AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Large Language Models in Psychiatry: Current Applications, Limitations, and Future Scope

Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
School of Information Science and Technology, Institute of Computational Biology, Northeast Normal University, Changchun 130024, China

Show Author Information

Abstract

With the advancements in Artificial Intelligence (AI) technology, Large Language Models (LLMs) provide outstanding capabilities for natural language understanding and generation, enhancing various domains. In psychiatry, LLMs can empower healthcare by analyzing vast amounts of medical data to improve diagnostic accuracy, enhance therapeutic communication, and personalize patient care with their strength in understanding and generating human-like text. In clinical AI, developing and utilizing robust and interpretable models has been a longstanding challenge. This survey investigates the current psychiatric practice of LLMs, along with a series of corpus resources that could be used for training psychiatric LLMs. We discuss the limitations concerning LLM reproducibility, capabilities, usability, interpretability in clinical settings, and ethical considerations. Additionally, we propose potential future directions for research, clinical application, and education in psychiatric LLMs. Finally, we discuss the challenge of integrating LLMs into the evolving landscape of healthcare in real-world scenarios.

Electronic Supplementary Material

Download File(s)
BDMA-2024-0111-ESM.xlsx (40.4 KB)

References

[1]

J. A. Lieberman and A. J. Rush, Redefining the role of psychiatry in medicine, Am. J. Psychiatry, vol. 153, no. 11, pp. 1388–1397, 1996.

[2]

S. B. Guze, Nature of psychiatric illness: Why psychiatry is a branch of medicine, Compr. Psychiatry, vol. 19, no. 4, pp. 295–307, 1978.

[3]

P. Długosz and D. Liszka, The relationship between mental health, educational burnout and strategies for coping with stress among students: A cross-sectional study of Poland, Int. J. Environ. Res. Public Health, vol. 18, no. 20, p. 10827, 2021.

[4]

N. Rezaii, P. Wolff, and B. H. Price, Natural language processing in psychiatry: The promises and perils of a transformative approach, Br. J. Psychiatry, vol. 220, no. 5, pp. 251–253, 2022.

[5]

A. Le Glaz, Y. Haralambous, D. H. Kim-Dufor, P. Lenca, R. Billot, T. C. Ryan, J. Marsh, J. Devylder, M. Walter, S. Berrouiguet, et al., Machine learning and natural language processing in mental health: Systematic review, J. Med. Internet Res., vol. 23, no. 5, p. e15708, 2021.

[6]

L. Tejavibulya, M. Rolison, S. Y. Gao, Q. H. Liang, H. Peterson, J. Dadashkarimi, M. C. Farruggia, C. A. Hahn, S. Noble, S. D. Lichenstein, et al., Predicting the future of neuroimaging predictive models in mental health, Mol. Psychiatry, vol. 27, no. 8, pp. 3129–3137, 2022.

[7]

C. Su, Z. Xu, J. Pathak, and F. Wang, Deep learning in mental health outcome research: A scoping review, Transl. Psychiatry, vol. 10, no. 1, p. 116, 2020.

[8]
X. F. Geng and J. H. Xu, Application of autoencoder in depression diagnosis, in Proc. 2017 3 rd Int. Conf. Computer Science and Mechanical Automation, Wuhan, China, 2017, pp. 146–151.
[9]
T. Pham, T. Tran, D. Phung, and S. Venkatesh, Predicting healthcare trajectories from medical records: A deep learning approach, J. Biomed. Inform., vol. 69, pp. 218–229.
[10]

T. Zhang, A. M. Schoene, and S. Ananiadou, Automatic identification of suicide notes with a transformer-based deep learning model, Internet Interv., vol. 25, p. 100422, 2021.

[11]

A. Abd-Alrazaq, D. Alhuwail, J. Schneider, C. T. Toro, A. Ahmed, M. Alzubaidi, M. Alajlani, and M. Househ, The performance of artificial intelligence-driven technologies in diagnosing mental disorders: An umbrella review, NPJ Digit. Med., vol. 5, no. 1, p. 87, 2022.

[12]
V. Vajre, M. Naylor, U. Kamath, and A. Shehu, PsychBERT: A mental health language model for social media mental health behavioral analysis, in Proc. 2021 IEEE Int. Conf. Bioinformatics and Biomedicine (BIBM ), Houston, TX, USA, 2021, pp. 1077–1082.
[13]
S. Ji, T. Zhang, L. Ansari, J. Fu, P. Tiwari, and E. Cambria, Mentalbert: Publicly available pretrained language models for mental healthcare, arXiv preprint arXiv: 2110.15621, 2021.
[14]
S. Gururangan, A. Marasović, S. Swayamdipta, K. Lo, I. Beltagy, D. Downey, and N. A. Smith, Don’t stop pretraining: Adapt language models to domains and tasks, arXiv preprint arXiv: 2004.10964, 2020.
[15]
T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., Language models are few-shot learners, in Proc. 34 th Int. Conf. neural Information Processing Systems, Vancouver, BC, Canada, 2020, pp. 1877–1901.
[16]
J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat, et al., Gpt-4 technical report, arXiv preprint arXiv: 2303.08774, 2024.
[17]
OpenAI, GPT-4o, https://openai.com/index/hello-gpt-4o/, 2024.
[18]
R. Anil, S. Borgeaud, J. B. Alayrac, J. Yu, R. Soricut, J. Schalkwyk, A. M. Dai, A. Hauth, K. Millican, D. Silver, et al., Gemini: A family of highly capable multimodal models, arXiv preprint arXiv: 2312.11805, 2024.
[19]
H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, et al., Llama 2: Open foundation and fine-tuned chat models, arXiv preprint arXiv: 2307.09288, 2023.
[20]
Meta, Llama-3, Github, https://github.com/meta-llama/llama3, 2024.
[21]
J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. H. Chi, Q. V. Le, and D. Zhou, Chain-of-thought prompting elicits reasoning in large language models, in Proc. 36 th Int. Conf. Neural Information Processing Systems, New Orleans, LA, USA, 2022, pp. 24824–24837.
[22]
S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, and K. Narasimhan, Tree of thoughts: Deliberate problem solving with large language models, in Proc. 37 th Int. Conf. Neural Information Processing Systems, New Orleans, LA, USA, 2024, pp. 11809–11822.
[23]
M. Besta, N. Blach, A. Kubicek, R. Gerstenberger, M. Podstawski, L. Gianinazzi, J. Gajda, T. Lehmann, H. Niewiadomski, P. Nyczyk, et al., Graph of thoughts: Solving elaborate problems with large language models, arXiv preprint arXiv: 2308.09687, 2024.
[24]
B. Lester, R. Al-Rfou, and N. Constant, The power of scale for parameter-efficient prompt tuning, arXiv preprint arXiv: 2104.08691, 2021.
[25]
N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe, A. Gesmundo, M. Attariyan, and S. Gelly, Parameter-efficient transfer learning for NLP, in Proc. 36 th Int. Conf. Machine Learning, Long Beach, CA, USA, 2019, pp. 2790–2799.
[26]
E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen, LoRA: Low-rank adaptation of large language models, arXiv preprint arXiv: 2106.09685, 2021.
[27]
Y. Chen, X. Xing, J. Lin, H. Zheng, Z. Wang, Q. Liu, and X. Xu, SoulChat: Improving LLMs’ empathy, listening, and comfort abilities through fine-tuning with multi-turn empathy conversations, in Proc. Association for Computational Linguistics : EMNLP 2023, Singapore, 2023, pp. 1170–1183.
[28]
J. M. Liu, D. Li, H. Cao, T. Ren, Z. Liao, and J. Wu, Chatcounselor: A large language models for mental health support, arXiv preprint arXiv: 2309.15461, 2023.
[29]
T. Lai, Y. Shi, Z. Du, J. Wu, K. Fu, Y. Dou, and Z. Wang, Psy-LLM: Scaling up global mental health psychological services with AI-based large language models, arXiv preprint arXiv: 2307.11991, 2023.
[30]
X. Xu, B. Yao, Y. Dong, S. Gabriel, H. Yu, J. Hendler, M. Ghassemi, A. K. Dey, and D. Wang, Mental-LLM: Leveraging large language models for mental health prediction via online text data, arXiv preprint arXiv: 2307.14385, 2024.
[31]
K. Yang, T. Zhang, Z. Kuang, Q. Xie, J. Huang, and S. Ananiadou, MentaLLaMA: Interpretable mental health analysis on social media with large language models, arXiv preprint arXiv: 2309.13567, 2024.
[32]
H. Zhang, J. Chen, F. Jiang, F. Yu, Z. Chen, J. Li, G. Chen, X. Wu, Z. Zhang, Q. Xiao, et al., HuatuoGPT, towards taming language model to be a doctor, arXiv preprint arXiv: 2305.15075, 2023.
[33]
Y. Hua, F. Liu, K. Yang, Z. Li, Y. H. Sheu, P. Zhou, L. V. Moran, S. Ananiadou, and A. Beam, Large language models in mental health care: A scoping review, arXiv preprint arXiv: 2401.02984, 2024.
[34]
Z. Zheng, L. Liao, Y. Deng, and L. Nie, Building emotional support chatbots in the era of LLMs, arXiv preprint arXiv: 2308.11584, 2023.
[35]
X. Zhao, Y. Gao, and Y. Zhang, Tuning LLaMA model with mental disorders knowledge, https://doi.org/10.21203/rs.3.rs-4250151/v1, 2024.
[36]
S. Zhang, L. Dong, X. Li, S. Zhang, X. Sun, S. Wang, J. Li, R. Hu, T. Zhang, F. Wu, et al., Instruction tuning for large language models: A survey, arXiv preprint arXiv: 2308.10792, 2024.
[37]
G. Wang, G. Yang, Z. Du, L. Fan, and X. Li, ClinicalGPT: Large language models finetuned with diverse medical data and comprehensive evaluation, arXiv preprint arXiv: 2306.09968, 2023.
[38]
C. Peng, X. Yang, A. Chen, K. E. Smith, N. PourNejatian, A. B. Costa, C. Martin, M. G. Flores, Y. Zhang, T. Magoc, et al., A study of generative large language model for medical research and healthcare, arXiv preprint arXiv: 2305.13523, 2023.
[39]
Z. Chen, A. H. Cano, A. Romanou, A. Bonnet, K. Matoba, F. Salvi, M. Pagliardini, S. Fan, A. Köpf, A. Mohtashami, et al., MEDITRON-70B: Scaling medical pretraining for large language models, arXiv preprint arXiv: 2311.16079, 2023.
[40]
Y. Li, Z. Li, K. Zhang, R. Dan, S. Jiang, and Y. Zhang, ChatDoctor: A medical chat model fine-tuned on a Large Language Model Meta-AI (LLaMA) using medical domain knowledge, arXiv preprint arXiv: 2303.14070, 2023.
[41]
T. Han, L. C. Adams, J. M. Papaioannou, P. Grundmann, T. Oberhauser, A. Löser, D. Truhn, and K. K. Bressem, MedAlpaca−An open-source collection of medical conversational AI models and training data, arXiv preprint arXiv: 2304.08247, 2023.
[42]
J. Chen, X. Wang, A. Gao, F. Jiang, S. Chen, H. Zhang, D. Song, W. Xie, C. Kong, J. Li, et al., HuatuoGPT-II, one-stage training for medical adaption of LLMs, arXiv preprint arXiv: 2311.09774, 2023.
[43]
S. Kweon, J. Kim, J. Kim, S. Im, E. Cho, S. Bae, J. Oh, G. Lee, J. H. Moon, S. C. You, et al., Publicly shareable clinical large language model built on synthetic clinical notes, arXiv preprint arXiv: 2309.00237, 2024.
[44]
S. Yang, H. Zhao, S. Zhu, G. Zhou, H. Xu, Y. Jia, and H. Zan, Zhongjing: Enhancing the Chinese medical capabilities of large language model through expert feedback and real-world multi-turn dialogue, arXiv preprint arXiv: 2308.03549, 2023.
[45]
X. Zhang, C. Tian, X. Yang, L. Chen, Z. Li, and L. R. Petzold, AlpaCare: Instruction-tuned large language models for medical application, arXiv preprint arXiv: 2310.14558, 2024.
[46]

K. Singhal, S. Azizi, T. Tu, S. S. Mahdavi, J. Wei, H. W. Chung, N. Scales, A. Tanwani, H. Cole-Lewis, S. Pfohl, P. Payne, Large language models encode clinical knowledge, Nature, vol. 620, no. 7972, pp. 172–180, 2023.

[47]
H. Nori, N. King, S. M. McKinney, D. Carignan, and E. Horvitz, Capabilities of GPT-4 on medical challenge problems, arXiv preprint arXiv: 2303.13375, 2023.
[48]
H. Xiong, S. Wang, Y. Zhu, Z. Zhao, Y. Liu, L. Huang, Q. Wang, and D. Shen, DoctorGLM: Fine-tuning your Chinese doctor is not a herculean task, arXiv preprint arXiv: 2304.01097, 2023.
[49]
H. Wang, C. Liu, N. Xi, Z. Qiang, S. Zhao, B. Qin, and T. Liu, HuaTuo: Tuning llama model with Chinese medical knowledge, arXiv preprint arXiv: 2304.06975, 2023.
[50]
C. Wu, X. Zhang, Y. Zhang, Y. Wang, and W. Xie, PMC-LLaMA: Further finetuning LLaMA on medical papers, arXiv preprint arXiv: 2304.14454, 2023.
[51]
Y. Chen, Z. Wang, X. Xing, H. Zheng, Z. Xu, K. Fang, J. Wang, S. Li, J. Wu, Q. Liu, et al., BianQue: Balancing the questioning and suggestion ability of health LLMs with multi-turn health conversations polished by ChatGPT, arXiv preprint arXiv: 2310.15896, 2023.
[52]
K. Singhal, T. Tu, J. Gottweis, R. Sayres, E. Wulczyn, L. Hou, K. Clark, S. Pfohl, H. Cole-Lewis, D. Neal, et al., Towards expert-level medical question answering with large language models, arXiv preprint arXiv: 2305.09617, 2023.
[53]
H. Wang, C. Liu, S. Zhao, B. Qin, and T. Liu, ChatGLM-Med, GitHub, https://github.com/SCIR-HI/Med-ChatGLM, 2023.
[54]
W. Zhu and X. Wang. ChatMed: A Chinese medical large language model, GitHub, https://github.com/michael-wzhu/ChatMed, 2023.
[55]
W. Zhu, W. Yue, and X. Wang, ShenNong-TCM: A traditional Chinese medicine large language model, GitHub, https://github.com/michael-wzhu/ShenNong-TCM-LLM, 2023.
[56]
R. Wang, R. Zhou, H. Chen, Y. Wang, and T. Tan, Yapeng Wang, Tao Tan. CareGPT: Medical LLM, open source driven for a healthy future, GitHub, https://github.com/WangRongsheng/CareGPT, 2023.
[57]
D. McDuff, M. Schaekermann, T. Tu, A. Palepu, A. Wang, J. Garrison, K. Singhal, Y. Sharma, S. Azizi, K. Kulkarni, et al., Towards accurate differential diagnosis with large language models, arXiv preprint arXiv: 2312.00164, 2023.
[58]
L. Luo, J. Ning, Y. Zhao, Z. Wang, Z. Ding, P. Chen, W. Fu, Q. Han, G. Xu, Y. Qiu, et al., Taiyi: A bilingual fine-tuned large language model for diverse biomedical tasks, arXiv preprint arXiv: 2311.11608, 2023.
[59]
Z. Bao, W. Chen, S. Xiao, K. Ren, J. Wu, C. Zhong, J. Peng, X. Huang, and Z. Wei, DISC-MedLLM: Bridging general large language models and real-world medical consultation, arXiv preprint arXiv: 2308.14346, 2023.
[60]
Q. Ye, J. Liu, D. Chong, P. Zhou, Y. Hua, F. Liu, M. Cao, Z. Wang, X. Cheng, Z. Lei, et al., Qilin-Med: Multi-stage knowledge injection advanced medical large language model, arXiv preprint arXiv: 2310.09089, 2024.
[61]
A. Toma, P. R. Lawler, J. Ba, R. G. Krishnan, B. B. Rubin, and B. Wang, Clinical camel: An open expert-level medical language model with dialogue-based knowledge encoding, arXiv preprint arXiv: 2305.12031, 2023.
[62]
Y. Wang, W. Zhong, L. Li, F. Mi, X. Zeng, W. Huang, L. Shang, X. Jiang, and Q. Liu, Aligning large language models with human: A survey, arXiv preprint arXiv: 2307.12966, 2023.
[63]

A. B. Abacha and D. Demner-Fushman, A question-entailment approach to question answering, BMC Bioinformatics, vol. 20, no. 1, p. 511, 2019.

[64]

O. Byambasuren, Y. Yang, Z. Sui, D. Dai, B. Chang, S. Li, and H. Zan, Preliminary study on the construction of Chinese medical knowledge graph, (in Chinese), Journal of Chinese Information Processing, vol. 33, no. 10, pp. 1–9, 2019.

[65]
E. Turcan and K. McKeown, Dreaddit: A reddit dataset for stress analysis in social media, arXiv preprint arXiv: 1911.00133, 2019.
[66]
U. Naseem, A. G. Dunn, J. Kim, and M. Khushi, Early identification of depression severity levels on reddit using ordinal classification, in Proc. ACM Web Conf. 2022, Lyon, France, 2022, pp. 2563–2572.
[67]
M. Gaur, A. Alambo, J. P. Sain, U. Kursuncu, K. Thirunarayan, R. Kavuluru, A. Sheth, R. Welton, and J. Pathak, Knowledge-aware assessment of severity of suicide risk for early intervention, in Proc. World Wide Web Conf., San Francisco, CA, USA, 2019, pp. 514–525.
[68]

D. Jin, E. Pan, N. Oufattole, W. H. Weng, H. Fang, and P. Szolovits, What disease does this patient have? A large-scale open domain question answering dataset from medical exams, Appl. Sci., vol. 11, no. 14, p. 6421, 2021.

[69]
A. Pal, L. K. Umapathi, and M. Sankarasubbu, MedMCQA: A large-scale multi-subject multi-choice dataset for medical domain question answering, in Proc. Conf. Health, Inference, and Learning, Virtual Event, 2022, pp. 248–260.
[70]
UF Health IDR, https://idr.ufhealth.org/, 2023.
[71]
n2c2, https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/.
[72]
wikipedia, https://www.wikipedia.org/, 2023.
[73]
Q. Jin, B. Dhingra, Z. Liu, W. W. Cohen, and X. Lu, PubMedQA: A dataset for biomedical research question answering, arXiv preprint arXiv: 1909.06146, 2019.
[74]
A. Haque, V. Reddi, and T. Giallanza, Deep learning for suicide and depression identification with unsupervised label correction, in Proc. 30 th Int. Conf. Artificial Neural Networks, Bratislava, Slovakia, 2021, pp. 436–447.
[75]
H. Sun, Z. Lin, C. Zheng, S. Liu, and M. Huang, PsyQA: A Chinese dataset for generating long counseling text for mental health support, arXiv preprint arXiv: 2106.01702, 2021.
[76]
X. He, S. Chen, Z. Ju, X. Dong, H. Fang, S. Wang, Y. Yang, J. Zeng, R. Zhang, R. Zhang, et al., MedDialog: Two large-scale medical dialogue datasets, arXiv preprint arXiv: 2004.03329, 2020.
[77]

W. Chen, Z. Li, H. Fang, Q. Yao, C. Zhong, J. Hao, Q. Zhang, X. Huang, J. Peng, and Z. Wei, A benchmark for automatic medical consultation system: Frameworks, tasks and datasets, Bioinformatics, vol. 39, no. 1, p. btac817, 2023.

[78]
N. Zhang, M. Chen, Z. Bi, X. Liang, L. Li, X. Shang, K. Yin, C. Tan, J. Xu, F. Huang, et al., CBLUE: A Chinese biomedical language understanding evaluation benchmark, arXiv preprint arXiv: 2106.08087, 2022.
[79]

S. Zhang, X. Zhang, H. Wang, L. Guo, and S. Liu, Multi-scale attentive interaction networks for Chinese medical question answer selection, IEEE Access, vol. 6, pp. 74061–74071, 2018.

[80]

J. He, M. Fu, and M. Tu, Applying deep matching networks to Chinese medical question answering: A study and a dataset, BMC Med. Inform. Decis. Mak., vol. 19, no. S2, p. 52, 2019.

[81]
J. Li, X. Wang, X. Wu, Z. Zhang, X. Xu, J. Fu, P. Tiwari, X. Wan, and B. Wang, Huatuo-26M, a large-scale Chinese medical QA dataset, arXiv preprint arXiv: 2305.01526, 2023.
[82]
H. Qiu, H. He, S. Zhang, A. Li, and Z. Lan, SMILE: Single-turn to multi-turn inclusive language expansion via ChatGPT for mental health support, arXiv preprint arXiv: 2305.00450, 2024.
[83]
G. Coppersmith, M. Dredze, C. Harman, K. Hollingshead, and M. Mitchell, CLPsych 2015 shared task: Depression and PTSD on Twitter, in Proc. 2 nd Workshop on Computational Linguistics and Clinical Psychology : From Linguistic Signal to Clinical Reality, Denver, CO, USA, 2015, pp. 31–39.
[84]

S. Ji, X. Li, Z. Huang, and E. Cambria, Suicidal ideation and mental disorder detection with attentive relation networks, Neural Comput. Appl., vol. 34, no. 13, pp. 10309–10319, 2022.

[85]
M. L. Mauriello, T. Lincoln, G. Hon, D. Simon, D. Jurafsky, and P. Paredes, SAD: A stress annotated dataset for recognizing everyday stressors in SMS-like conversational systems, in Proc. 2021 CHI Conf. Human Factors in Computing Systems, Yokohama, Japan, 2021, pp. 1–7.
[86]
M. Garg, C. Saxena, V. Krishnan, R. Joshi, S. Saha, V. Mago, and B. J. Dorr, CAMS: An annotated corpus for causal analysis of mental health issues in social media posts, arXiv preprint arXiv: 2207.04674, 2022.
[87]
M. Garg, A. Shahbandegan, A. Chadha, and V. Mago, An annotated dataset for explainable interpersonal risk factors of mental disturbance in social media posts, arXiv preprint arXiv: 2305.18727, 2023.
[88]
M. Sathvik and M. Garg, MULTIWD: Multiple wellness dimensions in social media posts, TechRxiv preprint, https://doi.org/10.36227/techrxiv.22816586.v1, 2023.
[89]
X. Yang, A. Chen, N. PourNejatian, H. C. Shin, K. E. Smith, C. Parisien, C. Compas, C. Martin, M. G. Flores, Y. Zhang, et al., GatorTron: A large clinical language model to unlock patient information from unstructured electronic health records, arXiv preprint arXiv: 2203.03540, 2022.
[90]
Y. Tan, M. Li, Z. Huang, H. Yu, and G. Fan, MedChatZH: A better medical adviser learns from better instructions, arXiv preprint arXiv: 2309.01114, 2023.
[91]

G. N. Lin, S. Guo, X. Tan, W. Wang, W. Qian, W. Song, J. Wang, S. Yu, Z. Wang, D. Cui, et al., PsyMuKB: An integrative de novo variant knowledge base for developmental disorders, Genomics Proteomics Bioinformatics, vol. 17, no. 4, pp. 453–464, 2019.

[92]

X. Pan, X. Zhou, L. Yu, and L. Hou, Switching from offline to online health consultation in the post-pandemic era: The role of perceived pandemic risk, Front. Public Health, vol. 11, p. 1121290, 2023.

[93]
A. Suprem, S. Vaidya, J. E. Ferreira, and C. Pu, Time-aware datasets are adaptive knowledge bases for the new normal, arXiv preprint arXiv: 2211.12508, 2022.
[94]

A. J. Thirunavukarasu, D. S. J. Ting, K. Elangovan, L. Gutierrez, T. F. Tan, and D. S. W. Ting, Large language models in medicine, Nat. Med., vol. 29, no. 8, pp. 1930–1940, 2023.

[95]

J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, et al., Overcoming catastrophic forgetting in neural networks, Proc. Natl. Acad. Sci. USA, vol. 114, no. 13, pp. 3521–3526, 2017.

[96]

H. Huang, O. Zheng, D. Wang, J. Yin, Z. Wang, S. Ding, H. Yin, C. Xu, R. Yang, Q. Zheng, et al., ChatGPT for shaping the future of dentistry: The potential of multi-modal large language model, Int. J. Oral Sci., vol. 15, no. 1, p. 29, 2023.

[97]

Y. Wei, L. Guo, C. Lian, and J. Chen, ChatGPT: Opportunities, risks and priorities for psychiatry, Asian J. Psychiatr., vol. 90, p. 103808, 2023.

[98]

A. C. van Heerden, J. R. Pozuelo, and B. A. Kohrt, Global mental health services and the impact of artificial intelligence–Powered large language models, JAMA Psychiatry, vol. 80, no. 7, pp. 662–664, 2023.

[99]

A. Rieger, A. Gaines, I. Barnett, C. F. Baldassano, M. B. C. Gibbons, and P. Crits-Christoph, Psychiatry outpatients’ willingness to share social media posts and smartphone data for research and clinical purposes: Survey study, JMIR Form. Res., vol. 3, no. 3, p. e14329, 2019.

[100]

Z. Obermeyer, B. Powers, C. Vogeli, and S. Mullainathan, Dissecting racial bias in an algorithm used to manage the health of populations, Science, vol. 366, no. 6464, pp. 447–453, 2019.

[101]

B. R. Beaulieu-Jones, M. T. Berrigan, S. Shah, J. S. Marwaha, S.-L. Lai, and G. A. Brat, Evaluating capabilities of large language models: Performance of GPT-4 on surgical knowledge assessments, Surgery, vol. 175, no. 4, pp. 936–942, 2024

[102]

J. W. A. Strachan, D. Albergo, G. Borghini, O. Pansardi, E. Scaliti, S. Gupta, K. Saxena, A. Rufo, S. Panzeri, G. Manzi, et al., Testing theory of mind in large language models and humans, Nat. Hum. Behav., vol. 8, no. 7, pp. 1285–1295, 2024.

[103]
S. Ji, T. Zhang, K. Yang, S. Ananiadou, and E. Cambria, Rethinking large language models in mental health applications, arXiv preprint arXiv: 2311.11267, 2023.
[104]

A. J. Nashwan, A. A. Abujaber, and H. Choudry, Embracing the future of physician-patient communication: GPT-4 in gastroenterology, Gastroenterology & Endoscopy, vol. 1, no. 3, pp. 132–135, 2023.

[105]
V. Sorin, D. Brin, Y. Barash, E. Konen, A. Charney, G. Nadkarni, and E. Klang, Large language models (LLMs) and empathy-a systematic review, medRxiv preprint, https://doi.org/10.1101/2023.08.07.23293769, 2023.
[106]
S. Poria, D. Hazarika, N. Majumder, G. Naik, E. Cambria, and R. Mihalcea, MELD: A multimodal multi-party dataset for emotion recognition in conversations, arXiv preprint arXiv: 1810.02508, 2019.
[107]
Y. H. H. Tsai, S. Bai, P. P. Liang, J. Z. Kolter, L. P. Morency, and R. Salakhutdinov, Multimodal transformer for unaligned multimodal language sequences, in Proc. 57 th Annu. Meeting of the Association for Computational Linguistics, Florence, Italy, 2019, p. 6558–6569.
[108]
A. A. B. Zadeh, P. P. Liang, S. Poria, E. Cambria, and L. P. Morency, Multimodal language analysis in the wild: CMU-MOSEI dataset and interpretable dynamic fusion graph, in Proc. 56 th Annu. Meeting of the Association for Computational Linguistics (Volume 1 : Long Papers ), Melbourne, Australia, 2018, pp. 2236–2246.
[109]
W. Chen, H. Hu, X. Chen, P. Verga, and W. W. Cohen, MuRAG: Multimodal retrieval-augmented generator for open question answering over images and text, arXiv preprint arXiv: 2210.02928, 2022.
[110]

G. McLoughlin, S. Makeig, and M. T. Tsuang, In search of biomarkers in psychiatry: EEG-based measures of brain function, Am. J. Med. Genet. B: Neuropsychiatr. Genet., vol. 165, no. 2, pp. 111–121, 2014.

[111]

S. K. Loo, A. Lenartowicz, and S. Makeig, Research review: Use of EEG biomarkers in child psychiatry research–current state and future directions, J. Child Psychol. Psychiatry, vol. 57, no. 1, pp. 4–17, 2016.

[112]

T. Sand, M. H. Bjørk, and A. E. Vaaler, Is EEG a useful test in adult psychiatry? Tidsskr. Nor. Laegeforen., vol. 133, no. 11, pp. 1200–1204, 2013.

[113]

M. J. Farah and S. J. Gillihan, Diagnostic brain imaging in psychiatry: Current uses and future prospects, Virtual Mentor, vol. 14, no. 6, pp. 464–471, 2012.

[114]

D. E. J. Linden, The challenges and promise of neuroimaging in psychiatry, Neuron, vol. 73, no. 1, pp. 8–22, 2012.

[115]

A. Abi-Dargham and G. Horga, The search for imaging biomarkers in psychiatric disorders, Nat. Med., vol. 22, no. 11, pp. 1248–1255, 2016.

[116]

F. Vandenberghe, M. Guidi, E. Choong, A. Von Gunten, P. Conus, C. Csajka, and C. B. Eap, Genetics-based population pharmacokinetics and pharmacodynamics of risperidone in a psychiatric cohort, Clin. Pharmacokinet., vol. 54, no. 12, pp. 1259–1272, 2015.

[117]

M. Wornow, Y. Xu, R. Thapa, B. Patel, E. Steinberg, S. Fleming, M. A. Pfeffer, J. Fries, and N. H. Shah, The shaky foundations of large language models and foundation models for electronic health records, npj Digit. Med., vol. 6, no. 1, p. 135, 2023.

[118]

L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, Model compression and hardware acceleration for neural networks: A comprehensive survey, Proc. IEEE, vol. 108, no. 4, pp. 485–532, 2020.

[119]
X. Zhu, J. Li, Y. Liu, C. Ma, and W. Wang, A survey on model compression for large language models, arXiv preprint arXiv: 2308.07633, 2023.
[120]
T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen, M. Fardad, and Y. Wang, A systematic DNN weight pruning framework using alternating direction method of multipliers, in Proc. 15 th European Conf. Computer Vision, Munich, Germany, 2018, pp. 191–207.
[121]
M. A. Gordon, K. Duh, and N. Andrews, Compressing BERT: Studying the effects of weight pruning on transfer learning, arXiv preprint arXiv: 2002.08307, 2020.
[122]
G. Fang, X. Ma, M. Song, M. B. Mi, and X. Wang, DepGraph: Towards any structural pruning, in Proc. 2023 IEEE/CVF Conf. Computer Vision and Pattern Recognition, Vancouver, Canada, 2023, pp. 16091–16101.
[123]
Y. Gu, L. Dong, F. Wei, and M. Huang, MiniLLM: Knowledge distillation of large language models, arXiv preprint arXiv: 2306.08543, 2024.
[124]
Z. Liu, B. Oguz, C. Zhao, E. Chang, P. Stock, Y. Mehdad, Y. Shi, R. Krishnamoorthi, and V. Chandra, LLM-QAT: Data-free quantization aware training for large language models, arXiv preprint arXiv: 2305.17888, 2023.
[125]

F. X. Doo, P. Kulkarni, E. L. Siegel, M. Toland, P. H. Yi, R. C. Carlos, and V. S. Parekh, Economic and environmental costs of cloud technologies for medical imaging and radiology artificial intelligence, J. Am. Coll. Radiol., vol. 21, no. 2, pp. 248–256, 2024.

[126]
C. Chen, X. Feng, J. Zhou, J. Yin, and X. Zheng, Federated large language model: A position paper, arXiv preprint arXiv: 2307.08925, 2023.
[127]

J. E. Zini and M. Awad, On the explainability of natural language processing deep models, ACM Comput. Surv., vol. 55, no. 5, p. 103, 2022.

[128]

D. W. Joyce, A. Kormilitzin, K. A. Smith, and A. Cipriani, Explainable artificial intelligence for mental health through transparency and interpretability for understandability, npj Digit. Med., vol. 6, no. 1, p. 6, 2023.

[129]

J. Clusmann, F. R. Kolbinger, H. S. Muti, Z. I. Carrero, J. N. Eckardt, N. G. Laleh, C. M. L. Löffler, S. C. Schwarzkopf, M. Unger, G. P. Veldhuizen, et al., The future landscape of large language models in medicine, Commun. Med., vol. 3, no. 1, p. 141, 2023.

[130]

B. Meskó and E. J. Topol, The imperative for regulatory oversight of large language models (or generative AI) in healthcare, npj Digit. Med., vol. 6, no. 1, p. 120, 2023.

[131]

M. Moor, O. Banerjee, Z. S. H. Abad, H. M. Krumholz, J. Leskovec, E. J. Topol, and P. Rajpurkar, Foundation models for generalist medical artificial intelligence, Nature, vol. 616, no. 7956, p. 259–265, 2023.

[132]

B. S. Fernandes, L. M. Williams, J. Steiner, M. Leboyer, A. F. Carvalho, and M. Berk, The new field of ‘precision psychiatry’, BMC Med., vol. 15, no. 1, p. 80, 2017.

[133]

M. Bauer, S. Monteith, J. Geddes, M. J. Gitlin, P. Grof, P. C. Whybrow, and T. Glenn, Automation to optimise physician treatment of individual patients: Examples in psychiatry, Lancet Psychiatry, vol. 6, no. 4, pp. 338–349, 2019.

[134]
R. Tang, X. Han, X. Jiang, and X. Hu, Does synthetic data generation of LLMs help clinical text mining? arXiv preprint arXiv: 2303.04360, 2023.
[135]
A. Mahmood, J. Wang, B. Yao, D. Wang, and C. M. Huang, LLM-powered conversational voice assistants: Interaction patterns, opportunities, challenges, and design guidelines, arXiv preprint arXiv: 2309.13879, 2023.
[136]

J. Qian, Z. Jin, Q. Zhang, G. Cai, and B. Liu, A liver cancer question-answering system based on next-generation intelligence and the large model Med-PaLM 2, International Journal of Computer Science and Information Technology, vol. 2, pp. 28–35, 2024.

[137]
E. Jo, D. A. Epstein, H. Jung, and Y. H. Kim, Understanding the benefits and challenges of deploying conversational AI leveraging large language models for public health intervention, in Proc. 2023 CHI Conf. Human Factors in Computing Systems, Hamburg, Germany, 2023, p. 18.
[138]

R. Yang, T. F. Tan, W. Lu, A. J. Thirunavukarasu, D. S. W. Ting, and N. Liu, Large language models in health care: Development, applications, and challenges, Health Care Sci., vol. 2, no. 4, pp. 255–263, 2023.

[139]
R. Bhaumik, V. Srivastava, A. Jalali, S. Ghosh, and R. Chandrasekaran, MindWatch: A smart cloud-based AI solution for suicide ideation detection leveraging large language models, medRxiv preprint, https://doi.org/10.1101/2023.09.25.23296062, 2023.
[140]

G. Wang, X. Liu, Z. Ying, G. Yang, Z. Chen, Z. Liu, M. Zhang, H. Yan, Y. Lu, Y. Gao, et al., Optimized glycemic control of type 2 diabetes with reinforcement learning: A proof-of-concept trial, Nat. Med., vol. 29, no. 10, pp. 2633–2642, 2023.

[141]
T. D. Nguyen, Y. S. Ting, I. Ciucă, C. O’Neill, Z. C. Sun, M. Jabłońska, S. Kruk, E. Perkowski, J. Miller, J. Li, et al., AstroLLaMA: Towards specialized foundation models in astronomy, arXiv preprint arXiv: 2309.06126, 2023.
[142]

S. Pal, M. Bhattacharya, S. S. Lee, and C. Chakraborty, A domain-specific next-generation large language model (LLM) or ChatGPT is required for biomedical engineering and research, Ann. Biomed. Eng., vol. 52, no. 3, pp. 451–454, 2024.

[143]

A. Abd-Alrazaq, R. AlSaad, D. Alhuwail, A. Ahmed, P. M. Healy, S. Latifi, S. Aziz, R. Damseh, S. A. Alrazak, and J. Sheikh, Large language models in medical education: Opportunities, challenges, and future directions, JMIR Med. Educ., vol. 9, p. e48291, 2023.

[144]

M. A. Fink, A. Bischoff, C. A. Fink, M. Moll, J. Kroschke, L. Dulz, C. P. Heußel, H. U. Kauczor, and T. F. Weber, Potential of ChatGPT and GPT-4 for data mining of free-text CT reports on lung cancer, Radiology, vol. 308, no. 3, p. e231362, 2023.

[145]
Y. Chang, X. Wang, J. Wang, Y. Wu, L. Yang, K. Zhu, H. Chen, X. Yi, C. Wang, Y. Wang, et al., A survey on evaluation of large language models, arXiv preprint arXiv: 2307.03109, 2023.
[146]
X. Zhang, S. Li, B. Hauer, N. Shi, and G. Kondrak, Don’t trust ChatGPT when your question is not in English: A study of multilingual abilities and types of LLMs, in Proc. 2023 Conf. Empirical Methods in Natural Language Processing, Singapore, 2023, pp. 7915–7927.
[147]

L. Campillos-Llanos, C. Thomas, É. Bilinski, A. Neuraz, S. Rosset, and P. Zweigenbaum, Lessons learned from the usability evaluation of a simulated patient dialogue system, J. Med. Syst., vol. 45, no. 7, p. 69, 2021.

[148]
S. Chen, M. Wu, K. Q. Zhu, K. Lan, Z. Zhang, and L. Cui, LLM-empowered chatbots for psychiatrist and patient simulation: Application and evaluation, arXiv preprint arXiv: 2305.13614, 2023.
[149]

P. Cuijpers, J. Li, S. G. Hofmann, and G. Andersson, Self-reported versus clinician-rated symptoms of depression as outcome measures in psychotherapy research on depression: A meta-analysis, Clin. Psychol. Rev., vol. 30, no. 6, pp. 768–778, 2010.

[150]
S. E. O’Bryant, C. G. Finlay, and J. R. O’Jile, TOMM performances and self-reported symptoms of depression and anxiety, J. Psychopathol. Behav. Assess., vol. 29, no. 2, pp. 111–114, 2007.
[151]
W. Gan, Z. Qi, J. Wu, and J. C. W. Lin, Large language models in education: Vision and opportunities, arXiv preprint arXiv: 2311.13160, 2023.
[152]

M. Sallam, N. Salim, M. Barakat, and A. Al-Tammemi, ChatGPT applications in medical, dental, pharmacy, and public health education: A descriptive study highlighting the advantages and limitations, Narra J, vol. 3, no. 1, p. e103, 2023.

Big Data Mining and Analytics
Pages 1148-1168
Cite this article:
Liu Z, Bao Y, Zeng S, et al. Large Language Models in Psychiatry: Current Applications, Limitations, and Future Scope. Big Data Mining and Analytics, 2024, 7(4): 1148-1168. https://doi.org/10.26599/BDMA.2024.9020046

312

Views

75

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 20 February 2024
Revised: 30 May 2024
Accepted: 07 July 2024
Published: 04 December 2024
© The author(s) 2024.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return