AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Metal-Organic Frameworks for Electrochemical and Electrochemiluminescent Immunoassay

Xiao-Li Qina,b( )Zi-Ying ZhanbSara JahanghiribKenneth ChubCong-Yang ZhangbZhi-Feng Dingb( )
College of Chemistry and Material Science, Hunan Agricultural University, Changsha, 410128, China
Department of Chemistry, Western University, London, ON, N6A 5B7, Canada
Show Author Information

Graphical Abstract

Abstract

Development of ultrasensitive, highly accurate and selective immunosensors is significant for the early diagnosis, screening, and monitoring of diseases. Electrochemical and electrochemiluminescent (ECL) immunoassays have both attracted great attention and become a current research hotspot due to their advantages such as good stability, high sensitivity and selectivity, wide linear range, and good controllability. Metal-organic frameworks (MOFs), as a new class of porous crystalline materials, have been widely applied in electrochemical and ECL immunosensors owing to their large specific surface area, good chemical stability, as well as adjustable pore size and nanoscale framework structures. Various MOF nanomaterials with different properties for the development of high-performance electrochemical and ECL immunosensors can be achieved, because they can be applied as sensitive platforms for immobilizing biological recognition molecules, enriching the trace analytes and signal molecules, amplifying the signal and enhancing the sensitivity of the electrochemical or ECL immunoassays. This review summarizes various types of MOFs-based immunosensors and their assays application, in which MOFs act as electrode matrices, signal probes (either as electroactive labels or as emitter labels), carriers or catalytic labels for sensitive electrochemical and ECL detections. Moreover, challenges and future opportunities for the development of the functionalized MOFs are discussed to provide a guidance on the design and fabrication of high-performance MOFs-based immunosensors in the future.

References

[1]

Karimzadeh Z, Hasanzadeh M, Isildak I, Khalilzadeh B. Multiplex bioassaying of cancer proteins and biomacromolecules: Nanotechnological, structural and technical perspectives[J]. Int. J. Biol. Macromol., 2020, 165: 3020–3039.

[2]

Tang Z X, Ma Z F. Multiple functional strategies for amplifying sensitivity of amperometric immunoassay for tumor markers: A review[J]. Biosens. Bioelectron., 2017, 98: 100–112.

[3]

Shahriyari H A, Nikmanesh Y, Jalali S, Tahery N, Fard A Z, Hatamzadeh N, Zarea K, Cheraghi M, Mohammadi M J. Air pollution and human health risks: Mechanisms and clinical manifestations of cardiovascular and respiratory diseases[J]. Toxin Rev., 2022, 41(2): 606–617.

[4]

Chiner-Vives E, Cordovilla-Perez R, De la Rosa-Carrillo D, Garcia-Clemente M, Izquierdo-Alonso J L, Otero-Candelera R, Perez-de Llano L, Sellares-Torres J, de Granda-Orive J I. Short and long-term impact of covid-19 infection on previous respiratory diseases[J]. Arch Bronconeum., 2022, 58: 39–50.

[5]

Hunter B, Hindocha S, Lee R W. The role of artificial intelligence in early cancer diagnosis[J]. Cancers, 2022, 14(6): 1524.

[6]

Meng H Y, Ruan J J, Yan Z H, Chen Y Q, Liu J S, Li X D, Meng F B. New progress in early diagnosis of atherosclerosis[J]. Int. J. Mol. Sci., 2022, 23(16): 8939.

[7]

Fang L, Liao X F, Jia B Y, Shi L C, Kang L Z, Zhou L D, Kong W J. Recent progress in immunosensors for pesticides[J]. Biosens. Bioelectron., 2020, 164: 112255.

[8]

Kim J, Park M. Recent progress in electrochemical immunosensors[J]. Biosensors, 2021, 11(10): 360.

[9]

Yang Z, Atiyas Y, Shen H, Siedlik M J, Wu J, Beard K, Fonar G, Dolle J P, Smith D H, Eberwine J H, Meaney D F, Issadore D A. Ultrasensitive single extracellular vesicle detection using high throughput droplet digital enzyme-linked immunosorbent assay[J]. Nano Lett., 2022, 22(11): 4315–4324.

[10]

Gao Y, Zhou Y Z, Chandrawati R. Metal and metal oxide nanoparticles to enhance the performance of enzyme-linked immunosorbent assay (ELISA)[J]. ACS Appl. Nano Mater., 2020, 3(1): 1–21.

[11]

Lyu A H, Jin T C, Wang S S, Huang X X, Zeng W H, Yang R, Cui H. Automatic label-free immunoassay with high sensitivity for rapid detection of SARS-CoV-2 nucleocapsid protein based on chemiluminescent magnetic beads[J]. Sens. Actuator B-Chem., 2021, 349: 130739.

[12]

Xu L R, Cao Z Y, Ma R L, Wang Z Z, Qin Q, Liu E Y, Su B. Visualization of latent fingermarks by enhanced chemiluminescence immunoassay and pattern recognition[J]. Anal. Chem., 2019, 91(20): 12859–12865.

[13]

Orme M E, Voreck A, Aksouh R, Ramsey-Goldman R, Schreurs M W J. Systematic review of anti-dsDNA testing for systemic lupus erythematosus: A meta-analysis of the diagnostic test specificity of an anti-dsDNA fluorescence enzyme immunoassay[J]. Autoimmun. Rev., 2021, 20(11): 102943.

[14]

Li H F, Wen K, Dong B L, Zhang J, Bai Y C, Liu M G, Li P P, Mujtaba M G, Yu X Z, Yu W B, Ke Y B, Shen J Z, Wang Z H. Novel inner filter effect-based fluorescence immunoassay with gold nanoclusters for bromadiolone detection in human serum[J]. Sens. Actuator B-Chem., 2019, 297: 126787.

[15]

Zhang Y, Zhang R, Yang X L, Qi H L, Zhang C X. Recent advances in electrogenerated chemiluminescence biosensing methods for pharmaceuticals[J]. J. Pharm. Anal., 2019, 9(1): 9–19.

[16]

Du F X, Chen Y Q, Meng C D, Lou B H, Zhang W, Xu G B. Recent advances in electrochemiluminescence immunoassay based on multiple-signal strategy[J]. Curr. Opin. Electrochem., 2021, 28: 100725.

[17]

Tang D, Yang X, Wang B, Ding Y, Xu S, Liu J, Peng Y, Yu X, Su Z, Qin X. One-step electrochemical growth of 2D/3D Zn(Ⅱ)-MOF hybrid nanocomposites on an electrode and utilization of a PtNPs@2D MOF nanocatalyst for electrochemical immunoassay[J]. ACS Appl. Mater. Interfaces, 2021, 13(39): 46225–46232.

[18]

Feng J J, Chu C S, Ma Z F. Fenton and Fenton-like catalysts for electrochemical immunoassay: A mini review[J]. Electrochem. Commun., 2021, 125: 106970.

[19]

Nellaiappan S, Mandali P K, Prabakaran A, Krishnan U M. Electrochemical immunosensors for quantification of procalcitonin: Progress and prospects[J]. Chemosensors, 2021, 9(7): 182.

[20]

Tang J, Tang D P. Non-enzymatic electrochemical immunoassay using noble metal nanoparticles: A review[J]. Microchim. Acta, 2015, 182(13–14): 2077–2089.

[21]

Pan M F, Gu Y, Yun Y G, Li M, Jin X C, Wang S. Nanomaterials for electrochemical immunosensing[J]. Sensors, 2017, 17(5): 1041.

[22]

Sanchez A, Villalonga A, Martinez-Garcia G, Parrado C, Villalonga R. Dendrimers as soft nanomaterials for electrochemical immunosensors[J]. Nanomaterials, 2019, 9(12): 1745.

[23]

Feng T T, Wang Y, Qiao X W. Recent advances of carbon nanotubes-based electrochemical immunosensors for the detection of protein cancer biomarkers[J]. Electroanalysis, 2017, 29(3): 662–675.

[24]

Popov A, Brasiunas B, Kausaite-Minkstimiene A, Ramanaviciene A. Metal nanoparticle and quantum dot tags for signal amplification in electrochemical immunosensors for biomarker detection[J]. Chemosensors, 2021, 9(4): 85.

[25]

Yang H L, Xu W T, Zhou Y. Signal amplification in immunoassays by using noble metal nanoparticles: A review[J]. Microchim. Acta, 2019, 186(12): 859.

[26]

Liu H, Cheng Y, Chen Y Y, Xiao H B, Sui Y Y, Xie Q J, Liu R S, Yang X P. Dual-signal sandwich-type electrochemical immunoassay of galectin-3 using methylene blue and gold nanoparticles biolabels[J]. J. Electroanal. Chem., 2020, 861: 113952.

[27]

Wang X Y, Chen Y, Mei L P, Wang A J, Yuan P X, Feng J J. Confining signal probe in porous PdPtCoNi@Pt-skin nanopolyhedra to construct a sandwich-type electrochemical immmunosensor for ultrasensitive detection of creatine kinase-mb[J]. Sens. Actuator B-Chem., 2020, 315: 128088.

[28]

Zhang S, Rong F L, Guo C A P, Duan F H, He L H, Wang M H, Zhang Z H, Kang M M, Du M. Metal-organic frameworks (MOFs) based electrochemical biosensors for early cancer diagnosis in vitro[J]. Coord. Chem. Rev., 2021, 439: 213948.

[29]

Ru J, Wang X M, Wang F B, Cui X L, Du X Z, Lu X Q. Uio series of metal-organic frameworks composites as advanced sorbents for the removal of heavy metal ions: Synthesis, applications and adsorption mechanism[J]. Ecotox. Environ. Safe., 2021, 208: 111577.

[30]

Lv M Z, Zhou W, Tavakoli H, Bautista C, Xia J F, Wang Z H, Li X J. Aptamer-functionalized metal-organic frameworks (MOFs) for biosensing[J]. Biosens. Bioelectron., 2021, 176: 112947.

[31]

Xie L S, Skorupskii G, Dincă M. Electrically conductive metal-organic frameworks[J]. Chem. Rev., 2020, 120(16): 8536–8580.

[32]

Su Z H, Tang D L, Yang X L, Peng Y, Wang B R, Li X Y, Chen J H, Hu Y, Qin X L. Selective and fast growth of Cds nanocrystals on zinc (ⅱ) metal-organic framework architectures for photoelectrochemical response and electrochemical immunosensor of foot-and-mouth disease virus[J]. Microchem. J., 2022, 174: 107038.

[33]

Cheng Y D, Datta S J, Zhou S, Jia J T, Shekhah O, Eddaoudi M. Advances in metal-organic framework-based membranes[J]. Chem. Soc. Rev., 2022, 51: 8300–8350.

[34]

Tran V A, Do H H, Le V T, Vasseghian Y, Vo V, Ahn S H, Kim S Y, Lee S W. Metal-organic-framework-derived metals and metal compounds as electrocatalysts for oxygen evolution reaction: A review[J]. Int. J. Hydrogen Energy, 2022, 47(45): 19590–19608.

[35]

Shao M Z, Li Y Y, Chen M Y, Liu W D, Sun Y Z, Chu Y Y, Sun Y J, Li X Y, Zhang R Z, Zhang L B. High-efficiency electrogenerated chemiluminescence of novel Zr-based metal-organic frameworks through organic linkers regulation[J]. ChemElectroChem, 2022, 9(19): e202200866

[36]

Rong S Z, Zou L N, Zhu Y, Zhang Z, Liu H F, Zhang Y C, Zhang H, Gao H M, Guan H J, Dong J, Guo Y P, Liu F H, Li X X, Pan H Z, Chang D. 2D/3D material amplification strategy for disposable label-free electrochemical immunosensor based on rGO-TEPA@Cu-MOFs@SiO2@AgNPs composites for NMP22 detection[J]. Microchem. J., 2021, 168: 106410.

[37]

Mehmandoust M, Gumus Z P, Soylak M, Erk N. Electrochemical immunosensor for rapid and highly sensitive detection of SARS-CoV-2 antigen in the nasal sample[J]. Talanta, 2022, 240: 123211.

[38]

Li Y, Wang C B, Li Z Z, Wang M H, He L H, Zhang Z H. Zirconium-porphyrin complex as novel nanocarrier for label-free impedimetric biosensing neuron-specific enolase[J]. Sens. Actuator B-Chem., 2020, 314: 128090.

[39]

Gu C X, Guo C P, Li Z Z, Wang M H, Zhou N, He L H, Zhang Z H, Du M. Bimetallic ZrHf-based metal-organic framework embedded with carbon dots: Ultra-sensitive platform for early diagnosis of HER2 and HER2-overexpressed living cancer cells[J]. Biosens. Bioelectron., 2019, 134: 8–15.

[40]

Song Y P, Xu M R, Li Z Z, He L N, Hu M Y, He L H, Zhang Z H, Du M. A bimetallic CoNi-based metal−organic framework as efficient platform for label-free impedimetric sensing toward hazardous substances[J]. Sens. Actuator B-Chem., 2020, 311: 127927.

[41]

Bajpai V K, Haldorai Y, Khan I, Sonwal S, Singh M P, Yadav S, Paray B A, Jan B L, Kang S M, Huh Y S, Han Y K, Shukla S. Au@Zr-based metal-organic framework composite as an immunosensing platform for determination of hepatitis b virus surface antigen[J]. Microchim. Acta, 2021, 188(11): 365.

[42]

Li L Z, Liu X, Su B C, Zhang H Y, Li R, Liu Z L, Chen Q, Huang T Z, Cao H M. An innovative electrochemical immunosensor based on nanobody heptamer and AuNPs@ZIF-8 nanocomposites as support for the detection of alpha fetoprotein in serum[J]. Microchem. J., 2022, 179: 107463.

[43]

Liu H, Chen Y Y, Cheng Y, Xie Q J, Liu R S, Yang X P. Immunosensing of NT-proBNP via Cu2+-based mofs biolabeling and in situ microliter-droplet anodic stripping voltammetry[J]. Electroanalysis, 2020, 32(8): 1754–1762.

[44]

Liu J B, Shang Y H, Zhu Q Y, Zhang X X, Zheng J B. A voltammetric immunoassay for the carcinoembryonic antigen using silver(i)-terephthalate metal-organic frameworks containing gold nanoparticles as a signal probe[J]. Mikrochim. Acta, 2019, 186(8): 509.

[45]

Liu T Z, Hu R, Zhang X, Zhang K L, Liu Y, Zhang X B, Bai R Y, Li D, Yang Y H. Metal-organic framework nanomaterials as novel signal probes for electron transfer mediated ultrasensitive electrochemical immunoassay[J]. Anal. Chem., 2016, 88(24): 12516–12523.

[46]

Bai R Y, Zhang K L, Li D L, Zhang X, Liu T Z, Liu Y, Hu R, Yang Y H. Preparation of carcinoembryonic antigen immunosensor based on Au nanoparticles loaded-metal-organic frameworks[J]. Chinese J. Anal. Chem., 2017, 45(1): 48–55.

[47]

Liu X B, Yue T, Qi K, Qiu Y B, Guo X P. Porous graphene based electrochemical immunosensor using Cu3(BTC)2 metal-organic framework as nonenzymatic label[J]. Talanta, 2020, 217: 121042.

[48]

Zhang C, Zhang D S, Ma Z F, Han H L. Cascade catalysis-initiated radical polymerization amplified impedimetric immunosensor for ultrasensitive detection of carbohydrate antigen 15–3[J]. Biosens. Bioelectron., 2019, 137: 1–7.

[49]

Feng J J, Wang H Q, Ma Z F. Ultrasensitive amperometric immunosensor for the prostate specific antigen by exploiting a fenton reaction induced by a metal-organic framework nanocomposite of type Au/Fe-MOF with peroxidase mimicking activity[J]. Microchim. Acta, 2020, 187(1): 95.

[50]

Dong H, Liu S H, Liu Q, Li Y Y, Li Y Y, Zhao Z D. A dual-signal output electrochemical immunosensor based on Au-MoS2/MOF catalytic cycle amplification strategy for neuron-specific enolase ultrasensitive detection[J]. Biosens. Bioelectron., 2022, 195: 113648.

[51]

Zhang K L, Dai K, Bai R Y, Ma Y C, Deng Y, Li D L, Zhang X, Hu R, Yang Y H. A competitive microcystin-LR immunosensor based on Au NPs@metal-organic framework (MIL-101)[J]. Chinese Chem. Lett., 2019, 30(3): 664–667.

[52]

Parvin S, Hashemi P, Afkhami A, Ghanei M, Bagheri H. Simultaneous determination of BoNT/A and /E using an electrochemical sandwich immunoassay based on the nanomagnetic immunosensing platform[J]. Chemosphere, 2022, 298: 134358.

[53]

Liu C, Dong J, Ning S, Hou J, Waterhouse G I N, Cheng Z, Ai S. An electrochemical immunosensor based on an etched zeolitic imidazolate framework for detection of avian leukosis virus subgroup j[J]. Microchim. Acta, 2018, 185(9): 423.

[54]

Feng J J, Liang X Y, Ma Z F. New immunoprobe: Dual-labeling ZIF-8 embellished with multifunctional bovine serum albumin lamella for electrochemical immunoassay of tumor marker[J]. Biosens. Bioelectron., 2021, 175: 112853.

[55]

Feng J J, Yao T, Chu C S, Ma Z F, Han H L. Proton-responsive annunciator based on i-motif DNA structure modified metal organic frameworks for ameliorative construction of electrochemical immunosensing interface[J]. J. Colloid Interface Sci., 2022, 608(Pt 2): 2050–2057.

[56]

Li W J, Ma C Y, Song Y J, Hong C L, Qiao X W, Yin B C. Sensitive detection of carcinoembryonic antigen (CEA) by a sandwich-type electrochemical immunosensor using MOF-Ce@HA/Ag-HRP-Ab2 as a nanoprobe[J]. Nanotechnology, 2020, 31(18): 185605.

[57]

Han J, Zhang M F, Chen G J, Zhang Y Q, Wei Q, Zhuo Y, Xie G, Yuan R, Chen S P. Ferrocene covalently confined in porous MOF as signal tag for highly sensitive electrochemical immunoassay of amyloid-beta[J]. J. Mat. Chem. B, 2017, 5(42): 8330–8336.

[58]

Liu J B, Shang Y H, Xu J Q, Chen Y, Jia Y R, Zheng J B. A novel electrochemical immunosensor for carcinoembryonic antigen based on Cu-MOFs-TB/polydopamine nanocarrier[J]. J. Electroanal. Chem., 2020, 877: 114563.

[59]

Lu W, Chen Z A, Wei M, Cao X, Sun X. A three-dimensional CoNi-MOF nanosheet array-based immunosensor for sensitive monitoring of human chorionic gonadotropin with core-shell ZnNi-MOF@Nile Blue nanotags[J]. Analyst, 2021, 145(24): 8097–8103.

[60]

Zhang P, Huang H, Wang N, Li H J, Shen D Z, Ma H Y. Duplex voltammetric immunoassay for the cancer biomarkers carcinoembryonic antigen and alpha-fetoprotein by using metal-organic framework probes and a glassy carbon electrode modified with thiolated polyaniline nanofibers[J]. Microchim. Acta, 2017, 184(10): 4037–4045.

[61]

Zhao G H, Dong X, Du Y, Zhang N, Bai G Z, Wu D, Ma H M, Wang Y G, Cao W, Wei Q. Enhancing electrochemiluminescence efficiency through introducing atomically dispersed ruthenium in nickel-based metal-organic frameworks[J]. Anal. Chem., 2022, 94(29): 10557–10566.

[62]

Wang Y G, Zhao G H, Chi H, Yang S H, Niu Q F, Wu D, Cao W, Li T D, Ma H M, Wei Q. Self-luminescent lanthanide metal-organic frameworks as signal probes in electrochemiluminescence immunoassay[J]. J. Am. Chem. Soc., 2021, 143(1): 504–512.

[63]

Wang C, Li Z H, Ju H X. Copper-doped terbium luminescent metal organic framework as an emitter and a co-reaction promoter for amplified electrochemiluminescence immunoassay[J]. Anal. Chem., 2021, 93(44): 14878–14884.

[64]

Song X Z, Zhao L, Zhang N, Liu L, Ren X, Ma H M, Luo C N, Li Y Y, Wei Q. Zinc-based metal-organic framework with MLCT properties as an efficient electrochemiluminescence probe for trace detection of trenbolone[J]. Anal. Chem., 2022, 94(40): 14054–14060.

[65]

Li J S, Jia H Y, Ren X, Li Y Y, Liu L, Feng R Q, Ma H M, Wei Q. Dumbbell plate-shaped aiegen-based luminescent mof with high quantum yield as self-enhanced ECL tags: Mechanism insights and biosensing application[J]. Small, 2022, 18(13): e2106567.

[66]

Yang X, Yu YQ, Peng L Z, Lei Y M, Chai Y Q, Yuan R, Zhuo Y. Strong electrochemiluminescence from MOF accelerator enriched quantum dots for enhanced sensing of trace ctni[J]. Anal. Chem., 2018, 90(6): 3995–4002.

[67]

Mo G C, Qin D M, Jiang X H, Zheng X F, Mo W M, Deng B Y. A sensitive electrochemiluminescence biosensor based on metal-organic framework and imprinted polymer for squamous cell carcinoma antigen detection[J]. Sens. Actuator B-Chem., 2020, 310: 127852.

[68]

Shen C Q, Li Y, Li Y M, Wang S J, Li Y Y, Tang F, Wang P, Liu H, Li Y Y, Liu Q. A double reaction system induced electrochemiluminescence enhancement based on SnS2 QDs@MIL-101 for ultrasensitive detection of CA242[J]. Talanta, 2022, 247: 123575.

[69]

Fang Q C, Lin Z H, Lu F S, Chen Y W, Huang X C, Gao W H. A sensitive electrochemiluminescence immunosensor for the detection of PSA based on CdWS nanocrystals and Ag+@UIO-66-NH2 as a novel coreaction accelerator[J]. Microchim. Acta, 2019, 302: 207–215.

[70]

Dong X, Zhao G H, Li X, Miao J C, Fang J L, Wei Q, Cao W. Electrochemiluminescence immunoassay for the N-terminal pro-B-type natriuretic peptide based on resonance energy transfer between a self-enhanced luminophore composed of silver nanocubes on gold nanoparticles and a metal-organic framework of type MIL-125[J]. Microchim. Acta, 2019, 186(12): 811.

[71]

Wu H Y, Li Z Y, Wang Y, Li X, Zhu W H. Inhibition effect of CTAB on electrodeposition of Cu in micro via: Experimental and md simulation investigations[J]. J. Electrochem. Soc., 2019, 166(15): D816-D825.

[72]

Qi J L, Zhang X L, Zhang Q Y, Xue Y, Meng F, Liu Y H, Yang G J. Ultrasensitive “signal-on” sandwich electrochemiluminescence immunosensor based on Pd@Au-L-cysteine enabled multiple-amplification strategy for apolipoprotein-A1 detection[J]. Microchem. J., 2022, 178: 107409.

[73]

Ding Y P, Zhang X, Peng J J, Zheng D L, Zhang X S, Song Y B, Chen Y W, Gao W H. Ultra-sensitive electrochemiluminescence platform based on magnetic metal-organic framework for the highly efficient enrichment[J]. Sens. Actuator B-Chem., 2020, 324: 128700.

[74]

Wang F L, Zhang Q L, Zhou K, Le Y P, Liu W, Wang Y, Wang F. Effect of cetyl-trimethyl-ammonium-bromide (CTAB) and bis (3-sulfopropyl) disulfide (SPS) on the through-silicon-via (TSV) copper filling[J]. Microelectron. Eng., 2019, 217.

[75]

Li L, Zhao Y H, Li X J, Ma H M, Wei Q. Label-free electrochemiluminescence immunosensor based on Ce-MOF@g-C3N4/Au nanocomposite for detection of n-terminal pro-B-type natriuretic peptide[J]. J. Electroanal. Chem., 2019, 847: 113222.

[76]

Xin W L, Jiang L F, Zong L P, Zeng H B, Shu G F, Marks R, Zhang X J, Shan D. MoS2 quantum dots-combined zirconium-metalloporphyrin frameworks: Synergistic effect on electron transfer and application for bioassay[J]. Sens. Actuator B-Chem., 2018, 273: 566–573.

[77]

Xiong X, Zhang Y, Wang Y F, Sha H F, Jia N Q. One-step electrochemiluminescence immunoassay for breast cancer biomarker CA 15-3 based on Ru(bpy)62+-coated UIO-66-NH2 metal-organic framework[J]. Sens. Actuator B-Chem., 2019, 297: 126812.

[78]

Qin X L, Zhang X H, Wang M H, Dong Y F, Liu J J, Zhu Z W, Li M X, Yang D, Shao Y H. Fabrication of tris(bipyridine)ruthenium(ⅱ)-functionalized metal-organic framework thin films by electrochemically assisted self-assembly technique for electrochemiluminescent immunoassay[J]. Anal. Chem., 2018, 90(19): 11622–11628.

[79]

Zhao G H, Wang Y G, Li X J, Dong X, Wang H, Du B, Cao W, Wei Q. Quenching electrochemiluminescence immunosensor based on resonance energy transfer between ruthenium (ⅱ) complex incorporated in the UiO-67 metal-organic framework and gold nanoparticles for insulin detection[J]. ACS Appl. Mater. Interfaces, 2018, 10(27): 22932–22938.

[80]

Qin X L, Dong Y F, Wang M H, Zhu Z W, Li M X, Yang D, Shao Y H. In situ growing triethanolamine-functionalized metal-organic frameworks on two-dimensional carbon nanosheets for electrochemiluminescent immunoassay[J]. ACS Sens., 2019, 4(9): 2351–2357.

Journal of Electrochemistry
Article number: 2218003
Cite this article:
Qin X-L, Zhan Z-Y, Jahanghiri S, et al. Metal-Organic Frameworks for Electrochemical and Electrochemiluminescent Immunoassay. Journal of Electrochemistry , 2023, 29(6): 2218003. https://doi.org/10.13208/j.electrochem.2218003

260

Views

11

Downloads

0

Crossref

1

Scopus

0

CSCD

Altmetrics

Received: 12 November 2022
Revised: 02 December 2022
Accepted: 07 December 2022
Published: 16 December 2022
© 2023 Xiamen University and Chinese Chemical Society.

This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Return