Ovarian aging is a progressive and dynamic process closely related to age, in which ovarian function gradually declines until exhaustion; this process is influenced by a combination of factors, including genetics, lifestyle, environment, psychosocial factors, and iatrogenic factors. It is closely related to the quantity and quality of follicles in the ovaries and is characterized by changes in female hormone levels and fertility. Therefore, understanding the factors influencing ovarian aging, its molecular mechanisms, and strategies for prevention and intervention is of significant importance for comprehending and addressing the challenges posed by ovarian aging.
Xue, K. Y., Nie, Y. F., Wang, Y., Hu, Z. Number of births and later-life depression in older adults: Evidence from China. International Journal of Environmental Research and Public Health, 2022, 19(18): 11780. https://doi.org/10.3390/ijerph191811780.
Broekmans, F. J., Knauff, E. A. H., te Velde, E. R., Macklon, N. S., Fauser, B. C. Female reproductive ageing: Current knowledge and future trends. Trends in Endocrinology & Metabolism, 2007, 18(2): 58–65. https://doi.org/10.1016/j.tem.2007.01.004.
Rosner, B., Colditz, G. A. Age at menopause: Imputing age at menopause for women with a hysterectomy with application to risk of postmenopausal breast cancer. Annals of Epidemiology, 2011, 21(6): 450–460. https://doi.org/10.1016/j.annepidem.2011.02.010.
Couzin-Frankel, J. Faulty DNA repair linked to ovarian aging in mice and humans. Science, 2013, 339(6121): 749. https://doi.org/10.1126/science.339.6121.749.
Mason, J. B., Parkinson, K. C., Habermehl, T. L. Orthotopic ovarian transplantation procedures to investigate the life- and health-span influence of ovarian senescence in female mice. Journal of Visualized Experiments, 2018, 132: e56638. https://doi.org/10.3791/56638.
Wang, L., Chen, J., Lu, C. H. Circular RNA Foxo3 enhances progression of ovarian carcinoma cells. Aging, 2021, 13(18): 22432–22443. https://doi.org/10.18632/aging.203550.
Zhu, Z. W., Xia, W. P., Cui, Y., Zeng, F., Li, Y., Yang, Z. Q., Chen, H. Q. Klotho gene polymorphisms are associated with healthy aging and longevity: Evidence from a meta-analysis. Mechanisms of Ageing and Development, 2019, 178: 33–40. https://doi.org/10.1016/j.mad.2018.12.003.
Kasapoğlu, I., Seli, E. Mitochondrial dysfunction and ovarian aging. Endocrinology, 2020, 161(2): 1–11. https://doi.org/10.1210/endocr/bqaa001.
Schuurman, T., Song, J. Y., Wolters, V., van de Ven, M., van Trommel, N., Beerendonk, I., Amant, F., Lok, C. Effects of chemotherapy on ovaries of pregnant mice. Archives of Gynecology and Obstetrics, 2023, 307(4): 1163–1176. https://doi.org/10.1007/s00404-022-06793-w.
van Kasteren, Y. M., Hundscheid, R. D. L., Smits, A. P. T., Cremers, F. P. M., van Zonneveld, P., Braat, D. D. M. Familial idiopathic premature ovarian failure: An overrated and underestimated genetic disease. Human Reproduction, 1999, 14(10): 2455–2459. https://doi.org/10.1093/humrep/14.10.2455.
Perry, J. R., Hsu, Y. H., Chasman, D. I., Johnson, A. D., Elks, C., Albrecht, E., Andrulis, I. L., Beesley, J., Berenson, G. S., Bergmann, S. et al. DNA mismatch repair gene MSH6 implicated in determining age at natural menopause. Human Molecular Genetics, 2014, 23(9): 2490–2497. https://doi.org/10.1093/hmg/ddt620.
Ks, R., Fr, D., Hussain, J., Martinez-Marchal, A., Ce, A. K., Azad, A., Thompson, D. J. Genetic insights into biological mechanisms governing human ovarian ageing. Yearbook of Paediatric Endocrinology, 2022, 19: 15.9. https://doi.org/10.1530/ey.19.15.9.
Cavalcante, M. B., Sampaio, O. G. M., Câmara, F. E. A., Schneider, A., de Ávila, B. M., Prosczek, J., Masternak, M. M., Campos, A. R. Ovarian aging in humans: Potential strategies for extending reproductive lifespan. GeroScience, 2023, 45(4): 2121–2133. https://doi.org/10.1007/s11357-023-00768-8.
Vollenhoven, B., Hunt, S. Ovarian ageing and the impact on female fertility. F1000Research, 2018, 7: 1835. https://doi.org/10.12688/f1000research.16509.1.
Wu, M., Guo, Y. C., Wei, S. M., Xue, L. R., Tang, W. C., Chen, D., Xiong, J. Q., Huang, Y. B., Fu, F. F., Wu, C. Q. et al. Biomaterials and advanced technologies for the evaluation and treatment of ovarian aging. Journal of Nanobiotechnology, 2022, 20(1): 374. https://doi.org/10.1186/s12951-022-01566-8.
Hung, L. J., Chan, T. F., Wu, C. H., Chiu, H. F., Yang, C. Y. Traffic air pollution and risk of death from ovarian cancer in Taiwan: Fine particulate matter (PM2.5) as a proxy marker. Journal of Toxicology and Environmental Health, Part A, 2012, 75(3): 174–182. https://doi.org/10.1080/15287394.2012.641200.
Xiong, J. Q., Xue, L. R., Li, Y., Tang, W. C., Chen, D., Zhang, J. J., Dai, J., Zhou, S., Lu, Z. Y., Wu, M. et al. THERAPY OF ENDOCRINE DISEASE: Novel protection and treatment strategies for chemotherapy-associated ovarian damage. European Journal of Endocrinology, 2021, 184(5): R177–R192. https://doi.org/10.1530/eje-20-1178.
Bhasin, S., Cunningham, G. R., Hayes, F. J., Matsumoto, A. M., Snyder, P. J., Swerdloff, R. S., Montori, V. M. Testosterone therapy in men with androgen deficiency syndromes: An endocrine society clinical practice guideline. The Journal of Clinical Endocrinology & Metabolism, 2010, 95(6): 2536–2559. https://doi.org/10.1210/jc.2009-2354.
Kim, C. W., Shim, H. S., Jang, H., Song, Y. G. The effects of uterine artery embolization on ovarian reserve. European Journal of Obstetrics & Gynecology and Reproductive Biology, 2016, 206: 172–176. https://doi.org/10.1016/j.ejogrb.2016.09.001.
Cosgrove, C. M., Salani, R. Ovarian effects of radiation and cytotoxic chemotherapy damage. Best Practice & Research Clinical Obstetrics & Gynaecology, 2019, 55: 37–48. https://doi.org/10.1016/j.bpobgyn.2018.07.008.
Ford, E. A., Beckett, E. L., Roman, S. D., McLaughlin, E. A., Sutherland, J. M. Advances in human primordial follicle activation and premature ovarian insufficiency. Reproduction, 2020, 159(1): R15–R29. https://doi.org/10.1530/rep-19-0201.
Lasiene, K., Gasiliunas, D., Juodziukyniene, N., Vitkus, A. Age-related morphometrical peculiarities of Lithuanian women’s primordial ovarian follicles. Reproductive Biology and Endocrinology, 2018, 16(1): 66. https://doi.org/10.1186/s12958-018-0384-4.
Herbig, U., Jobling, W. A., Chen, B. P. C., Chen, D. J., Sedivy, J. M. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21CIP1, but not p16INK4a. Molecular Cell, 2004, 14(4): 501–513. https://doi.org/10.1016/s1097-2765(04)00256-4.
Yamada-Fukunaga, T., Yamada, M., Hamatani, T., Chikazawa, N., Ogawa, S., Akutsu, H., Miura, T., Miyado, K., Tarín, J. J., Kuji, N. et al. Age-associated telomere shortening in mouse oocytes. Reproductive Biology and Endocrinology, 2013, 11(1): 108. https://doi.org/10.1186/1477-7827-11-108.
Polonio, A. M., Chico-Sordo, L., Córdova-Oriz, I., Medrano, M., García-Velasco, J. A., Varela, E. Impact of ovarian aging in reproduction: From telomeres and mice models to ovarian rejuvenation. The Yale Journal of Biology and Medicine, 2020, 93(4): 561–569.
Hernandez-Segura, A., Nehme, J., Demaria, M. Hallmarks of cellular senescence. Trends in Cell Biology, 2018, 28(6): 436–453. https://doi.org/10.1016/j.tcb.2018.02.001.
De Vos, M., Devroey, P., Fauser, B. C. Primary ovarian insufficiency. The Lancet, 2010, 376(9744): 911–921. https://doi.org/10.1016/s0140-6736(10)60355-8.
Titus, S., Li, F., Stobezki, R., Akula, K., Unsal, E., Jeong, K., Dickler, M., Robson, M., Moy, F., Goswami, S. et al. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Science Translational Medicine, 2013, 5(172): e3004925. https://doi.org/10.1126/scitranslmed.3004925.
Chun, Y., Kim, J. Autophagy: An essential degradation program for cellular homeostasis and life. Cells, 2018, 7(12): 278. https://doi.org/10.3390/cells7120278.
Guo, Z. X., Yu, Q. Role of mTOR signaling in female reproduction. Frontiers in Endocrinology, 2019, 10: 692. https://doi.org/10.3389/fendo.2019.00692.
Li, Q. Y., Cai, M. H., Wang, J., Gao, Q., Guo, X. C., Jia, X. T., Xu, S. S., Zhu, H. Decreased ovarian function and autophagy gene methylation in aging rats. Journal of Ovarian Research, 2020, 13(1): 12. https://doi.org/10.1186/s13048-020-0615-0.
Bagchi, D., Bagchi, M., Stohs, S. J., Das, D. K., Ray, S. D., Kuszynski, C. A., Joshi, S. S., Pruess, H. G. Free radicals and grape seed proanthocyanidin extract: Importance in human health and disease prevention. Toxicology, 2000, 148(2-3): 187–197. https://doi.org/10.1016/s0300-483x(00)00210-9.
Azami, S. H., Nazarian, H., Abdollahifar, M. A., Eini, F., Farsani, M. A., Novin, M. G. The antioxidant curcumin postpones ovarian aging in young and middle-aged mice. Reproduction, Fertility and Development, 2020, 32(3): 292. https://doi.org/10.1071/rd18472.
Shoorei, H., Banimohammad, M., Kebria, M. M., Afshar, M., Taheri, M. M., Shokoohi, M., Farashah, M. S., Eftekharzadeh, M., Akhiani, O., Gaspar, R. et al. Hesperidin improves the follicular development in 3D culture of isolated preantral ovarian follicles of mice. Experimental Biology and Medicine, 2019, 244(5): 352–361. https://doi.org/10.1177/1535370219831615.
Khadrawy, O., Gebremedhn, S., Salilew-Wondim, D., Taqi, M., Neuhoff, C., Tholen, E., Hoelker, M., Schellander, K., Tesfaye, D. Endogenous and exogenous modulation of Nrf2 mediated oxidative stress response in bovine granulosa cells: Potential implication for ovarian function. International Journal of Molecular Sciences, 2019, 20(7): 1635. https://doi.org/10.3390/ijms20071635.
McCloskey, C. W., Cook, D. P., Kelly, B. S., Azzi, F., Allen, C. H., Forsyth, A., Upham, J., Rayner, K. J., Gray, D. A., Boyd, R. W. et al. Metformin abrogates age-associated ovarian fibrosis. Clinical Cancer Research, 2020, 26(3): 632–642. https://doi.org/10.1158/1078-0432.ccr-19-0603.
Liu, M. Y., Yin, Y., Ye, X. Y., Zeng, M., Zhao, Q., Keefe, D. L., Liu, L. Resveratrol protects against age-associated infertility in mice. Human Reproduction, 2013, 28(3): 707–717. https://doi.org/10.1093/humrep/des437.
Garcia, D. N., Saccon, T. D., Pradiee, J., Rincón, J. A. A., Andrade, K. R. S., Rovani, M. T., Mondadori, R. G., Cruz, L. A. X., Barros, C. C., Masternak, M. M. et al. Effect of caloric restriction and rapamycin on ovarian aging in mice. GeroScience, 2019, 41(4): 395–408. https://doi.org/10.1007/s11357-019-00087-x.
Huang, J., Shan, W. Y., Li, N., Zhou, B., Guo, E. S., Xia, M., Lu, H., Wu, Y. F., Chen, J., Wang, B. B. et al. Melatonin provides protection against cisplatin-induced ovarian damage and loss of fertility in mice. Reproductive BioMedicine Online, 2021, 42(3): 505–519. https://doi.org/10.1016/j.rbmo.2020.10.001.
Liu, X. H., Cai, S. Z., Zhou, Y., Wang, Y. P., Han, Y. J., Wang, C. L., Zhou, W. Ginsenoside Rg1 attenuates premature ovarian failure of D-gal Induced POF mice through downregulating p16INK4a and upregulating SIRT1Expression. Endocrine, Metabolic & Immune Disorders - Drug Targets, 2022, 22(3): 318–327. https://doi.org/10.2174/1871523020666210830164152.
Li, N., Wang, J., Wang, X., Sun, J. N., Li, Z. H. Icariin exerts a protective effect against d-galactose induced premature ovarian failure via promoting DNA damage repair. Biomedicine & Pharmacotherapy, 2019, 118: 109218. https://doi.org/10.1016/j.biopha.2019.109218.
Liu, X. T., Lin, X., Mi, Y. L., Li, J., Zhang, C. Q. Grape seed proanthocyanidin extract prevents ovarian aging by inhibiting oxidative stress in the hens. Oxidative Medicine and Cellular Longevity, 2018, 2018: 9390810. https://doi.org/10.1155/2018/9390810.
Augustyniak, A., Bartosz, G., Čipak, A., Duburs, G., Horáková, L., Łuczaj, W., Majekova, M., Odysseos, A. D., Rackova, L., Skrzydlewska, E. et al. Natural and synthetic antioxidants: An updated overview. Free Radical Research, 2010, 44(10): 1216–1262. https://doi.org/10.3109/10715762.2010.508495.
Yan, Z. J., Dai, Y. J., Fu, H. L., Zheng, Y., Bao, D., Yin, Y., Chen, Q., Nie, X. W., Hao, Q. T., Hou, D. R. et al. Curcumin exerts a protective effect against premature ovarian failure in mice. Journal of Molecular Endocrinology, 2018, 60(3): 261–271. https://doi.org/10.1530/jme-17-0214.
Khedr, N. F. Protective effect of mirtazapine and hesperidin on cyclophosphamide-induced oxidative damage and infertility in rat ovaries. Experimental Biology and Medicine, 2015, 240(12): 1682–1689. https://doi.org/10.1177/1535370215576304.
Cakir Gungor, A. N., Gencer, M., Karaca, T., Hacivelioglu, S., Uysal, A., Korkmaz, F., Demirtas, S., Cosar, E. The effect of hesperetin on ischemia–reperfusion injury in rat ovary. Archives of Gynecology and Obstetrics, 2014, 290(4): 763–769. https://doi.org/10.1007/s00404-014-3267-8.
Li, Y., Yao, J. Y., Han, C. Y., Yang, J. X., Chaudhry, M., Wang, S. N., Liu, H. N., Yin, Y. L. Quercetin, inflammation and immunity. Nutrients, 2016, 8(3): 167. https://doi.org/10.3390/nu8030167.
Zeng, Y. X., Song, J. J., Zhang, M. M., Wang, H. W., Zhang, Y., Suo, H. Y. Comparison of in vitro and in vivo antioxidant activities of six flavonoids with similar structures. Antioxidants, 2020, 9(8): 732. https://doi.org/10.3390/antiox9080732.
Rashidi, Z., Aleyasin, A., Eslami, M., Nekoonam, S., Zendedel, A., Bahramrezaie, M., Amidi, F. Quercetin protects human granulosa cells against oxidative stress via thioredoxin system. Reproductive Biology, 2019, 19(3): 245–254. https://doi.org/10.1016/j.repbio.2019.07.002.
Qin, X., Du, D. F., Chen, Q., Wu, M., Wu, T., Wen, J. Y., Jin, Y., Zhang, J. J., Wang, S. X. Metformin prevents murine ovarian aging. Aging, 2019, 11(11): 3785–3794. https://doi.org/10.18632/aging.102016.
Tamura, H., Jozaki, M., Tanabe, M., Shirafuta, Y., Mihara, Y., Shinagawa, M., Tamura, I., Maekawa, R., Sato, S., Taketani, T. et al. Importance of melatonin in assisted reproductive technology and ovarian aging. International Journal of Molecular Sciences, 2020, 21(3): 1135. https://doi.org/10.3390/ijms21031135.
Jiang, Y. H., Shi, H. C., Liu, Y., Zhao, S. G., Zhao, H. Applications of melatonin in female reproduction in the context of oxidative stress. Oxidative Medicine and Cellular Longevity, 2021, 2021: 6668365. https://doi.org/10.1155/2021/6668365.
Ross, C., Salmon, A., Strong, R., Fernandez, E., Javors, M., Richardson, A., Tardif, S. Metabolic consequences of long-term rapamycin exposure on common marmoset monkeys (Callithrix jacchus). Aging, 2015, 7(11): 964–973. https://doi.org/10.18632/aging.100843.
Bjedov, I., Toivonen, J. M., Kerr, F., Slack, C., Jacobson, J., Foley, A., Partridge, L. Mechanisms of life span extension by rapamycin in the fruit fly drosophila melanogaster. Cell Metabolism, 2010, 11(1): 35–46. https://doi.org/10.1016/j.cmet.2009.11.010.
Dou, X. W., Sun, Y., Li, J. Z., Zhang, J., Hao, D. D., Liu, W. W., Wu, R., Kong, F. F., Peng, X. X., Li, J. Short-term rapamycin treatment increases ovarian lifespan in young and middle-aged female mice. Aging Cell, 2017, 16(4): 825–836. https://doi.org/10.1111/acel.12617.
Qi, J., Wang, F., Yang, P., Wang, X. L., Xu, R. J., Chen, J. H., Yuan, Y. G., Lu, Z. Y., Duan, J. L. Mitochondrial fission is required for angiotensin II-induced cardiomyocyte apoptosis mediated by a Sirt1-p53 signaling pathway. Frontiers in Pharmacology, 2018, 9: 176. https://doi.org/10.3389/fphar.2018.00176.
Salminen, A., Kaarniranta, K., Kauppinen, A. Crosstalk between oxidative stress and SIRT1: Impact on the aging process. International Journal of Molecular Sciences, 2013, 14(2): 3834–3859. https://doi.org/10.3390/ijms14023834.
Yang, Q. L., Li, H., Wang, H., Chen, W. H., Zeng, X. X., Luo, X. Y., Xu, J. M., Sun, Y. P. Deletion of enzymes for de novo NAD+ biosynthesis accelerated ovarian aging. Aging Cell, 2023, 22(9): e13904. https://doi.org/10.1111/acel.13904.
Zhang, H., Lin, F. P., Zhao, J. H., Wang, Z. C. Expression regulation and physiological role of transcription factor FOXO3a during ovarian follicular development. Frontiers in Physiology, 2020, 11: 595086. https://doi.org/10.3389/fphys.2020.595086.