Micrystalline glass is a kind of polycrystalline composite material, with dense micrystalline phase and glass phase derived from specific basic glass through heat treatment. A large number of tiny crystals and glass phase endows micrystalline glass with excellent mechanical strength and other special properties, as compared with glasses. Among them, mica glass-ceramics not only have excellent properties common to ordinary glass-ceramics, but also have unique machinable characteristics, so that they have been widely used in biomedical, aerospace engineering, chemical and electronic devices and so on. The structure composition, classification and preparation technology of mica glass-ceramics are systematically introduced, while the machinability test methods of mica glass-ceramics are summarized and the strength improvement methods of mica glass-ceramics are described. Finally, the development trend of mica glass-ceramics is discussed.
HENCH L L, FREIMAN S W. Advances in Nucleation and Crystallization in Glasses [M]. Columbus: The American Ceramic Society, 1971.
GROSSMAN D G. Machinable glass-ceramics based on tetrasilicic mica [J]. Journal of the American Ceramic Society, 1972, 55(55): 446–449.
XIANG Q J, LIU Y, SHENG X X. Materials Science and Engineering of Powder Metallurgy, 2006, 11(1): 7–11.
MA Z, SKUMRYEV V, GICH M. Magnetic properties of synthetic fluorophlogopite mica crystals [J]. Materials Advances, 2020, 1(5): 1464–1471.
QIAO G J, WANG Y L, JIN Z H, et al. Journal of Inorganic Materials, 1996, 11(1): 29–32.
UNO T, KASUGA T, NAKAJIMA K. High-strength mica-containing glass-ceramics [J]. Journal of the American Ceramic Society, 1991, 74(12): 3139–3141.
HENRY J, HILL R G. Influence of alumina content on the nucleation crystallization and microstructure of barium fluorphlogopite glass-ceramics based on 8SiO2·yAl2O3·4MgO·2MgF2·BaO Part Ⅱ Microstructure, microhardness and machinability [J]. Journal of Materials Science, 2004, 39(7): 2509–2515.
HENRY J, HILL R G. Influence of alumina content on the nucleation crystallization and microstructure of barium fluorphlogopite glass-ceramics based on 8SiO2·yAl2O3·4MgO·2MgF2·BaO Part Ⅰ Nucleation and crystallization behaviour [J]. Journal of Materials Science, 2004, 39(7): 2499–2507.
MAITI P K, MALLIK A, BASUMAJUMDAR A, et al. Influence of barium oxide on the crystallization, microstructure and mechanical properties of potassium fluorophlogopite glass-ceramics [J]. Ceramics International, 2012, 38(1): 251–258.
TARUTA S, MUKOYAMA K, SUZUKI S S, et al. Crystallization process and some properties of calcium mica–apatite glass-ceramics [J]. Journal of Non-Crystalline Solids, 2001, 296(3): 201–211.
QIN X M, SUN X Y, SU L, et al. Acta Metallurgica Sinica, 2003, 39(2):145–149.
LI H, RAN J G, GOU L. Journal of Materials Science and Engineering, 2002, 20(1): 28–30.
TARUTA S, SAKATA M, YAMAGUCHI T, et al. Crystallization process and some properties of novel transparent machinable calcium-mica glass-ceramics [J]. Ceramics International, 2008, 34(1): 75–79.
UNO T, KASUGA T, NAKAYAMA S, et al. Microstructure of mica-based nanocomposite glass-ceramics [J]. Journal of the American Ceramic Society, 1993, 76(2): 539–541.
FANG P A, WU Z P. Bulletin of the Chinese Ceramic Society, 2002, 21(5): 3–7.
DENRY I L, LEJUS A M, THÉRY J, et al. Preparation and characterization of a new lithium-containing glass-ceramic [J]. Materials Research Bulletin, 1999, 34(10/11): 1615–1627.
DENRY I L, HOLLOWAY J A. Effect of additives on the microstructure and thermal properties of a mica‐based glass‐ceramic [J]. Journal of Biomedical Materials Research, 2002, 63(2): 146–151.
TARUTA S, SUZUKI M, YAMAKAMI T, et al. Preparation and ionic conductivity of transparent glass-ceramics containing a large quantity of lithiummica [J]. Journal of Non-crystalline Solids, 2008, 354(10/11): 848–855.
ZHANG L A, HU Z Q, NIE M Q, et al. Journal of Dalian Polytechnic University, 2015, 34(6): 472–475.
WANG Y Z, LU L, ZHAO L. Bulletin of the Chinese Ceramic Society, 2011, 30(1): 167–171.
TARUTA S, HAYASHI T, KITAJIMA K. Preparation of machinable cordierite/mica composite by low-temperature sintering [J]. Journal of the European Ceramic Society, 2004, 24(10/11): 3149–3154.
TARUTA S, SHINKAWA H, SAKAI M, et al. Preparation and mechanical properties of machinable spinel/mica composites [J]. Journal of the Ceramic Society of Japan, 2005, 113(2): 185–187.
TARUTA S, FUJISAWA R, KITAJIMA K, et al. Preparation and mechanical properties of machinable alumina/mica composites [J]. Journal of the European Ceramic Society, 2006, 26(5): 1687–1693.
SUN Y, WANG Z Y, TIAN J M, et al. Chinese Journal of Stomatology, 2003, 38(2): 137–139.
MA X P, LI G X, SHENG L, et al. Heat Treatment of Metals, 2001, 26(12): 5–7.
GROSSMAN D G. Machining a machinable glass-ceramic [J]. Vacuum, 1978, 28(2): 55–61.
WEI W, LIU Y, TAN Y N, et al. A mica/nepheline glass-ceramic prepared by melting and powder metallurgy at low temperatures [J]. Materials Today Communications, 2017, 11: 87–93.
YU L P, XIAO H N, CHENG Y. Influence of magnesia on the structure and properties of MgO-Al2O-3SiO2-F- glass-ceramics [J]. Ceramics International, 2008, 34(1): 63–68.
GEBHARDT A, HÖCHE T, CARL G. TEM study on the origin of cabbage-shaped mica crystal aggregates in machinable glass-ceramics [J]. Acta Materialia, 1999, 47(17): 4427–4434.
RASHWAN M, CATTELL M J, HILL R G. The effect of barium content on the crystallization and microhardness of barium fluormica glass-ceramics [J]. Journal of the European Ceramic Society, 2019, 39(7): 2559–2565.
MUKHERJEE D P, DAS S K. Influence of TiO2 content on the crystallization and microstructure of machinable glass-ceramics [J]. Journal of Asian Ceramic Societies, 2016, 4(1): 55–60.
WANG P, YU L P, XIAO H N, et al. Influence of nucleation agents on crystallization and machinability of mica glass–ceramics [J]. Ceramics International, 2009, 35(7): 2633–2638.
GHASEMZADEH M, NEMATI A. Role of MgF2 on properties of glass–ceramics [J]. Bulletin of Materials Science, 2012, 35(5): 853–858.
JIANG W R. Journal of East China Institute of Chemical and Technology, 1989, 15(5): 637–644.
LI H, RAN J G, GOU L, et al. Journal of Biomedical Engineering, 2004, 21(1): 54–56.
MA X P, LI G X, SHEN L, et al. Journal of Xi’an Jiaotong University, 1999, 33(6): 50–54.
WANG R G, PANG W, JIANG M N, et al. Bulletin of The Chinese Ceramic Society, 2001(3): 27–35.
LI L, YU H. Research on bioactive glass-ceramics [J]. Journal of Non-Crystalline Solids, 1989, 112(1): 156–160.
CHEN X, HENCH L L, GREENSPAN D, et al. Investigation on phase separation, nucleation and crystallization in bioactive glass-ceramics containing fluorophlogopite and fluorapatite [J]. Ceramics International, 1998, 24(5): 401–410.
CHENG K, WAN J, LIANG K. Effect of fluorine source on crystallization of R2O-MgO-Al2O3-B2O3-SiO2-F (R=K+, Na+) glasses [J]. Materials Science and Engineering A, 1999, 271(1/2): 167–171.
QIU L L, LIANG K M. Bulletin of the Chinese Ceramic Society, 2014, 42(6): 693–697.
TIAN Q B, LI C Z, LI H W, et al. Materials Reports, 2019, 33(13): 2191–2196.
TOHIDIFAR M R, ALIZADEH P, RIELLO P. Nucleation and crystallization behaviors of nano-crystalline lithium-mica glass-ceramic prepared via sol-gel method [J]. Materials Research Bulletin, 2012, 47(6): 1374–1378.
WU L H, CHEN F, ZHANG X C. Ceramics, 2008(12): 15–19.
HABELITZ S, CARL G, RÜSSEL C, et al. Mechanical properties of oriented mica glass ceramic [J]. Journal of Non-Crystalline Solids, 1997, 220(2): 291–298.
CHENG K G, WAN J L, L K M. Journal of Mechanical Engineering, 1998, 34(3): 61–64.
DENRY I L, HOLLOWAY J A. Effect of post-processing heat treatment on the fracture strength of a heat-pressed dental ceramic [J]. Journal of Biomedical Materials Research, 2004, 68B(2): 174–179.
DENRY I L, HOLLOWAY J A. Effect of heat pressing on the mechanical properties of a mica-based glass-ceramic [J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2004, 70(1): 37–42.
TIAN Q B, KONG D Y, ZHANG M, et al. Journal of Synthetic Crystals, 2014, 43(9): 2319–2323.
CHENG K, WAN J, LIANG K. Enhanced mechanical properties of oriented mica glass-ceramics [J]. Materials Letters, 1999, 39(6): 350–353.
MA X P, LI G X, SHENG L, et al. Journal of Xi’an Jiaotong University, 2003, 37(7): 726–730.
HABELITZ S, CARL G, RÜSSEL C. Processing, microstructure and mechanical properties of extruded mica glass-ceramics [J]. Materials Science & Engineering A, 2001, 307(1/2): 1–14.
YANG H, WU S, HU J, et al. Influence of nano-ZrO2 additive on the bending strength and fracture toughness of fluoro-silicic mica glass-ceramics [J]. Materials & Design, 2011, 32(3): 1590–1593.
LIANG K M, CHENG K G. Journal of Inorganic Materials, 1998, 13(3): 315–319.
TIAN Q B, WANG Y, YIN Y S. Journal of the Chinese Ceramic Society, 2005, 33(2): 245–248.
MONTAZERIAN M, ALIZADEH P, YEKTA B E. Pressureless sintering and mechanical properties of mica glass–ceramic/Y-PSZ composite [J]. Journal of the European Ceramic Society, 2008, 28(14): 2687–2692.
MONTAZERIAN M, ALIZADEH P, YEKTA B E. Processing and properties of a mica–apatite glass–ceramic reinforced with Y-PSZ particles [J]. Journal of the European Ceramic Society, 2008, 28(14): 2693–2699.
LIN G X, LIN Y W, WU X Q, et al. Materials Science Progress, 1991, 5(4): 358–361.
TAKITA Y, YAMAKAMI T, YAMAGUCHI T, et al. Chemical strengthening of zirconia/swelling mica composites by ion-exchange in molten salts [J]. Journal of Asian Ceramic Societies, 2021, 9(2): 598–608.