AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Recent Advances of Functional Electrolyte Additives for Lithium-Sulfur Batteries

Xiu-Qing ZhangShuai Tang( )Yong-Zhu Fu( )
College of Chemistry, Zhengzhou University, Zhengzhou, PR China
Show Author Information

Graphical Abstract

Abstract

Lithium-sulfur (Li-S) batteries have become one of the most promising next-generation battery systems due to their high energy density and low cost. However, the application of Li-S batteries still faces critical challenges, such as the low conductivities of S and Li2S, shuttle effect of polysulfides and dendrite growth of Li, etc. The optimization of the electrolyte can ameliorate the electrolyte|electrode interphase, conveniently regulating the parasitic reaction and improving the performance of the resultant batteries. The functional additives in electrolytes provide chances to tune the interphase and even the redox mechanism to improve the performance of the batteries. In this review, we systematically summarize the latest progresses of additives for Li-S batteries. The additives are classified according to the category that lies on the protection of Li metal anode or the stabilization of S cathode. The functions of additives on the S cathode such as the inhibitions of dissolution and shuttle of the polysulfides, the redox mediators, and the activation of Lii2S deposits are discussed in detail. Finally, the prospects of additives for Li-S batteries are supplied in brief. We hope that the review can provide a guidance in the design of electrolyte for high-performance Li-S batteries.

References

[1]

Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303.

[2]

Goodenough J B, Park K S. The Li-ion rechargeable battery: A perspective[J]. J. Am. Chem. Soc., 2013, 135(4): 1167-1176.

[3]

Lin D C, Liu Y Y, Cui Y. Reviving the lithium metal anode for high-energy batteries[J]. Nat. Nanotechnol., 2017, 12(3): 194-206.

[4]

Manthiram A, Fu Y, Su Y S. Challenges and prospects of lithium-sulfur batteries[J]. Accounts Chem. Res., 2013, 46(5): 1125-1134.

[5]

Manthiram A, Fu Y, Chung S H, Zu C, Su Y S. Rechargeable lithium-sulfur batteries[J]. Chem. Rev., 2014, 114(23): 11751-11787.

[6]

Barghamadi M, Best A S, Bhatt A I, Hollenkamp A F, Musameh M, Rees R J, Rüther T. Lithium-sulfur batteries—the solution is in the electrolyte, but is the electrolyte a solution?[J]. Energy Environ. Sci., 2014, 7(12): 3902-3920.

[7]

Moon S, Jung Y H, Jung W K, Jung D S, Choi J W, Kim D K. Encapsulated monoclinic sulfur for stable cycling of Li-S rechargeable batteries[J]. Adv. Mater., 2013, 25(45): 6547-6553.

[8]

Cheon S E, Ko K S, Cho J H, Kim S W, Chin E Y, Kim H T. Rechargeable lithium sulfur battery[J]. J. Electrochem. Soc., 2003, 150(6): A796-A799.

[9]

Cao R, Chen J, Han K S, Xu W, Mei D, Bhattacharya P, Engelhard M H, Mueller K T, Liu J, Zhang J G. Effect of the anion activity on the stability of Li metal anodes in lithium-sulfur batteries[J]. Adv. Funct. Mater., 2016, 26(18): 3059-3066.

[10]

Liu Y D, Liu Q, Xin L, Liu Y Z, Yang F, Stach E A, Xie J. Making Li-metal electrodes rechargeable by controlling the dendrite growth direction[J]. Nat. Energy, 2017, 2(7): 17083.

[11]

Zang J, An T H, Dong Y J, Fang X L, Zheng M S, Dong Q F, Zheng N F. Hollow-in-hollow carbon spheres with hollow foam-like cores for lithium-sulfur batteries[J]. Nano Res., 2015, 8(8): 2663-2675.

[12]

Seh Z W, Yu J H, Li W, Hsu P C, Wang H, Sun Y, Yao H, Zhang Q, Cui Y. Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes[J]. Nat. Commun., 2014, 5(1): 5017.

[13]

Hou T Z, Chen X, Peng H J, Huang J Q, Li B Q, Zhang Q, Li B. Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium-sulfur batteries[J]. Small, 2016, 12(24): 3283-3291.

[14]

Wu F, Zhao S Y, Chen L, Lu Y, Su Y F, Jia Y N, Bao L Y, Wang J, Chen S, Chen R J. Metal-organic frameworks composites threaded on the cnt knitted separator for suppressing the shuttle effect of lithium sulfur batteries[J]. Energy Storage Mater., 2018, 14: 383-391.

[15]

Chen L, Huang Z, Shahbazian-Yassar R, Libera J A, Klavetter K C, Zavadil K R, Elam J W. Directly formed alucone on lithium metal for high-performance li batteries and Li-S batteries with high sulfur mass loading[J]. ACS Appl. Mater. Interfaces, 2018, 10(8): 7043-7051.

[16]

Yang C P, Yin Y X, Zhang S F, Li N W, Guo Y G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes[J]. Nat. Commun., 2015, 6(1): 8058.

[17]

Zhang S, Ueno K, Dokko K, Watanabe M. Recent advances in electrolytes for lithium-sulfur batteries[J]. Adv. Energy Mater., 2015, 5(16): 1500117.

[18]

Wang L L, Ye Y S, Chen N, Huang Y X, Li L, Wu F, Chen R J. Development and challenges of functional electrolytes for high-performance lithium-sulfur batteries[J]. Adv. Funct. Mater., 2018, 28(38): 1800919.

[19]

Zhang H, Eshetu G G, Judez X, Li C, Rodriguez-Martínez L M, Armand M. Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: Progress and perspectives[J]. Angew. Chem. Int. Ed., 2018, 57(46): 15002-15027.

[20]

Liu G, Sun Q J, Li Q, Zhang J L, Ming J. Electrolyte issues in lithium-sulfur batteries: Development, prospect, and challenges[J]. Energy & Fuels, 2021, 35(13): 10405-10427.

[21]

Cao R, Xu W, Lv D, Xiao J, Zhang J G. Anodes for rechargeable lithium-sulfur batteries[J]. Adv. Energy Mater., 2015, 5(16): 1402273.

[22]

Aurbach D, Pollak E, Elazari R, Salitra G, Kelley C S, Affinito J. On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries[J]. J. Electrochem. Soc., 2009, 156(8): A694-A702.

[23]

Xiong S Z, Xie K, Diao Y, Hong X B. Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium-sulfur batteries[J]. J. Power Sources, 2014, 246: 840-845.

[24]

Jozwiuk A, Berkes B B, Weiß T, Sommer H, Janek J, Brezesinski T. The critical role of lithium nitrate in the gas evolution of lithium-sulfur batteries[J]. Energy Environ. Sci., 2016, 9(8): 2603-2608.

[25]

Zhang S S. A new finding on the role of LiNO3 in lithium-sulfur battery[J]. J. Power Sources, 2016, 322: 99-105.

[26]

Ding N, Zhou L, Zhou C, Geng D, Yang J, Chien S W, Liu Z, Ng M F, Yu A, Hor T S A, Sullivan M B, Zong Y. Building better lithium-sulfur batteries: From LinO3 to solid oxide catalyst[J]. Sci. Rep., 2016, 6(1): 33154.

[27]

Li J, Zhang L, Qin F R, Hong B, Xiang Q, Zhang K, Fang J, Lai Y Q. ZrO(NO3)2 as a functional additive to suppress the diffusion of polysulfides in lithium-sulfur batteries[J]. J. Power Sources, 2019, 442: 227232.

[28]

Jia W S, Fan C, Wang L P, Wang Q J, Zhao M J, Zhou A J, Li J Z. Extremely accessible potassium nitrate (KNO3) as the highly efficient electrolyte additive in lithium battery[J]. ACS Appl. Mater. Interfaces, 2016, 8(24): 15399-15405.

[29]

Kim J S, Yoo D J, Min J, Shakoor R A, Kahraman R, Choi J W. Poreless separator and electrolyte additive for lithium-sulfur batteries with high areal energy densities[J]. ChemNanoMat, 2015, 1(4): 240-245.

[30]

Liu S, Li G R, Gao X P. Lanthanum nitrate as electrolyte additive to stabilize the surface morphology of lithium anode for lithium-sulfur battery[J]. ACS Appl. Mater. Inter., 2016, 8(12): 7783-7789.

[31]

Jin L, Li G, Liu B, Li Z, Zheng J, Zheng J P. A novel strategy for high-stability lithium sulfur batteries by in situ formation of polysulfide adsorptive-blocking layer[J]. J. Power Sources, 2017, 355: 147-153.

[32]

Baloch M, Shanmukaraj D, Bondarchuk O, Bekaert E, Rojo T, Armand M. Variations on Li3N protective coating using ex-situ and in-situ techniques for Li in sulphur batteries[J]. Energy Storage Mater., 2017, 9: 141-149.

[33]

Eshetu G G, Judez X, Li C, Bondarchuk O, Rodriguez-Martinez L M, Zhang H, Armand M. Lithium azide as an electrolyte additive for all-solid-state lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2017, 56(48): 15368-15372.

[34]

Wu J Y, Li X W, Rao Z X, Xu X N, Cheng Z X, Liao Y Q, Yuan L X, Xie X L, Li Z, Huang Y H. Electrolyte with boron nitride nanosheets as leveling agent towards dendrite-free lithium metal anodes[J]. Nano Energy, 2020, 72: 104725.

[35]

Xie J, Sun S Y, Chen X, Hou L P, Li B Q, Peng H J, Huang J Q, Zhang X Q, Zhang Q. Fluorinating the solid electrolyte interphase by rational molecular design for practical lithium-metal batteries[J]. Angew. Chem. Int. Ed., 2022, 61(29): e202204776.

[36]

Wang D Y, Wang W, Li F, Li X, Guo W, Fu Y. Nitrogen-rich azoles as trifunctional electrolyte additives for high-performance lithium-sulfur battery[J]. J. Energy Chem., 2022, 71: 572-579.

[37]

Zhao C Z, Cheng X B, Zhang R, Peng H J, Huang J Q, Ran R, Huang Z H, Wei F, Zhang Q. Li2S5-based ternary-salt electrolyte for robust lithium metal anode[J]. Energy Storage Mater., 2016, 3: 77-84.

[38]

Li W Y, Yao H B, Yan K, Zheng G Y, Liang Z, Chiang Y M, Cui Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth[J]. Nat. Commun., 2015, 6(1): 7436.

[39]

Xiong S Z, Xie K, Diao Y, Hong X B. On the role of polysulfides for a stable solid electrolyte interphase on the lithium anode cycled in lithium-sulfur batteries[J]. J. Power Sources, 2013, 236: 181-187.

[40]

Gu S, Wen Z Y, Qian R, Jin J, Wang Q S, Wu M F, Zhuo S J. Carbon disulfide cosolvent electrolytes for high-performance lithium sulfur batteries[J]. ACS Appl. Mater. Inter., 2016, 8(50): 34379-34386.

[41]

Song J, Noh H, Lee H, Lee J N, Lee D J, Lee Y, Kim C H, Lee Y M, Park J K, Kim H T. Polysulfide rejection layer from alpha-lipoic acid for high performance lithium-sulfur battery[J]. J. Mater. Chem. A, 2015, 3(1): 323-330.

[42]

Li G, Gao Y, He X, Huang Q, Chen S, Kim S H, Wang D. Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries[J]. Nat. Commun., 2017, 8(1): 850.

[43]

Li G, Huang Q, He X, Gao Y, Wang D, Kim S H, Wang D. Self-formed hybrid interphase layer on lithium metal for high-performance lithium-sulfur batteries[J]. ACS Nano, 2018, 12(2): 1500-1507.

[44]

Wu H L, Shin M, Liu Y M, See K A, Gewirth A A. Thiol-based electrolyte additives for high-performance lithium-sulfur batteries[J]. Nano Energy, 2017, 32: 50-58.

[45]

Wei J Y, Zhang X Q, Hou L P, Shi P, Li B Q, Xiao Y, Yan C, Yuan H, Huang J Q. Shielding polysulfide intermediates by an organosulfur-containing solid electrolyte interphase on the lithium anode in lithium-sulfur batteries[J]. Adv. Mater., 2020, 32(37): 2003012.

[46]

Lian J, Guo W, Fu Y Z. Isomeric organodithiol additives for improving interfacial chemistry in rechargeable Li-S batteries[J]. J. Am. Chem. Soc., 2021, 143(29): 11063-11071.

[47]

Guo W, Zhang W Y, Si Y B, Wang D H, Fu Y Z, Manthiram A. Artificial dual solid-electrolyte interfaces based on in situ organothiol transformation in lithium sulfur battery[J]. Nat. Commun., 2021, 12(1): 3031.

[48]

Sun J P, Zhang K, Fu Y Z, Guo W. Benzoselenol as an organic electrolyte additive in Li-S battery[J]. Nano Res., 2023, 16: 3814-3822.

[49]

Wang G, Xiong X H, Xie D, Fu X X, Ma X D, Li Y P, Liu Y Z, Lin Z, Yang C H, Liu M L. Suppressing dendrite growth by a functional electrolyte additive for robust Li metal anodes[J]. Energy Storage Mater., 2019, 23: 701-706.

[50]

Ren Y X, Zhao T S, Liu M, Zeng Y K, Jiang H R. A self-cleaning Li-S battery enabled by a bifunctional redox mediator[J]. J. Power Sources, 2017, 361: 203-210.

[51]

Liu M, Ren Y X, Jiang H R, Luo C, Kang F Y, Zhao T S. An efficient Li2S-based lithium-ion sulfur battery realized by a bifunctional electrolyte additive[J]. Nano Energy, 2017, 40: 240-247.

[52]

Bag S, Zhou C, Kim P J, Pol V G, Thangadurai V. LiF modified stable flexible PVDF-garnet hybrid electrolyte for high performance all-solid-state Li-S batteries[J]. Energy Storage Mater., 2020, 24: 198-207.

[53]

Zeng D W, Yao J M, Zhang L, Xu R N, Wang S J, Yan X L, Yu C, Wang L. Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes[J]. Nat. Commun., 2022, 13(1): 1909.

[54]

Wu F, Thieme S, Ramanujapuram A, Zhao E, Weller C, Althues H, Kaskel S, Borodin O, Yushin G. Toward in-situ protected sulfur cathodes by using lithium bromide and pre-charge[J]. Nano Energy, 2017, 40: 170-179.

[55]

Zhao Q, Tu Z, Wei S, Zhang K, Choudhury S, Liu X, Archer L A. Building organic/inorganic hybrid interphases for fast interfacial transport in rechargeable metal batteries[J]. Angew. Chem. Int. Ed., 2018, 57(4): 992-996.

[56]

Li S, Dai H L, Li Y H, Lai C, Wang J L, Huo F W, Wang C. Designing Li-protective layer via SOCl2 additive for stabilizing lithium-sulfur battery[J]. Energy Storage Mater., 2019, 18: 222-228.

[57]

Cui Y L, Liu S F, Liu B, Wang D H, Zhong Y, Zhang X Q, Wang X L, Xia X H, Gu C D, Tu J P. Bi-containing electrolyte enables robust and Li ion conductive solid electrolyte interphase for advanced lithium metal anodes[J]. Front. Chem., 2020, 7: 952.

[58]

Jiang Z P, Zeng Z Q, Yang C K, Han Z L, Hu W, Lu J, Xie J. Nitrofullerene, a C60-based bifunctional additive with smoothing and protecting effects for stable lithium metal anode[J]. Nano Lett., 2019, 19(12): 8780-8786.

[59]

Li J R, Liu S F, Cui Y L, Zhang S Z, Wu X Z, Xiang J Y, Li M, Wang X L, Xia X H, Gu C D, Tu J P. Potassium hexafluorophosphate additive enables stable lithium-sulfur batteries[J]. ACS Appl. Mater. Inter., 2020, 12(50): 56017-56026.

[60]

Tan J, Matz J, Dong P, Ye M, Shen J. Appreciating the role of polysulfides in lithium-sulfur batteries and regulation strategies by electrolytes engineering[J]. Energy Storage Mater., 2021, 42: 645-678.

[61]

Hu Y, Chen W, Lei T Y, Jiao Y, Wang H B, Wang X P, Rao G F, Wang X F, Chen B, Xiong J. Graphene quantum dots as the nucleation sites and interfacial regulator to suppress lithium dendrites for high-loading lithium-sulfur battery[J]. Nano Energy, 2020, 68: 104373.

[62]

Li S, Luo Z, Tu H Y, Zhang H, Deng W N, Zou G Q, Hou H S, Ji X B. N, S-codoped carbon dots as deposition regulating electrolyte additive for stable lithium metal anode[J]. Energy Storage Mater., 2021, 42: 679-686.

[63]

Huang Y, Lin L, Zhang C, Liu L, Li Y, Qiao Z, Lin J, Wei Q, Wang L, Xie Q, Peng D L. Recent advances and strategies toward polysulfides shuttle inhibition for high-performance Li-S batteries[J]. Adv. Sci., 2022, 9(12): 2106004.

[64]

Yang W, Yang W, Song A L, Gao L J, Sun G, Shao G J. Pyrrole as a promising electrolyte additive to trap polysulfides for lithium-sulfur batteries[J]. J. Power Sources, 2017, 348: 175-182.

[65]

Hu C J, Chen H W, Shen Y B, Lu D, Zhao Y F, Lu A H, Wu X, Lu W, Chen L. In situ wrapping of the cathode material in lithium-sulfur batteries[J]. Nat. Commun., 2017, 8(1): 479.

[66]

Yang T, Qian T, Liu J, Xu N, Li Y, Grundish N, Yan C, Goodenough J B. A new type of electrolyte system to suppress polysulfide dissolution for lithium-sulfur battery[J]. ACS Nano, 2019, 13(8): 9067-9073.

[67]

Fan X X, Yuan R M, Lei J, Lin X D, Xu P, Cui X Y, Cao L, Zheng M S, Dong Q F. Turning soluble polysulfide intermediates back into solid state by a molecule binder in Li-S batteries[J]. ACS Nano, 2020, 14(11): 15884-15893.

[68]

Fu Y S, Wu Z, Yuan Y F, Chen P, Yu L, Yuan L, Han Q R, Lan Y J, Bai W X, Kan E J, Huang C X, Ouyang X P, Wang X, Zhu J W, Lu J. Switchable encapsulation of polysulfides in the transition between sulfur and lithium sulfide[J]. Nat. Commun., 2020, 11(1): 845.

[69]

Chen K, Fang R, Lian Z, Zhang X, Tang P, Li B, He K, Wang D W, Cheng H M, Sun Z, Li F. An in-situ solidification strategy to block polysulfides in lithium-sulfur batteries[J]. Energy Storage Mater., 2021, 37: 224-232.

[70]

Conder J, Bouchet R, Trabesinger S, Marino C, Gubler L, Villevieille C. Direct observation of lithium polysulfides in lithium-sulfur batteries using operando X-ray diffraction[J]. Nat. Energy, 2017, 2(6): 17069.

[71]

Li G, Wang X, Seo M H, Li M, Ma L, Yuan Y, Wu T, Yu A, Wang S, Lu J, Chen Z. Chemisorption of polysulfides through redox reactions with organic molecules for lithium-sulfur batteries[J]. Nat. Commun., 2018, 9(1): 705.

[72]

Liu M M, Chen X, Chen C G, Ma T Y, Huang T, Yu A S. Dithiothreitol as a promising electrolyte additive to suppress the "shuttle effect" by slicing the disulfide bonds of polysulfides in lithium-sulfur batteries[J]. J. Power Sources, 2019, 424: 254-260.

[73]

Jiang C, Li L, Jia Q, Tang M, Fan K, Chen Y, Zhang C, Mao M, Ma J, Hu W, Wang C. In situ synthesis of organopolysulfides enabling spatial and kinetic co-mediation of sulfur chemistry[J]. ACS Nano, 2022, 16(6): 9163–9171.

[74]

Dong L W, Liu J P, Chen D J, Han Y P, Liang Y F, Yang M Q, Yang C H, He W D. Suppression of polysulfide dissolution and shuttling with glutamate electrolyte for lithium sulfur batteries[J]. ACS Nano, 2019, 13(12): 14172-14181.

[75]

Xie J, Song Y W, Li B Q, Peng H J, Huang J Q, Zhang Q. Direct intermediate regulation enabled by sulfur containers in working lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2020, 59(49): 22150-22155.

[76]

Tamirat A G, Guan X, Liu J, Luo J, Xia Y. Redox mediators as charge agents for changing electrochemical reactions[J]. Chem. Soc. Rev., 2020, 49(20): 7454-7478.

[77]

Chen S, Dai F, Gordin M L, Yu Z, Gao Y, Song J, Wang D. Functional organosulfide electrolyte promotes an alternate reaction pathway to achieve high performance in lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2016, 55(13): 4231-4235.

[78]

Phadke S, Coadou E, Anouti M. Catholyte formulations for high-energy Li-S batteries[J]. J. Phys. Chem. Lett., 2017, 8(23): 5907-5914.

[79]

Xiang Q, Shi C Y, Zhang X Y, Zhang L, He L, Hong B, Lai Y Q. Thiuram vulcanization accelerators as polysulfide scavengers to suppress shuttle effects for high-performance lithium-sulfur batteries[J]. ACS Appl. Mater. Inter., 2019, 11(33): 29970-29977.

[80]

Zhao M, Chen X, Li X Y, Li B Q, Huang J Q. An organodiselenide comediator to facilitate sulfur redox kinetics in lithium-sulfur batteries[J]. Adv. Mater., 2021, 33(13): 2007298.

[81]

Tsao Y, Lee M, Miller E C, Gao G, Park J, Chen S, Katsumata T, Tran H, Wang L W, Toney M F, Cui Y, Bao Z. Designing a quinone-based redox mediator to facilitate Li2S oxidation in Li-S batteries[J]. Joule, 2019, 3(3): 872-884.

[82]

Meini S, Elazari R, Rosenman A, Garsuch A, Aurbach D. The use of redox mediators for enhancing utilization of Li2S cathodes for advanced Li-S battery systems[J]. J. Phys. Chem. Lett., 2014, 5(5): 915-918.

[83]

Gao X, Zheng X L, Tsao Y C, Zhang P, Xiao X, Ye Y S, Li J, Yang Y F, Xu R, Bao Z N, Cui Y. All-solid-state lithium-sulfur batteries enhanced by redox mediators[J]. J. Am. Chem. Soc., 2021, 143(43): 18188-18195.

[84]

Pan H, Han K S, Vijayakumar M, Xiao J, Cao R, Chen J, Zhang J, Mueller K T, Shao Y, Liu J. Ammonium additives to dissolve lithium sulfide through hydrogen binding for high-energy lithium-sulfur batteries[J]. ACS Appl. Mater. Inter., 2017, 9(5): 4290-4295.

[85]

Klein M J, Dolocan A, Zu C, Manthiram A. An effective lithium sulfide encapsulation strategy for stable lithium-sulfur batteries[J]. Adv. Energy Mater., 2017, 7(20): 1701122.

[86]

Shi Z P, Wang L, Xu H F, Wei J Q, Yue H Y, Dong H Y, Yin Y H, Yang S T. A soluble single atom catalyst promotes lithium polysulfide conversion in lithium sulfur batteries[J]. Chem. Commun., 2019, 55(80): 12056-12059.

[87]

Zhao M, Li B Q, Chen X, Xie J, Yuan H, Huang J Q. Redox comediation with organopolysulfides in working lithium-sulfur batteries[J]. Chem, 2020, 6(12): 3297-3311.

[88]

Yang Y, Zheng G, Misra S, Nelson J, Toney M F, Cui Y. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries[J]. J. Am. Chem. Soc., 2012, 134(37): 15387-15394.

[89]

Gerber L C H, Frischmann P D, Fan F Y, Doris S E, Qu X, Scheuermann A M, Persson K, Chiang Y M, Helms B A. Three-dimensional growth of Li2S in lithium-sulfur batteries promoted by a redox mediator[J]. Nano Lett., 2016, 16(1): 549-554.

[90]

Kim K R, Lee K S, Ahn C Y, Yu S H, Sung Y E. Discharging a Li-S battery with ultra-high sulphur content cathode using a redox mediator[J]. Sci. Rep., 2016, 6(1): 32433.

[91]

Zhao M, Peng H J, Wei J Y, Huang J Q, Li B Q, Yuan H, Zhang Q. Dictating high-capacity lithium-sulfur batteries through redox-mediated lithium sulfide growth[J]. Small Methods, 2020, 4(6): 1900344.

[92]

Lin F, Wang J, Jia H, Monroe C W, Yang J, NuLi Y. Nonflammable electrolyte for rechargeable lithium battery with sulfur based composite cathode materials[J]. J. Power Sources, 2013, 223: 18-22.

[93]

Wang J, Lin F, Jia H, Yang J, Monroe C W, NuLi Y. Towards a safe lithium-sulfur battery with a flame-inhibiting electrolyte and a sulfur-based composite cathode[J]. Angew. Chem. Int. Ed., 2014, 53(38): 10099-10104.

[94]

Jia H, Wang J, Lin F, Monroe C W, Yang J, NuLi Y. TPPi as a flame retardant for rechargeable lithium batteries with sulfur composite cathodes[J]. Chem. Commun., 2014, 50(53): 7011-7013.

[95]

Xiang J W, Zhang Y, Zhang B, Yuan L X, Liu X T, Cheng Z X, Yang Y, Zhang X X, Li Z, Shen Y, Jiang J J, Huang Y H. A flame-retardant polymer electrolyte for high performance lithium metal batteries with an expanded operation temperature[J]. Energy Environ. Sci., 2021, 14(6): 3510-3521.

Journal of Electrochemistry
Article number: 2217005
Cite this article:
Zhang X-Q, Tang S, Fu Y-Z. Recent Advances of Functional Electrolyte Additives for Lithium-Sulfur Batteries. Journal of Electrochemistry , 2023, 29(4): 2217005. https://doi.org/10.13208/j.electrochem.2217005

604

Views

64

Downloads

0

Crossref

3

Scopus

0

CSCD

Altmetrics

Received: 30 July 2022
Revised: 04 September 2022
Accepted: 20 September 2022
Published: 26 September 2022
© 2023 Xiamen University and Chinese Chemical Society.

This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Return