Home iEnergy Article
PDF (2.7 MB)
Collect
Submit Manuscript
Letter | Open Access

Crystallization regulation for stable blade-coated flexible perovskite solar modules

Hua Zhong1,2Fei Zhang1,2()
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
Show Author Information

Abstract

Effective perovskite crystallization control strategies for flexible substrates with scalable processing techniques have rarely been reported and remain an important challenge. In this study, 3-mercaptobenzoic acid (3-MBA) was introduced into the perovskite precursor to modulate the crystallization dynamics, facilitating rapid nucleation while slowing down crystal growth. This approach enabled the formation of uniform, dense large-area perovskite films on flexible substrates. Consequently, a 12 cm² flexible perovskite solar module achieved a power conversion efficiency (PCE) of 16.43%. Additionally, the module exhibited enhanced mechanical stability under various bending radii and improved light stability, marking a substantial advance toward the practical application of flexible perovskite solar modules.

Electronic Supplementary Material

Download File(s)
iEng-2024-0042_ESM.pdf (1.4 MB)

References

[1]

Tian, R., Zhou, S., Meng, Y., Liu, C., Ge, Z. (2024). Material and device design of flexible perovskite solar cells for next-generation power supplies. Advanced Materials, 36: 2311473.

[2]

Gao, Y., Huang, K., Long, C., Ding, Y., Chang, J., Zhang, D., Etgar, L., Liu, M., Zhang, J., Yang, J. (2022). Flexible perovskite solar cells: From materials and device architectures to applications. ACS Energy Letters, 7: 1412–1445.

[3]

Aftab, S., Hussain, S., Kabir, F., Aslam, M., Rajpar, A. H., Al-Sehemi, A. G. (2024). Advances in flexible perovskite solar cells: A comprehensive review. Nano Energy, 120: 109112.

[4]

Qiu, J., Shi, Y., Zhang, F. (2024). The rise of flexible perovskite photovoltaics. Device, 2: 100371.

[5]

Ren, N., Tan, L., Li, M., Zhou, J., Ye, Y., Jiao, B., Ding, L., Yi, C. (2024). 25% - Efficiency flexible perovskite solar cells via controllable growth of SnO2. iEnergy, 3: 39–45.

[6]

Tong, X., Xie, L., Li, J., Pu, Z., Du, S., Yang, M., Gao, Y., He, M., Wu, S., Mai, Y., et al. (2024). Large orientation angle buried substrate enables efficient flexible perovskite solar cells and modules. Advanced Materials, 36: 2407032.

[7]

Tang, X., Shao, B., Li, B., Li, M., Jiang, L., Abulikemu, M., Zhu, H., Xia, J., Bakr, O. M., Liu, H. (2024). Reconstruction of electron-selective interface via multifunctional chemical bridging enables high-performance rigid and flexible perovskite solar cells. ACS Energy Letters, 9: 5679–5687.

[8]

Xu, W., Chen, B., Zhang, Z., Liu, Y., Xian, Y., Wang, X., Shi, Z., Gu, H., Fei, C., Li, N., et al. (2024). Multifunctional entinostat enhances the mechanical robustness and efficiency of flexible perovskite solar cells and minimodules. Nature Photonics, 18: 379–387.

[9]

Wang, Z., Zeng, L., Zhang, C., Lu, Y., Qiu, S., Wang, C., Liu, C., Pan, L., Wu, S., Hu, J., et al. (2020). Rational interface design and morphology control for blade-coating efficient flexible perovskite solar cells with a record fill factor of 81%. Advanced Functional Materials, 30: 2001240.

[10]

Kong, X., Jiang, Y., Li, Z., Zhou, Y., Xu, Z., Cong, C., Gao, X., Lu, X., Zhou, G., Liu, J. M., et al. (2021). Highly reproducible fabrication of perovskite films with an ultrawide antisolvent dripping window for large-scale flexible solar cells. Solar RRL, 5: 2000646.

[11]

Chen, X., Cai, W., Niu, T., Wang, H., Liu, C., Zhang, Z., Du, Y., Wang, S., Cao, Y., Liu, P., et al. (2024). Crystallization control via ligand–perovskite coordination for high-performance flexible perovskite solar cells. Energy & Environmental Science, 17: 6256–6267.

[12]

Dunlap-Shohl, W. A., Zhou, Y., Padture, N. P., Mitzi, D. B. (2019). Synthetic approaches for halide perovskite thin films. Chemical Reviews, 119: 3193–3295.

[13]

Whitehead, C., Özkar, S., Finke, R. G. (2019). LaMer’s 1950 model for particle formation of instantaneous nucleation and diffusion-controlled growth: A historical look at the model’s origins, assumptions, equations, and underlying sulfur sol formation kinetics data. Chemistry of Materials, 31: 7116–7132.

[14]

Deng, Y., Van Brackle, C. H., Dai, X., Zhao, J., Chen, B., Huang, J. (2019). Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films. Science Advances, 5: eaax7537.

[15]

Hamill, J. C. Jr, Schwartz, J., Loo, Y. L. (2018). Influence of solvent coordination on hybrid organic–inorganic perovskite formation. ACS Energy Letters, 3: 92–97.

[16]

Song, T. B., Yuan, Z., Mori, M., Motiwala, F., Segev, G., Masquelier, E., Stan, C. V., Slack, J. L., Tamura, N., Sutter-Fella, C. M. (2020). Revealing the dynamics of hybrid metal halide perovskite formation via multimodal in situ probes. Advanced Functional Materials, 30: 1908337.

[17]

Pratap, S., Babbe, F., Barchi, N. S., Yuan, Z., Luong, T., Haber, Z., Song, T. B., Slack, J. L., Stan, C. V., Tamura, N., et al. (2021). Out-of-equilibrium processes in crystallization of organic-inorganic perovskites during spin coating. Nature Communications, 12: 5624.

[18]

Wang, K. L., Su, Z. H., Lou, Y. H., Lv, Q., Chen, J., Shi, Y. R., Chen, C. H., Zhou, Y. H., Gao, X. Y., Wang, Z. K., et al. (2022). Rapid nucleation and slow crystal growth of CsPbI3 films aided by solvent molecular sieve for perovskite photovoltaics. Advanced Energy Materials, 12: 2201274.

[19]

Liu, C., Cheng, Y. B., Ge, Z. (2020). Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chemical Society Reviews, 49: 1653–1687.

[20]

Xu, H., Liu, G., Xu, X., Xu, S., Zhang, L., Chen, X., Zheng, H., Pan, X. (2020). Hydrophobic 2D perovskite-modified layer with polyfunctional groups for enhanced performance and high moisture stability of perovskite solar cells. Solar RRL, 4: 2000647.

[21]

Wu, Z., Jiang, M., Liu, Z., Jamshaid, A., Ono, L. K., Qi, Y. (2020). Highly efficient perovskite solar cells enabled by multiple ligand passivation. Advanced Energy Materials, 10: 1903696.

[22]

Bu, T., Li, J., Li, H., Tian, C., Su, J., Tong, G., Ono, L. K., Wang, C., Lin, Z., Chai, N., et al. (2021). Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science, 372: 1327–1332.

[23]

Qin, M., Tse, K., Lau, T. K., Li, Y., Su, C. J., Yang, G., Chen, J., Zhu, J., Jeng, U. S., Li, G., et al. (2019). Manipulating the mixed-perovskite crystallization pathway unveiled by in situ GIWAXS. Advanced Materials, 31: 1901284.

[24]

Si, H., Zhang, S., Ma, S., Xiong, Z., Kausar, A., Liao, Q., Zhang, Z., Sattar, A., Kang, Z., Zhang, Y. (2020). Emerging conductive atomic force microscopy for metal halide perovskite materials and solar cells. Advanced Energy Materials, 10: 1903922.

[25]

Reza, K. M., Gurung, A., Bahrami, B., Chowdhury, A. H., Ghimire, N., Pathak, R., Rahman, S. I., Laskar, M. A. R., Chen, K., Bobba, R. S., et al. (2021). Grain boundary defect passivation in quadruple cation wide-bandgap perovskite solar cells. Solar RRL, 5: 2000740.

[26]

Xiao, Q., Zhao, Y., Huang, Z., Liu, Y., Chen, P., Wang, S., Zhang, S., Zhang, Y., Song, Y. (2024). Benzoyl sulfonyl molecules for bilateral passivation and crystalline regulation at buried interfaces toward high-performance perovskite solar cells. Advanced Functional Materials, 34: 2314472.

[27]

Huang, C., Tan, S., Yu, B., Li, Y., Shi, J., Wu, H., Luo, Y., Li, D., Meng, Q. (2024). Meniscus-modulated blade coating enables high-quality α-phase formamidinium lead triiodide crystals and efficient perovskite minimodules. Joule, 8: 2539–2553.

[28]

Chung, J., Kim, S. W., Li, Y., Mariam, T., Wang, X., Rajakaruna, M., Saeed, M. M., Abudulimu, A., Shin, S. S., Guye, K. N., et al. (2023). Engineering perovskite precursor inks for scalable production of high-efficiency perovskite photovoltaic modules. Advanced Energy Materials, 13: 2300595.

[29]

Gong, C., Wang, C., Meng, X., Fan, B., Xing, Z., Shi, S., Hu, T., Huang, Z., Hu, X., Chen, Y. (2024). An equalized flow velocity strategy for perovskite colloidal particles in flexible perovskite solar cells. Advanced Materials, 36: 2405572.

[30]

Song, F., Zheng, D., Feng, J., Liu, J., Ye, T., Li, Z., Wang, K., Liu, S., Yang, D. (2024). Mechanical durability and flexibility in perovskite photovoltaics: Advancements and applications. Advanced Materials, 36: 2312041.

[31]

Yang, T. Y., Jeon, N. J., Shin, H. W., Shin, S. S., Kim, Y. Y., Seo, J. (2019). Achieving long-term operational stability of perovskite solar cells with a stabilized efficiency exceeding 20% after 1000 h. Advanced Science, 6: 1900528.

iEnergy
Pages 189-193
Cite this article:
Zhong H, Zhang F. Crystallization regulation for stable blade-coated flexible perovskite solar modules. iEnergy, 2024, 3(4): 189-193. https://doi.org/10.23919/IEN.2024.0024
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return