AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (763.6 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

τSQWRL: A TSQL2-Like Query Language for Temporal Ontologies Generated from JSON Big Data

Department of Computer Science, Faculty of Economics and Management, University of Sfax, Sfax 3029, Tunisia.
Department of Computer Science and Engineering, University of Bologna, Bologna 40136, Italy.
Show Author Information

Abstract

Temporal ontologies allow to represent not only concepts, their properties, and their relationships, but also time-varying information through explicit versioning of definitions or through the four-dimensional perdurantist view. They are widely used to formally represent temporal data semantics in several applications belonging to different fields (e.g., Semantic Web, expert systems, knowledge bases, big data, and artificial intelligence). They facilitate temporal knowledge representation and discovery, with the support of temporal data querying and reasoning. However, there is no standard or consensual temporal ontology query language. In a previous work, we have proposed an approach named τJOWL (temporal OWL 2 from temporal JSON, where OWL 2 stands for "OWL 2 Web Ontology Language" and JSON stands for "JavaScript Object Notation" ). τJOWL allows (1) to automatically build a temporal OWL 2 ontology of data, following the Closed World Assumption (CWA), from temporal JSON-based big data, and (2) to manage its incremental maintenance accommodating their evolution, in a temporal and multi-schema-version environment. In this paper, we propose a temporal ontology query language for τJOWL, named τSQWRL (temporal SQWRL), designed as a temporal extension of the ontology query language—Semantic Query-enhanced Web Rule Language (SQWRL). The new language has been inspired by the features of the consensual temporal query language TSQL2 (Temporal SQL2), well known in the temporal (relational) database community. The aim of the proposal is to enable and simplify the task of retrieving any desired ontology version or of specifying any (complex) temporal query on time-varying ontologies generated from time-varying big data. Some examples, in the Internet of Healthcare Things (IoHT) domain, are provided to motivate and illustrate our proposal.

References

[1]
M. H. Böhlen, A. Dignös, J. Gamper, and C. S. Jensen, Database technology for processing temporal data (invited paper), in Proc. 25th Int. Symp. on Temporal Representation and Reasoning, Dagstuhl, Germany, 2018, pp. 2:12:7.
[2]
W. Lu, Z. Zhao, X. Wang, H. Li, Z. Zhang, Z. Shui, S. Ye, A. Pan, and X. Du, A lightweight and efficient temporal database management system in TDSQL, Proc. VLDB Endow., vol. 12, no. 12, pp. 20352046, 2019.
[3]
F. Grandi, F. Mandreoli, R. Martoglia, and W. Penzo, Unleashing the power of querying streaming data in a temporal database world: A relational algebra approach, Inf. Syst., vol. 103, p. 101872, 2022.
[4]
Z. Brahmia, F. Grandi, and R. Bouaziz, Temporal Blockchains for intelligent transportation management and autonomous vehicles support in the internet of vehicles, in Modelling and Simulation of Fast-Moving Ad-Hoc Networks (FANETs and VANETs), T. S. Pradeep Kumar and M. Alamelu, eds. Hershey, PA, USA: IGI Global, 2023, pp. 155189.
[5]
S. Ketu and P. K. Mishra, Internet of healthcare things: A contemporary survey, J. Netw. Comput. Appl., vol. 192, p. 103179, 2021.
[6]
F. Grandi, Temporal databases, in Encyclopedia of Information Science and Technology, 3rd ed, M. Khosrow-Pour, ed. Hershey, PA, USA: Idea Group Reference, 2015, pp. 19141922.
[7]
C. S. Jensen and R. T. Snodgrass, Temporal database, in Encyclopedia of Database Systems, 2nd ed, L. Liu and M. T. Özsu, eds. New York, NY, USA: Springer, 2018, pp. 39453949.
[8]
C. S. Jensen and R. T. Snodgrass, Transaction time, in Encyclopedia of Database Systems, 2nd ed, L. Liu and M. T. Özsu, eds. New York, NY, USA: Springer, 2018, pp. 42004201.
[9]
C. S. Jensen and R. T. Snodgrass, Valid time, in Encyclopedia of Database Systems, 2nd ed, L. Liu and M. T. Özsu, eds. New York, NY, USA: Springer, 2018, pp. 43594360.
[10]
N. Guarino, Formal Ontology in Information Systems. Amsterdam, The Netherlands: IOS Press, 1998.
[11]
F. Grandi, Multi-temporal RDF ontology versioning, in Proc. 3rd Int. Workshop on Ontology Dynamics (IWOD), Washington, DC, USA, 2009, pp. 110.
[12]
F. Grandi and M. R. Scalas, The valid ontology: A simple OWL temporal versioning framework, in Proc. 3rd Int. Conf. on Advances in Semantic Processing, Sliema, Malta, 2009, pp. 98102.
[13]
V. Milea, F. Frasincar, and U. Kaymak, tOWL: A temporal web ontology language, IEEE Trans. Syst. Man Cybern. B Cybern., vol. 42, no. 1, pp. 268281, 2012.
[14]
C. S. Jensen and R. T. Snodgrass, Temporal data models, in Encyclopedia of Database Systems, 2nd ed, L. Liu and M. T. Özsu, eds. New York, NY, USA: Springer, 2018, pp. 39403945.
[15]
M. Klein and D. Fensel, Ontology versioning on the Semantic Web, in Proc. 1st Int. Conf. Semantic Web Working, Stanford, CA, USA, 2001, pp. 7591.
[16]
N. F. Noy and M. A. Musen, Ontology versioning in an ontology management framework, IEEE Intell. Syst., vol. 19, no. 4, pp. 613, 2004.
[17]
C. A. Weltyand R. Fikes, A reusable ontology for fluents in OWL, in Proc. 4th Int. Conf. on Formal Ontology in Information Systems, Baltimore, MD, USA, 2006, pp. 226236.
[18]
R. T. Snodgrass, The TSQL2 Temporal Query Language. Boston, MA, USA: Kluwer Academic Publishers, 1995.
[19]
X. Jin, B. W. Wah, X. Cheng, and Y. Wang, Significance and challenges of big data research, Big Data Res., vol. 2, no. 2, pp. 5964, 2015.
[20]
A. Ali, J. Qadir, R. ur Rasool, A. Sathiaseelan, A. Zwitter, and J. Crowcroft, Big data for development: Applications and techniques, Big Data Anal., vol. 1, no. 2, pp. 2:12:24, 2016.
[21]
A. Davoudian and M. Liu, Big data systems: A software engineering perspective, ACM Comput. Surv., vol. 53, no. 5, p. 110, 2021.
[22]
A. K. Sandhu, Big data with cloud computing: Discussions and challenges, Big Data Mining and Analytics, vol. 5, no. 1, pp. 3240, 2022.
[23]
IETF, The JavaScript Object Notation (JSON) Data Interchange Format, Internet Standards Track document, https://tools.ietf.org/html/rfc8259, 2022.
[24]
L. Fegaras, Incremental query processing on big data streams, IEEE Trans. Knowl. Data Eng., vol. 28, no. 11, pp. 29983012, 2016.
[25]
C. W. Tsai, C. F. Lai, H. C. Chao, and A. V. Vasilakos, Big data analytics: A survey, J. Big Data, vol. 2, pp. 21:121:32, 2015.
[26]
P. Ceravolo, A. Azzini, M. Angelini, T. Catarci, P. Cudré-Mauroux, E. Damiani, A. Mazak, M. Van Keulen, M. Jarrar, G. Santucci, et al., Big data semantics, J. Data Semant., vol. 7, no. 2, pp. 6585, 2018.
[27]
R. M. Keller, S. Ranjan, M. Y. Wei, and M. M. Eshow, Semantic representation and scale-up of integrated air traffic management data, in Proc. Int. Workshop on Semantic Big Data, San Francisco, CA, USA, 2016, pp. 4:14:6.
[28]
M. V. Nural, M. E. Cotterell, H. Peng, R. Xie, P. Ma, and J. A. Miller, Automated predictive big data analytics using ontology based semantics, Int. J. Big Data, vol. 2, no. 2, pp. 4356, 2015.
[29]
Z. Brahmia, F. Grandi, and R. Bouaziz, τJOWL: A systematic approach to build and evolve a temporal OWL 2 ontology based on temporal JSON big data, Big Data Mining and Analytics, vol. 5, no. 4, pp. 271281, 2022.
[30]
W3C, OWL 2 Web Ontology Language Primer (Second Edition), W3C Recommendation, http://www.w3.org/TR/owl2-primer/, 2012.
[31]
O. Etzioni, K. Golden, and D. S. Weld, Sound and efficient closed-world reasoning for planning, Artif. Intell., vol. 89, nos. 1&2, pp. 113148, 1997.
[32]
R. Fikes, P. Hayes, and I. Horrocks, OWL-QL—a language for deductive query answering on the Semantic Web, J. Web Semant., vol. 2, no. 1, pp. 1929, 2004.
[33]
W3C, SWRL: A Semantic Web Rule Language Combining OWL and RuleML, W3C Member Submission, https://www.w3.org/Submission/SWRL/, 2004.
[34]
M. J. O’Connor and A. K. Das, SQWRL: A query language for OWL, in Proc. 6th Int. Workshop on OWL: Experiences and Directions, Chantilly, VA, USA, 2009, pp. 208215.
[35]
W3C, OWL 2 QL, in OWL 2 Web Ontology Language Profiles (Second Edition), https://www.w3.org/TR/owl2-profiles/#OWL_2_QL, 2012.
[36]
M. J. O’Connor and A. K. Das, A lightweight model for representing and reasoning with temporal information in biomedical ontologies, in Proc. 3rd Int. Conf. on Health Informatics, Valencia, Spain, 2010, pp. 9097.
[37]
M. J. O’Connor and A. K. Das, A method for representing and querying temporal information in OWL, in Proc. 3rd Int. Joint Conf. on Biomedical Engineering Systems and Technologies, Valencia, Spain, 2010, pp. 97110.
[38]
SWRLAPITemporal functionality of the SWRLAPI Protégé project on GitHub, https://github.com/protegeproject/swrlapi/wiki/SWRLAPITemporal, 2022.
[39]
A. Zekri, Z. Brahmia, F. Grandi, and R. Bouaziz, τOWL: A framework for managing temporal semantic web documents, in Proc. 8th Int. Conf. on Advances in Semantic Processing, Rome, Italy, 2014, pp. 3341.
[40]
S. Batsakis, K. Stravoskoufos, and E. G. M. Petrakis, Temporal reasoning for supporting temporal queries in OWL 2.0, in Proc. 15th Int. Conf. on Knowledge-Based and Intelligent Information and Engineering Systems, Kaiserslautern, Germany, 2011, pp. 558567.
[41]
P. F. Patel-Schneider and I. Horrocks, A comparison of two modelling paradigms in the Semantic Web, J. Web Semant., vol. 5, no. 4, pp. 240250, 2007.
[42]
W3C, RDF/XML syntax specification (revised), W3C recommendation, http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/, 2004.
[43]
W3C, OWL 2 Web Ontology Language document overview (second edition), W3C recommendation, http://www.w3.org/TR/owl2-overview/, 2012.
[44]
C. S. Jensen and R. T. Snodgrass, Temporal query languages, in Encyclopedia of Database Systems, 2nd ed, L. Liu and M. T. Özsu, eds. New York, NY, USA: Springer, 2018, pp. 40234028.
[45]
I. Seylan, E. Franconi, and J. De Bruijn, Effective query rewriting with ontologies over DBoxes, in Proc. 21st Int. Joint Conf. on Artificial Intelligence, Pasadena, CA, USA, 2009, pp. 923929.
[46]
J. F. Allen, Maintaining knowledge about temporal intervals, Commun. ACM, vol. 26, no. 11, pp. 832843, 1983.
[47]
C. Zaniolo, S. Ceri, C. Faloutsos, R. T. Snodgrass, V. S. Subrahmanian, and R. Zicari, Advanced Database Systems. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1997.
[48]
K. Torp, Temporal strata, in Encyclopedia of Database Systems, 2nd ed, L. Liu and M. T. Özsu, eds. New York, NY, USA: Springer, 2018, pp. 40354040.
[49]
E. Pitoura, Query optimization, in Encyclopedia of Database Systems, 2nd ed, L. Liu and M. T. Özsu, eds. New York, NY, USA: Springer, 2018, pp. 30083009.
[50]
M. H. Böhlen, Temporal coalescing, in Encyclopedia of Database Systems, 2nd ed, L. Liu and M. T. Özsu, eds. New York, NY, USA: Springer, 2018, pp. 39173921.
[51]
K. Kulkarni and J. E. Michels, Temporal features in SQL: 2011, SIGMOD Rec., vol. 41, no. 3, pp. 3443, 2012.
[52]
J. Chomicki, D. Toman, and M. H. Böhlen, Querying ATSQL databases with temporal logic, ACM Trans. Database Syst., vol. 26, no. 2, pp. 145178, 2001.
[53]
F. Grandi, Introducing an annotated bibliography on temporal and evolution aspects in the semantic web, SIGMOD Rec., vol. 41, no. 4, pp. 1821, 2012.
[54]
E. Baratis, E. G. M. Petrakis, S. Batsakis, N. Maris, and N. Papadakis, TOQL: Temporal ontology querying language, in Proc. 11th Int. Symp. on Advances in Spatial and Temporal Databases, Aalborg, Denmark, 2009, pp. 338354.
[55]
F. Grandi, T-SPARQL: A TSQL2-like temporal query language for RDF, in Local Proc. 14th East-European Conf. on Advances in Databases and Information Systems, Novi Sad, Serbia, 2010, pp. 2130.
[56]
The SWRLAPI Protégé project, https://archive.is/GtlM5, 2022.
[58]
[59]
M. O’Connor, The Semantic Web rule language, http://protege.stanford.edu/conference/2009/slides/SWRL2009Pro-tegeConference.pdf, 2022.
[60]
K. Stravoskoufos, E. G. M. Petrakis, N. Mainas, S. Batsakis, and V. Samoladas, SOWL QL: Querying spatio-temporal ontologies in OWL, J. Data Semant., vol. 5, no. 4, pp. 249269, 2016.
[61]
L. Zhu, N. Li, and L. Bai, Algebraic operations on spatiotemporal data based on RDF, ISPRS Int. J. Geo-Inf., vol. 9, no. 2, pp. 80:180:16, 2020.
[62]
N. Maris, A reasoner for querying temporal ontologies, master dissertation, Dept. Electron. Comput. Eng., Tech. Univ. Crete, Crete, Greece, 2009.
[63]
C. E. Dyreson, Observing transaction-time semantics with TTXPath, in Proc. 2nd Int. Conf. on Web Information Systems Engineering, Kyoto, Japan, 2001, pp. 193202.
[64]
D. Gao and R. T. Snodgrass, Temporal slicing in the evaluation of XML queries, in Proc. 29th Int. Conf. on Very Large Data Bases, Berlin, Germany, 2003, pp. 632643.
[65]
F. Rizzolo and A. A. Vaisman, Temporal XML: Modeling, indexing, and query processing, VLDB J., vol. 17, no. 5, pp. 11791212, 2008.
[66]
Z. Brahmia, F. Grandi, S. Brahmia, and R. Bouaziz, τJSONPath: A temporal extension of the JSONPath language for the τJSchema framework, in Proc. 4th Int. Conf. on Artificial Intelligence and Smart Environments (ICAISE), Errachidia, Morocco, https://bdsde.sciencesconf.org/, 2022.
[67]
W3C, XML Path language (XPath) 3.0, W3C Recommendation, https://www.w3.org/TR/xpath-30/, 2014.
[68]
W3C, XQuery 3.1: An XML query language, W3C recommendation, https://www.w3.org/TR/2017/REC-xquery-31-20170321/, 2017.
[69]
F. Currim, S. Currim, C. Dyreson, and R. T. Snodgrass, A tale of two schemas: Creating a temporal XML schema from a snapshot schema with τXSchema, in Proc. 9th Int. Conf. on Extending Database Technology,  Crete,  Greece, 2004, pp. 348365.
[70]
IETF, JSONPath: Query expressions for JSON, internet-draft, https://datatracker.ietf.org/doc/draft-ietf-jsonpath-base/, 2022.
[71]
S. Brahmia, Z. Brahmia, F. Grandi, and R. Bouaziz, τJSchema: A framework for managing temporal JSON-based NoSQL databases, in Proc. 27th Int. Conf. on Database and Expert Systems Applications, Porto, Portugal, 2016, pp. 167181.
[72]
A. Dignös, M. H. Böhlen, J. Gamper, and C. S. Jensen, Extending the kernel of a relational DBMS with comprehensive support for sequenced temporal queries, ACM Trans. Database Syst., vol. 41, no. 4, pp. 26:126:46, 2016.
[73]
L. Carafoli, F. Mandreoli, R. Martoglia, and W. Penzo, Streaming tables: Native support to streaming data in DBMSs, IEEE Trans. Syst. Man Cybern. Syst., vol. 47, no. 10, pp. 27682782, 2017.
Big Data Mining and Analytics
Pages 288-300
Cite this article:
Brahmia Z, Grandi F, Bouaziz R. τSQWRL: A TSQL2-Like Query Language for Temporal Ontologies Generated from JSON Big Data. Big Data Mining and Analytics, 2023, 6(3): 288-300. https://doi.org/10.26599/BDMA.2022.9020044

830

Views

107

Downloads

3

Crossref

2

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 26 August 2022
Revised: 15 October 2022
Accepted: 28 October 2022
Published: 07 April 2023
© The author(s) 2023.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return