2020, 70: 104532.

[6]

Wei L, Li W L, Zhao T, Zhang N X, Li L, Wu F, Chen R J. Cobalt nanoparticles shielded in N-doped carbon nanotubes for high areal capacity Li-S batteries[J]. Chem. Commun., 2020, 56(20): 3007–3010.

[7]

Yao W Q, Tian C X, Yang C, Xu J, Meng Y F, Manke I, Chen N, Wu Z L, Zhan L, Wang Y L, Chen R J. P-doped NiTe2 with Te-vacancies in lithium-sulfur batteries prevents shuttling and promotes polysulfide conversion[J]. Adv. Mater., 2022, 34(11): 2106370.

[8]

Li Z, Zhang F, Cao T, Tang L B, Xu Q J, Liu H M, Wang Y G. Highly stable lithium-sulfur batteries achieved by a SnS/porous carbon nanosheet architecture modified celgard separator[J]. Adv. Funct. Mater., 2020, 30(48): 2006297.

[9]

Zuo Y Z, Zhu Y J, Tang X S, Zhao M, Ren P J, Su W M, Tang Y F, Chen Y F. MnO2 supported on acrylic cloth as functional separator for high-performance lithium-sulfur batteries[J]. J. Power Sources, 2020, 464: 228181.

[10]

Kim S, Lim W G, Cho A, Jeong J, Jo C, Kang D G, Han S M, Han J W, Lee J. Simultaneous suppression of shuttle effect and Li dendrite growth by light-weight bifunctional separator for Li-S batteries[J]. ACS Appl. Energy Mater., 2020, 3(3): 2643–2652.

[11]

Li W L, Qian J, Zhao T, Ye Y S, Xing Y, Huang Y X, Wei L, Zhang N X, Chen N, Li L, Wu F, Chen R J. Boosting high-rate Li-S Batteries by an MOF-derived catalytic electrode with a layer-by-layer structure[J]. Adv. Sci., 2019, 6(16): 1802362.

[12]

Ye Z Q, Jiang Y, Li L, Wu F, Chen R J. Enhanced catalytic conversion of polysulfide using 1D CoTe and 2D MXene for heat-resistant and lean-electrolyte Li-S batteries[J]. Chem. Eng. J., 2022, 430: 132734.

[13]

Liu Y T, Liu S, Li G R, Gao X P. Strategy of enhancing the volumetric energy density for lithium-sulfur batteries[J]. Adv. Mater., 2021, 8(33): 2003955.

[14]

Mikhaylik Y V, Akridge J R. Polysulfide shuttle study in the Li/S battery system[J]. J. Electrochem. Soc., 2004, 151(11): A1969-A1976.

[15]

Xuan W M, Zhu C F, Liu Y, Cui Y. Mesoporous metal-organic framework materials[J]. Chem. Soc. Rev., 2012, 41(5): 1677-1695.

[16]

Zheng J M, Tian J, Wu D X, Gu M, Xu W, Wang C M, Gao F, Engelhard M H, Zhang J G, Liu J, Xiao J. Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries[J]. Nano Lett., 2014, 14(5): 2345-2352.

[17]

Sun L, Campbell M G, Dinca M. Electrically conductive porous metal-organic frameworks[J]. Angew. Chem., Int. Ed., 2016, 55(11): 3566-3579.

[18]

Zang Y, Pei F, Huang J H, Fu Z H, Xu G, Fang X L. Large-area preparation of crack‐free crystalline microporous conductive membrane to upgrade high energy lithium-sulfur batteries[J]. Adv. Energy Mater., 2018, 8(31): 1802052.

[19]

Qi C, Xu L, Wang J, Li H L, Zhao C C, Wang L N, Liu T X. Titanium-containing metal-organic framework modified separator for advanced lithium-sulfur batteries[J]. ACS Sustain. Chem. Eng., 2020, 8(34): 12968-12975.

[20]

Li W L, Ye Y S, Qian J, Xing Y, Qu W, Zhang N X, Li L, Wu F, Chen R J. Oxygenated nitrogen‐doped microporous nanocarbon as a permselective interlayer for ultrastable lithium‐sulfur batteries[J]. ChemElectroChem, 2019, 6(4): 1094–1100.

[21]

Zhang Z, Wang J N, Shao A H, Xiong D G, Liu J W, Lao C Y, Xi K, Lu S Y, Jiang Q, Yu J, Li H L, Yang Z Y, Kumar R V. Recyclable cobalt-molybdenum bimetallic carbide modified separator boosts the polysulfide adsorption-catalysis of lithium sulfur battery[J]. Sci. China Mater., 2020, 63(12): 2443–2455.

[22]

Bauer I, Thieme S, Brueckner J, Althues H, Kaskel S. Reduced polysulfide shuttle in lithium-sulfur batteries using Nation-based separators[J]. J. Power Sources, 2014, 251: 417-422.

[23]

Zhou J W, Li R, Fan X X, Chen Y F, Han R D, Li W, Zheng J, Wang B, Li X G. Rational design of a metal-organic framework host for sulfur storage in fast, long-cycle Li-S batteries[J]. Energy Environ. Sci., 2014, 7(8): 2715-2724.

[24]

Xu Y X, Zheng S S, Tang H F, Guo X T, Xue H G, Pang H. Prussian blue and its derivatives as electrode materials for electrochemical energy storage[J]. Energy Storage Mater., 2017, 9: 11-30.

[25]

Wu X, Fan L S, Qiu Y, Wang M X, Cheng J H, Guan B, Guo Z K, Zhang N Q, Sun K N. Ion-selective prussian-blue-modified celgard separator for high-performance lithium-sulfur battery[J]. ChemSusChem, 2018, 11(18): 3345-3351.

Journal of Electrochemistry
Article number: 2217002
Cite this article:
Wang Y-J, Cheng H-Y, Hou J-Y, et al. CoNi-based Bimetal-organic Framework Derived Carbon Composites Multifunctionally Modified Separators for Lithium-Sulfur Batteries. Journal of Electrochemistry , 2023, 29(3): 2217002. https://doi.org/10.13208/j.electrochem.2217002

309

Views

13

Downloads

0

Crossref

1

Scopus

0

CSCD

Altmetrics

Received: 20 July 2022
Revised: 01 August 2022
Accepted: 25 October 2022
Published: 31 October 2022
© 2023 Xiamen University and Chinese Chemical Society.

This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Return