Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Single-cell RNA sequencing (scRNA-seq) technology measures the expression of thousands of genes at the cellular level. Analyzing single-cell transcriptome allows the identification of heterogeneous cell groups, cellular-level regulations, and the trajectory of cell development. An important aspect in the analyses of scRNA-seq data is the clustering of cells, which is hampered by issues, such as high dimensionality, cell type imbalance, redundancy, and dropout. Given cells of each type are functionally consistent, incorporating biological relations among genes may improve the clustering results. In light of this, we have developed a deep-embedded clustering method, G3DC. This method combines a graph regularization based on the pre-existing gene network and a feature selector based on the
H. Hotelling, Analysis of a complex of statistical variables into principal components, J. Educ. Psychol., vol. 24, no. 6, pp. 417–441, 1933.
J. S. Herman and D. Grün, FateID infers cell fate bias in multipotent progenitors from single-cell RNA-seq data, Nat. Methods, vol. 15, no. 5, pp. 379–386, 2018.
A. Zeisel, A. B. Muñoz-Manchado, S. Codeluppi, P. Lönnerberg, G. La Manno, A. Juréus, S. Marques, H. Munguba, L. He, C. Betsholtz, et al., Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq, Science, vol. 347, no. 6226, pp. 1138–1142, 2015.
J. Fan, Z. Tian, M. Zhao, and T. W. S. Chow, Accelerated low-rank representation for subspace clustering and semi-supervised classification on large-scale data, Neural Netw., vol. 100, pp. 39–48, 2018.
J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905, 2000.
V. D. Blondel, J. L. Guillaume, R. Lambiotte, and E. Lefebvre, Fast unfolding of communities in large networks, J. Stat. Mech.: Theory Exp., vol. 2008, no. 10, p. P10008, 2008.
V. A. Traag, L. Waltman, and N. J. van Eck, From Louvain to Leiden: Guaranteeing well-connected communities, Sci. Rep., vol. 9, no. 1, p. 5233, 2019.
R. Satija, J. A. Farrell, D. Gennert, A. F. Schier, and A. Regev, Spatial reconstruction of single-cell gene expression data, Nat. Biotechnol., vol. 33, no. 5, pp. 495–502, 2015.
S. H. H. Anuar, Z. A. Abas, N. M. Yunos, N. H. M. Zaki, N. A. Hashim, M. F. Mokhtar, S. A. Asmai, Z. Z. Abidin, and A. F. Nizam, Comparison between Louvain and Leiden algorithm for network structure: A review, J. Phys.: Conf. Ser., vol. 2129, no. 1, p. 012028, 2021.
C. Xu and Z. Su, Identification of cell types from single-cell transcriptomes using a novel clustering method, Bioinformatics, vol. 31, no. 12, pp. 1974–1980, 2015.
X. Qiu, Q. Mao, Y. Tang, L. Wang, R. Chawla, H. A. Pliner, and C. Trapnell, Reversed graph embedding resolves complex single-cell trajectories, Nat. Methods, vol. 14, no. 10, pp. 979–982, 2017.
X. Zhu, J. Li, H. D. Li, M. Xie, Miao, and J. Wang, sc-GPE: A graph partitioning-based cluster ensemble method for single-cell, Front. Genet., vol. 11, p. 604790, 2020.
X. Zhu, J. Zhang, Y. Xu, J. Wang, X. Peng, and H. D. Li, Single-cell clustering based on shared nearest neighbor and graph partitioning, Interdiscip. Sci.: Comput. Life Sci., vol. 12, no. 2, pp. 117–130, 2020.
X. Zhu, H. D. Li, L. Guo, F. X. Wu, and J. Wang, Analysis of single-cell RNA-seq data by clustering approaches, Curr. Bioinf., vol. 14, no. 4, pp. 314–322, 2019.
G. Eraslan, L. M. Simon, M. Mircea, N. S. Mueller, and F. J. Theis, Single-cell RNA-seq denoising using a deep count autoencoder, Nat. Commun., vol. 10, no. 1, p. 390, 2019.
T. Tian, J. Wan, Q. Song, and Z. Wei, Clustering single-cell RNA-seq data with a model-based deep learning approach, Nat. Mach. Intell., vol. 1, no. 4, pp. 191–198, 2019.
X. Li, K. Wang, Y. Lyu, H. Pan, J. Zhang, D. Stambolian, K. Susztak, M. P. Reilly, G. Hu, and M. Li, Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis, Nat. Commun., vol. 11, no. 1, p. 2338, 2020.
Y. Gan, X. Huang, G. Zou, S. Zhou, and J. Guan, Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network, Brief. Bioinform., vol. 23, no. 2, p. bbac018, 2022.
L. van der Maaten and G. Hinton, Visualizing data using t-SNE, J. Mach. Learn. Res., vol. 9, no. 86, pp. 2579–2605, 2008.
T. Beißbarth and T. P. Speed, GOstat: Find statistically overrepresented gene ontologies within a group of genes, Bioinformatics, vol. 20, no. 9, pp. 1464–1465, 2004.
M. Fasolino, G. W. Schwartz, A. R. Patil, A. Mongia, M. L. Golson, Y. J. Wang, A. Morgan, C. Liu, J. Schug, J. Liu, et al., Single-cell multi-omics analysis of human pancreatic islets reveals novel cellular states in type 1 diabetes, Nat. Metab., vol. 4, no. 2, pp. 284–299, 2022.
X. He, F. Gao, J. Hou, T. Li, J. Tan, C. Wang, X. Liu, M. Wang, H. Liu, Y. Chen, et al., Metformin inhibits MAPK signaling and rescues pancreatic aquaporin 7 expression to induce insulin secretion in type 2 diabetes mellitus, J. Biol. Chem., vol. 297, no. 2, p. 101002, 2021.
C. Bogdan, Nitric oxide and the immune response, Nat. Immunol., vol. 2, no. 10, pp. 907–916, 2001.
Å. Segerstolpe, A. Palasantza, P. Eliasson, E. M. Andersson, A. C. Andréasson, X. Sun, S. Picelli, A. Sabirsh, M. Clausen, M. K. Bjursell, et al., Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes, Cell Metab., vol. 24, no. 4, pp. 593–607, 2016.
M. Baron, A. Veres, S. L. Wolock, A. L. Faust, R. Gaujoux, A. Vetere, J. H. Ryu, B. K. Wagner, S. S. Shen-Orr, A. M. Klein, et al., A single-cell transcriptomic map of the human and mouse pancreas reveals inter-and intra-cell population structure, Cell Syst., vol. 3, no. 4, pp. 346–360.e4, 2016.
D. Usoskin, A. Furlan, S. Islam, H. Abdo, P. Lönnerberg, D. Lou, J. Hjerling-Leffler, J. Haeggström, O. Kharchenko, P. V. Kharchenko, et al., Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing, Nat. Neurosci., vol. 18, no. 1, pp. 145–153, 2015.
H. M. Kang, M. Subramaniam, S. Targ, M. Nguyen, L. Maliskova, E. McCarthy, E. Wan, S. Wong, L. Byrnes, C. M. Lanata, et al., Multiplexed droplet single-cell RNA-sequencing using natural genetic variation, Nat. Biotechnol., vol. 36, no. 1, pp. 89–94, 2018.
168
Views
13
Downloads
1
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).