The development and application of high performance potassium ion batteries (PIBs) is a major demand for China's strategic emerging industries, and it is also a new system and direction for the development of energy storage secondary batteries. However, the current research on PIBs is still in its initial stage, and still faces the challenges of slow diffusion kinetics, unclear transport mechanism, rapid capacity decay and difficulty in revealing the intrinsic decay mechanism. This paper summarizes the latest research results of the National Natural Science Foundation of China (NSFC) project "Surface/Interface Tuning and In Situ Interaction Mechanism of Hierarchical Mesoporous Nanowire Cathodes for Potassium Ion Battery", systematically describes the key scientific problems and technical bottlenecks in PIB research, and points out the efficient strategies to solve these problems and bottlenecks.
YANG Y Q, BREMNER S, MENICTAS C, et al. Battery energy storage system size determination in renewable energy systems: A review[J]. Renew Sust Energy Rev, 2018, 91: 109-125.
DAVIES D M, VERDE M G, MNYSHENKO O, et al. Combined economic and technological evaluation of battery energy storage for grid applications[J]. Nat Energy, 2019, 4(1): 42-50.
LI M, LU J, CHEN Z W, et al. 30 years of lithium-ion batteries[J]. Adv Mater, 2018, 30(33): 1800561.
WANG W, ZHOU J H, WANG Z P, et al. Short-range order in mesoporous carbon boosts potassium-ion battery performance[J]. Adv Energy Mater, 2018, 8(5): 1701648.
GE J, FAN L, RAO A M, et al. Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries[J]. Nat Sustain, 2022, 5(3): 225-234.
LIAO J, CHEN C, HU Q, et al. A low-strain phosphate cathode for high-rate and ultralong cycle-life potassium-ion batteries[J]. Angew Chem Int Ed Eng, 2021, 60(48): 25575-25582.
JI B, YAO W, ZHENG Y, et al. A fluoroxalate cathode material for potassium-ion batteries with ultra-long cyclability[J]. Nat Commun, 2020, 11(1): 1-10.
HOSAKA T, KUBOTA K, HAMEED A S, et al. Research development on K-ion batteries[J]. Chem Rev, 2020, 120(14): 6358-6466.
QIAO F, MENG J S, WANG J J, et al. Building carbon cloth-based dendrite-free potassium metal anodes for potassium metal pouch cells[J]. J Mater Chem A, 2021, 9(40): 23046-23054.
LIU Z, WANG J, LU B. Plum pudding model inspired KVPO4F@3DC as high-voltage and hyperstable cathode for potassium ion batteries[J]. Sci Bull, 2020, 65(15): 1242-1251.
ZHANG C, XU Y, ZHOU M, et al. Potassium Prussian blue nanoparticles: A low-cost cathode material for potassium-ion batteries[J]. Adv Funct Mater, 2017, 27(4): 1604307.
WU Z, ZOU J, CHEN S, et al. Potassium-ion battery cathodes: Past, present, and prospects[J]. J Power Sources, 2021, 484: 229307.
RAJAGOPALAN R, TANG Y G, JI X B, et al. Advancements and challenges in potassium ion batteries: A comprehensive review[J]. Adv Funct Mater, 2020, 30(12): 1909486.
MIN X, XIAO J, FANG M H, et al. Potassium-ion batteries: Outlook on present and future technologies[J]. Energy Environ Sci, 2021, 14(4): 2186-243.
PRAMUDITA J C, SEHRAWAT D, GOONETILLEKE D, et al. An initial review of the status of electrode materials for potassium-ion batteries[J]. Adv Energy Mater, 2017, 7(24): 1602911.
ZHANG W, LIU Y, GUO Z. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering[J]. Sci Adv, 2019, 5(5): eaav7412.
ZHOU G M, XU L, HU G W, et al. Nanowires for electrochemical energy storage[J]. Chem Rev, 2019, 119(20): 11042-11109.
XIAO Z, WANG X, MENG J, et al. Advances and perspectives on one-dimensional nanostructure electrode materials for potassium-ion batteries[J]. Mater Today, 2022,56: 114-134.
XIA Y N, YANG P D, SUN Y G, et al. One-dimensional nanostructures: Synthesis, characterization, and applications[J]. Adv Mater, 2003, 15(5): 353-389.
JIN T, HAN Q Q, WANG Y J, et al. 1D nanomaterials: Design, synthesis, and applications in sodium-ion batteries[J]. Small, 2018, 14(2): 1703086.
SAMYKANO M. Progress in one-dimensional nanostructures[J]. Mater Charact, 2021, 179: 111373.
NIU C J, MENG J S, WANG X P, et al. General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis[J]. Nat Commun, 2015, 6(1): 7402.
WANG X, XU X, NIU C, et al. Earth abundant Fe/Mn-based layered oxide interconnected nanowires for advanced K-ion full batteries[J]. Nano Lett, 2017, 17(1): 544-550.
LUO W, LI F, GAUMET J J, et al. Bottom-up confined synthesis of nanorod-in-nanotube structured Sb@N-C for durable lithium and sodium storage[J]. Adv Energy Mater, 2018, 8(19): 1703237.
GUO R T, LIU X, WEN B, et al. Engineering mesoporous structure in amorphous carbon boosts potassium storage with high initial coulombic efficiency[J]. Nano-micro Lett, 2020, 12(1): 1-12.
WANG X P, HAN K, WANG C Y, et al. Graphene oxide-wrapped dipotassium terephthalate hollow microrods for enhanced potassium storage[J]. Chem Commun, 2018, 54(78): 11029-11032.
WANG X P, HAN K, QIN D D, et al. Polycrystalline soft carbon semi-hollow microrods as anode for advanced K-ion full batteries[J]. Nanoscale, 2017, 9(46): 18216-18222.
HUANG M, WANG X P, MENG J S, et al. Ultra-fast and high-stable near-pseudocapacitance intercalation cathode for aqueous potassiumion storage[J]. Nano Energy, 2020, 77: 105069.
ZHANG X, HE Q, XU X M, et al. Insights into the storage mechanism of layered VS2 cathode in alkali metal-ion batteries[J]. Adv Energy Mater, 2020, 10(22): 1904118.
XIAO Z T, MENG J S, XIA F J, et al. K+ modulated K+/vacancy disordered layered oxide for high-rate and high-capacity potassium-ion batteries[J]. Energy Environ Sci, 2020, 13(9): 3129-3137.
XIAO Z, XIA F, XU L, et al. Suppressing the Jahn-Teller effect in Mn-based layered oxide cathode toward long-life potassium-ion batteries[J]. Adv Funct Mater, 2022, 32(14): 2108244.
LIU F, MENG J S, JIANG G P, et al. Coordination engineering of metal single atom on carbon for enhanced and robust potassium storage[J]. Matter, 2021, 4(12): 4006-4021.
MA X Y, LUO W, YAN M Y, et al. In situ characterization of electrochemical processes in one dimensional nanomaterials for energy storages devices[J]. Nano Energy, 2016, 24: 165-188.
LUO W, LI F, ZHANG W, et al. Encapsulating segment-like antimony nanorod in hollow carbon tube as long-lifespan, high-rate anodes for rechargeable K-ion batteries[J]. Nano Res, 2019, 12(5): 1025-1031.
USAI L, LAMB J J, HERTWICH E, et al. Analysis of the Li-ion battery industry in light of the global transition to electric passenger light duty vehicles until 2050[J]. Environ Res: Infrastruct Sustain, 2022, 2(1): 011002.
LIU F, LIU S Y, MENG J S, et al. Stabilizing conversion reaction electrodes by MOF derived N-doped carbon shell for highly reversible lithium storage[J]. Nano Energy, 2020, 73: 104758.
MAI L Q, DONG Y F, XU L, et al. Single nanowire electrochemical devices[J]. Nano Lett, 2010, 10(10): 4273-4278.
WANG P Y, YAN M Y, MENG J S, et al. Oxygen evolution reaction dynamics monitored by an individual nanosheet-based electronic circuit[J]. Nat Commun, 2017, 8(1): 645.
HU P, YAN M Y, WANG X P, et al. Single-nanowire electrochemical probe detection for internally optimized mechanism of porous graphene in electrochemical devices[J]. Nano Lett, 2016, 16(3): 1523-1529.
YAN M Y, PAN X L, WANG P Y, et al. Field-effect tuned adsorption dynamics of VSe2 osheets for enhanced hydrogen evolution reaction[J]. Nano Lett, 2017, 17(7): 4109-4115.
YAN M Y, WANG P Y, PAN X L et al. Quadrupling the stored charge by extending the accessible density of states[J]. Chem, 2022, 8(9): 2410-2418.