PDF (3.1 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Publishing Language: Chinese

Single Particle Analysis Method for Battery Materials

Wei XUGuoqiang ZOUHongshuai HOUXiaobo JI()
College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
Show Author Information

Abstract

Compared with the conventional analysis methods for the porous electrode, this paper represents some methods for single particle analysis in battery research, i.e., microeletrode contacting method, single particle collision method, microfluidic analysis method and spectral analysis method. In the single particle analysis methods. some intrinsic properties of the battery materials can be obtained by analyzing directly in single particle scale, thus clarifying the electrochemical reaction mechanism of the material.

CLC number: TQ152 Document code: A Article ID: 0454-5648(2022)01-0185-09

References

[1]

LI M, LU J, CHEN Z, et al. 30 years of lithium-ion batteries[J]. Adv Mate., 2018, 30(33): 1800561.

[2]

LI W, SONG B, MANTHIRAM A. High-voltage positive electrode materials for lithium-ion batteries[J]. Chem Soc. Rev, 2017, 46(10): 3006–3059.

[3]

HUANG Yangyang, FANG Chun, HUANG Yunhui. J Chin Ceram Soc, 2021, 49(2): 256–271.

[4]

WHITTINGHAM M S. Ultimate limits to intercalation reactions for lithium batteries[J]. Chem Rev, 2014, 114(23): 11414–11443.

[5]

YANG Z, ZHANG J, KINTNER-MEYER M C, et al. Electrochemical energy storage for green grid[J]. Chem Rev, 2011, 111(5): 3577–3613.

[6]

LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nat Chem, 2015, 7(1): 19–29.

[7]

GAO Jingyu, WANG Gongrui, LI Jie, et al. J Chin Ceram Soc, 2021, 49(7): 1278–1295.

[8]

ANDRE D, KIM S-J, LAMP P, et al. Future generations of cathode materials: An automotive industry perspective[J]. J Mater Chem A, 2015, 3(13): 6709–6732.

[9]

KIM U-H, KIM J-H, HWANG J-Y, et al. Compositionally and structurally redesigned high-energy Ni-rich layered cathode for next-generation lithium batteries[J]. Mater Today, 2019, 23: 26–36.

[10]

SUN F, HE X, JIANG X, et al. Advancing knowledge of electrochemically generated lithium microstructure and performance decay of lithium ion battery by synchrotron X-ray tomography[J]. Mater Today, 2019, 27: 21–32.

[11]

KIM T, SONG W T, SON D Y, et al. Lithium-ion batteries: Outlook on present, future, and hybridized technologies[J]. J Mater Chem A, 2019, 7(7): 2942–2964.

[12]

ANDERSON T J, ZHANG B. Single-nanoparticle electrochemistry through immobilization and collision[J]. Acc Chem Res, 2016, 49(11): 2625–2631.

[13]

RETTENWANDER D, REDHAMMER G J, GUIN M, et al. Arrhenius behavior of the bulk Na-ion conductivity in Na3Sc2(PO4)3 single crystals observed by microcontact impedance spectroscopy[J]. Chem Mater, 2018, 30(5): 1776–1781.

[14]

BARD A J, ZHOU H, KWON S J. Electrochemistry of single nanoparticles via electrocatalytic amplification[J]. Isr J Chem, 2010, 50(3): 267–276.

[15]

CHENG W, COMPTON R G. Electrochemical detection of nanoparticles by ‘nano-impact’ methods[J]. Trends Anal Chem, 2014, 58: 79–89.

[16]

XU W, TIAN Y, ZOU G, et al. Single particles electrochemistry for batteries[J]. J Electroanal Chem, 2020, 872: 113935.

[17]

XU W, ZOU G, HOU H, et al. Single Particle electrochemistry of collision[J]. Small, 2019, 15(32): 1804908.

[18]

PALACIOS R E, FAN F-R F, GREY J K, et al. Charging and discharging of single conjugated-polymer nanoparticles[J]. Nat Mater, 2007, 6(9): 680–685.

[19]

CHENG W, ZHOU X F, COMPTON R G. Electrochemical sizing of organic nanoparticles[J]. Angew Chem Int Ed Engl, 2013, 52(49): 12980–12982.

[20]

KÄTELHÖN E, FENG A, CHENG W, et al. Understanding nano-impact current spikes: electrochemical doping of impacting nanoparticles[J]. J Phys Chem C, 2016, 120(30): 17029–17034.

[21]

SOKOLOV S V, ELOUL S, KATELHON E, et al. Electrode-particle impacts: A users guide[J]. Phys Chem Chem Phys, 2016, 19(1): 28–43.

[22]

XU W, ZHOU Y, JI X. Lithium-ion-transfer kinetics of single LiFePO4 particles[J]. J Phys Chem Lett, 2018, 9(17): 4976–4980.

[23]

XU W, ZHOU Y, CHEN J, et al. Single LiNi0.8Mn0.1Co0.1O2 particle electrochemistry of collision[J]. J Power Sources, 2021, 506: 230228.

[24]

ZAMPARDI G, BATCHELOR-MCAULEY C, KATELHON E, et al. Lithium-ion-transfer kinetics of single LiMn2O4 particles[J]. Angew Chem Int Ed Engl, 2017, 56(2): 641–644.

[25]

ZAMPARDI G, SOKOLOV S V, BATCHELOR-MCAULEY C, et al. Potassium (De-)insertion processes in prussian blue particles: ensemble versus single nanoparticle behaviour[J]. Chem Eur J, 2017, 23(57): 14338–14344.

[26]

LÖFFLER T, CLAUSMEYER J, WILDE P, et al. Single entity electrochemistry for the elucidation of lithiation kinetics of TiO2 particles in non-aqueous batteries[J]. Nano Energy, 2019, 57: 827–834.

[27]

BRASILIENSE V, CLAUSMEYER J, DAUPHIN A L, et al. Opto-electrochemical in situ monitoring of the cathodic formation of single cobalt nanoparticles[J]. Angew Chem Int Ed, 2017, 56(35): 10598–10601.

[28]

DOKKO K, NAKATA N, KANAMURA K. High rate discharge capability of single particle electrode of LiCoO2[J]. J Power Sources, 2009, 189(1): 783–785.

[29]

HU J, LI W, DUAN Y, et al. Single-particle performances and properties of LiFePO4 nanocrystals for Li-ion batteries[J]. Adv Energy Mater, 2017, 7(5): 1601894.

[30]

KANAMURA K, YAMADA Y, ANNAKA K, et al. Electrochemical evaluation of active materials for lithium ion batteries by one (single) particle measurement[J]. Electrochemistry, 2016, 84(10): 759–765.

[31]

MUNAKATA H, TAKEMURA B, SAITO T, et al. Evaluation of real performance of LiFePO4 by using single particle technique[J]. J Power Sources, 2012, 217: 444–448.

[32]

UMEDA M, DOKKO K, FUJITA Y, et al. Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode: Part Ⅰ. Graphitized carbon[J]. Electrochim Acta, 2001, 47(6): 885–890.

[33]

JEBARAJ A J J, SCHERSON D A. Microparticle electrodes and single particle microbatteries: electrochemical and in situ microRaman spectroscopic studies[J]. Acc Chem Res, 2013, 46(5): 1192–1205.

[34]

ANDO K, YAMADA Y, NISHIKAWA K, et al. Degradation analysis of LiNi0.8Co0.15Al0.05O2 for cathode material of lithium-ion battery using single-particle measurement[J]. ACS Appl Energy Mater, 2018, 1(9): 4536–4544.

[35]

TOJO T, KAWASHIRI S, TSUDA T, et al. Electrochemical performance of single Li4Ti5O12 particle for lithium ion battery anode[J]. J Electro Chem, 2019, 836: 24–29.

[36]

TSAI P-C, WEN B, WOLFMAN M, et al. Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries[J]. Energy Environ Sci, 2018, 11(4): 860–871.

[37]

LU W, ZHOU X, LIU Y, et al. Crack-free silicon monoxide as anodes for lithium-ion batteries[J]. ACS Appl Mater Interf, 2020, 12(51): 57141–57145.

[38]

ZHOU X, LI T, CUI Y, et al. In situ focused ion beam scanning electron microscope study of microstructural evolution of single tin particle anode for Li-ion batteries[J]. ACS Appl Mater Interf, 2019, 11(2): 1733–1738.

[39]

SAITO T, NISHIKAWA K, NAKAMURA T, et al. Precise analysis of resistance components and estimation of number of particles in Li-ion battery electrode sheets using LiCoO2 single-particle electrochemical properties[J]. J Phys Chem C, 2020, 124(31): 16758–16762.

[40]

GENG L, DENECKE M E, FOLEY S B, et al. Electrochemical characterization of lithium cobalt oxide within aqueous flow suspensions as an indicator of rate capability in lithium-ion battery electrodes[J]. Electrochim Acta, 2018, 281: 822–830.

[41]

QI Z, KOENIG G M. A carbon-free lithium-ion solid dispersion redox couple with low viscosity for redox flow batteries[J]. J Power Sources, 2016, 323: 97–106.

[42]

QI Z, KOENIG G M. Electrochemical evaluation of suspensions of lithium-ion battery active materials as an indicator of rate capability[J]. J Electrochem Soc, 2017, 164(2): A151–A155.

[43]

QI Z, DONG H, KOENIG G M. Electrochemical characterization of lithium-ion battery cathode materials with aqueous flowing dispersions[J]. Electrochim Acta, 2017, 253: 163–170.

[44]

AKADA K, SUDAYAMA T, ASAKURA D, et al. Operando measurement of single crystalline Li4Ti5O12 with octahedral-like morphology by microscopic X-ray photoelectron spectroscopy[J]. J Electro Spectrosc Relat Phenom, 2019, 233: 64–68.

[45]

BOESENBERG U, MEIRER F, LIU Y, et al. Mesoscale phase distribution in single particles of LiFePO4 following lithium deintercalation[J]. Chem Mater, 2013, 25(9): 1664–1672.

[46]

KAN W H, DENG B, XU Y, et al. Understanding the effect of local short-range ordering on lithium diffusion in Li1.3Nb0.3Mn0.4O2 single-crystal cathode[J]. Chem, 2018, 4(9): 2108–2123.

[47]

KUPPAN S, XU Y, LIU Y, et al. Phase transformation mechanism in lithium manganese nickel oxide revealed by single-crystal hard X-ray microscopy[J]. Nat Commun, 2017, 8(1): 14309.

[48]

LIU H, STROBRIDGE F C, BORKIEWICZ O J, et al. Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes[J]. Science, 2014, 344(6191): 1252817.

[49]

SONG J, PARK J, APPIAH W A, et al. 3D electrochemical model for a single secondary particle and its application for operando analysis[J]. Nano Energy, 2019, 62: 810–817.

[50]

WOLF M, MAY B M, CABANA J. Visualization of electrochemical reactions in battery materials with X-ray microscopy and mapping[J]. Chem Mater, 2017, 29(8): 3347–3362.

[51]

XU Y, HU E, ZHANG K, et al. In situ visualization of state-of-charge heterogeneity within a LiCoO2 particle that evolves upon cycling at different Rates[J]. ACS Energy Lett, 2017, 2(5): 1240–1245.

[52]

YU Y S, KIM C, LIU Y, et al. Nonequilibrium pathways during electrochemical phase transformations in single crystals revealed by dynamic chemical imaging at nanoscale resolution[J]. Adv Energy Mater, 2015, 5(7): 1402040.

[53]

ULVESTAD A, SINGER A, CLARK J N, et al. Topological defect dynamics in operando battery nanoparticles[J]. Science, 2015, 348(6241): 1344–1347.

[54]

SUN L, JIANG D, LI M, et al. Collision and Oxidation of Single LiCoO2 nanoparticles studied by correlated optical imaging and electrochemical recording[J]. Anal Chem, 2017, 89(11): 6050–6055.

[55]

JIANG D, JIANG Y, LI Z, et al. Optical imaging of phase transition and Li-ion diffusion kinetics of single LiCoO2 nanoparticles during electrochemical cycling[J]. J Am Chem Soc, 2017, 139(1): 186–192.

[56]

YUAN T, WANG W. Studying the electrochemistry of single nanoparticles with surface plasmon resonance microscopy[J]. Curr Opin Electrochem, 2017, 6(1): 17–22.

[57]

LUCAS I T, MCLEOD A S, SYZDEK J S, et al. IR near-field spectroscopy and imaging of single LixFePO4 microcrystals[J]. Nano Lett, 2015, 15(1): 1–7.

[58]

TSAI E H R, BILLAUD J, SANCHEZ D F, et al. Correlated X-ray 3D ptychography and diffraction microscopy visualize links between morphology and crystal structure of lithium-rich cathode materials[J]. iScience, 2019, 11: 356–365.

[59]

ASSEFA T A, SUZANA A F, WU L, et al. Imaging the phase transformation in single particles of the lithium titanate anode for lithium-ion batteries[J]. ACS Appl Energy Mater, 2021, 4(1): 111–118.

[60]

EVANS R C, NILSSON Z N, SAMBUR J B. High-throughput single-nanoparticle-level imaging of electrochemical ion insertion reactions[J]. Anal Chem, 2019, 91(23): 14983–14991.

[61]

YAMANAKA T, MINATO T, OKAZAKI K-I, et al. Evolution and migration of lithium-deficient phases during electrochemical delithiation of large single crystals of LiFePO4[J]. ACS Appl Energy Mater, 2018, 1(3): 1140–1145.

[62]

XU Z, HOU D, KAUTZ D J, et al. Charging reactions promoted by geometrically necessary dislocations in battery materials revealed by in situ single-particle synchrotron measurements[J]. Adv Mater, 2020, 32(37): 2003417.

[63]

EBNER M, MARONE F, STAMPANONI M, et al. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries[J]. Science, 2013, 342(6159): 716–720.

[64]

ZHANG X, VAN HULZEN M, SINGH D P, et al. Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling[J]. Nat Commun, 2015, 6(1): 8333.

[65]

WANG J, CHEN-WIEGART Y-C K, WANG J. In operando tracking phase transformation evolution of lithium iron phosphate with hard X-ray microscopy[J]. Nat Commun, 2014, 5(1): 4570.

[66]

WEKER J N, LIU N, MISRA S, et al. In situ nanotomography and operando transmission X-ray microscopy of micron-sized Ge particles[J]. Energy Envir Sci, 2014, 7(8): 2771–2777.

Journal of the Chinese Ceramic Society
Pages 185-193
Cite this article:
XU W, ZOU G, HOU H, et al. Single Particle Analysis Method for Battery Materials. Journal of the Chinese Ceramic Society, 2022, 50(1): 185-193. https://doi.org/10.14062/j.issn.0454-5648.20210592
Metrics & Citations  
Article History
Copyright
Return