Temporal ontologies allow to represent not only concepts, their properties, and their relationships, but also time-varying information through explicit versioning of definitions or through the four-dimensional perdurantist view. They are widely used to formally represent temporal data semantics in several applications belonging to different fields (e.g., Semantic Web, expert systems, knowledge bases, big data, and artificial intelligence). They facilitate temporal knowledge representation and discovery, with the support of temporal data querying and reasoning. However, there is no standard or consensual temporal ontology query language. In a previous work, we have proposed an approach named
- Article type
- Year
- Co-author
Nowadays, ontologies, which are defined under the OWL 2 Web Ontology Language (OWL 2), are being used in several fields like artificial intelligence, knowledge engineering, and Semantic Web environments to access data, answer queries, or infer new knowledge. In particular, ontologies can be used to model the semantics of big data as an enabling factor for the deployment of intelligent analytics. Big data are being widely stored and exchanged in JavaScript Object Notation (JSON) format, in particular by Web applications. However, JSON data collections lack explicit semantics as they are in general schema-less, which does not allow to efficiently leverage the benefits of big data. Furthermore, several applications require bookkeeping of the entire history of big data changes, for which no support is provided by mainstream Big Data management systems, including Not only SQL (NoSQL) database systems. In this paper, we propose an approach, named