Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
With the advancements in Artificial Intelligence (AI) technology, Large Language Models (LLMs) provide outstanding capabilities for natural language understanding and generation, enhancing various domains. In psychiatry, LLMs can empower healthcare by analyzing vast amounts of medical data to improve diagnostic accuracy, enhance therapeutic communication, and personalize patient care with their strength in understanding and generating human-like text. In clinical AI, developing and utilizing robust and interpretable models has been a longstanding challenge. This survey investigates the current psychiatric practice of LLMs, along with a series of corpus resources that could be used for training psychiatric LLMs. We discuss the limitations concerning LLM reproducibility, capabilities, usability, interpretability in clinical settings, and ethical considerations. Additionally, we propose potential future directions for research, clinical application, and education in psychiatric LLMs. Finally, we discuss the challenge of integrating LLMs into the evolving landscape of healthcare in real-world scenarios.
J. A. Lieberman and A. J. Rush, Redefining the role of psychiatry in medicine, Am. J. Psychiatry, vol. 153, no. 11, pp. 1388–1397, 1996.
S. B. Guze, Nature of psychiatric illness: Why psychiatry is a branch of medicine, Compr. Psychiatry, vol. 19, no. 4, pp. 295–307, 1978.
P. Długosz and D. Liszka, The relationship between mental health, educational burnout and strategies for coping with stress among students: A cross-sectional study of Poland, Int. J. Environ. Res. Public Health, vol. 18, no. 20, p. 10827, 2021.
N. Rezaii, P. Wolff, and B. H. Price, Natural language processing in psychiatry: The promises and perils of a transformative approach, Br. J. Psychiatry, vol. 220, no. 5, pp. 251–253, 2022.
A. Le Glaz, Y. Haralambous, D. H. Kim-Dufor, P. Lenca, R. Billot, T. C. Ryan, J. Marsh, J. Devylder, M. Walter, S. Berrouiguet, et al., Machine learning and natural language processing in mental health: Systematic review, J. Med. Internet Res., vol. 23, no. 5, p. e15708, 2021.
L. Tejavibulya, M. Rolison, S. Y. Gao, Q. H. Liang, H. Peterson, J. Dadashkarimi, M. C. Farruggia, C. A. Hahn, S. Noble, S. D. Lichenstein, et al., Predicting the future of neuroimaging predictive models in mental health, Mol. Psychiatry, vol. 27, no. 8, pp. 3129–3137, 2022.
C. Su, Z. Xu, J. Pathak, and F. Wang, Deep learning in mental health outcome research: A scoping review, Transl. Psychiatry, vol. 10, no. 1, p. 116, 2020.
T. Zhang, A. M. Schoene, and S. Ananiadou, Automatic identification of suicide notes with a transformer-based deep learning model, Internet Interv., vol. 25, p. 100422, 2021.
A. Abd-Alrazaq, D. Alhuwail, J. Schneider, C. T. Toro, A. Ahmed, M. Alzubaidi, M. Alajlani, and M. Househ, The performance of artificial intelligence-driven technologies in diagnosing mental disorders: An umbrella review, NPJ Digit. Med., vol. 5, no. 1, p. 87, 2022.
K. Singhal, S. Azizi, T. Tu, S. S. Mahdavi, J. Wei, H. W. Chung, N. Scales, A. Tanwani, H. Cole-Lewis, S. Pfohl, P. Payne, Large language models encode clinical knowledge, Nature, vol. 620, no. 7972, pp. 172–180, 2023.
A. B. Abacha and D. Demner-Fushman, A question-entailment approach to question answering, BMC Bioinformatics, vol. 20, no. 1, p. 511, 2019.
O. Byambasuren, Y. Yang, Z. Sui, D. Dai, B. Chang, S. Li, and H. Zan, Preliminary study on the construction of Chinese medical knowledge graph, (in Chinese), Journal of Chinese Information Processing, vol. 33, no. 10, pp. 1–9, 2019.
D. Jin, E. Pan, N. Oufattole, W. H. Weng, H. Fang, and P. Szolovits, What disease does this patient have? A large-scale open domain question answering dataset from medical exams, Appl. Sci., vol. 11, no. 14, p. 6421, 2021.
W. Chen, Z. Li, H. Fang, Q. Yao, C. Zhong, J. Hao, Q. Zhang, X. Huang, J. Peng, and Z. Wei, A benchmark for automatic medical consultation system: Frameworks, tasks and datasets, Bioinformatics, vol. 39, no. 1, p. btac817, 2023.
S. Zhang, X. Zhang, H. Wang, L. Guo, and S. Liu, Multi-scale attentive interaction networks for Chinese medical question answer selection, IEEE Access, vol. 6, pp. 74061–74071, 2018.
J. He, M. Fu, and M. Tu, Applying deep matching networks to Chinese medical question answering: A study and a dataset, BMC Med. Inform. Decis. Mak., vol. 19, no. S2, p. 52, 2019.
S. Ji, X. Li, Z. Huang, and E. Cambria, Suicidal ideation and mental disorder detection with attentive relation networks, Neural Comput. Appl., vol. 34, no. 13, pp. 10309–10319, 2022.
G. N. Lin, S. Guo, X. Tan, W. Wang, W. Qian, W. Song, J. Wang, S. Yu, Z. Wang, D. Cui, et al., PsyMuKB: An integrative de novo variant knowledge base for developmental disorders, Genomics Proteomics Bioinformatics, vol. 17, no. 4, pp. 453–464, 2019.
X. Pan, X. Zhou, L. Yu, and L. Hou, Switching from offline to online health consultation in the post-pandemic era: The role of perceived pandemic risk, Front. Public Health, vol. 11, p. 1121290, 2023.
A. J. Thirunavukarasu, D. S. J. Ting, K. Elangovan, L. Gutierrez, T. F. Tan, and D. S. W. Ting, Large language models in medicine, Nat. Med., vol. 29, no. 8, pp. 1930–1940, 2023.
J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, et al., Overcoming catastrophic forgetting in neural networks, Proc. Natl. Acad. Sci. USA, vol. 114, no. 13, pp. 3521–3526, 2017.
H. Huang, O. Zheng, D. Wang, J. Yin, Z. Wang, S. Ding, H. Yin, C. Xu, R. Yang, Q. Zheng, et al., ChatGPT for shaping the future of dentistry: The potential of multi-modal large language model, Int. J. Oral Sci., vol. 15, no. 1, p. 29, 2023.
Y. Wei, L. Guo, C. Lian, and J. Chen, ChatGPT: Opportunities, risks and priorities for psychiatry, Asian J. Psychiatr., vol. 90, p. 103808, 2023.
A. C. van Heerden, J. R. Pozuelo, and B. A. Kohrt, Global mental health services and the impact of artificial intelligence–Powered large language models, JAMA Psychiatry, vol. 80, no. 7, pp. 662–664, 2023.
A. Rieger, A. Gaines, I. Barnett, C. F. Baldassano, M. B. C. Gibbons, and P. Crits-Christoph, Psychiatry outpatients’ willingness to share social media posts and smartphone data for research and clinical purposes: Survey study, JMIR Form. Res., vol. 3, no. 3, p. e14329, 2019.
Z. Obermeyer, B. Powers, C. Vogeli, and S. Mullainathan, Dissecting racial bias in an algorithm used to manage the health of populations, Science, vol. 366, no. 6464, pp. 447–453, 2019.
B. R. Beaulieu-Jones, M. T. Berrigan, S. Shah, J. S. Marwaha, S.-L. Lai, and G. A. Brat, Evaluating capabilities of large language models: Performance of GPT-4 on surgical knowledge assessments, Surgery, vol. 175, no. 4, pp. 936–942, 2024
J. W. A. Strachan, D. Albergo, G. Borghini, O. Pansardi, E. Scaliti, S. Gupta, K. Saxena, A. Rufo, S. Panzeri, G. Manzi, et al., Testing theory of mind in large language models and humans, Nat. Hum. Behav., vol. 8, no. 7, pp. 1285–1295, 2024.
A. J. Nashwan, A. A. Abujaber, and H. Choudry, Embracing the future of physician-patient communication: GPT-4 in gastroenterology, Gastroenterology & Endoscopy, vol. 1, no. 3, pp. 132–135, 2023.
G. McLoughlin, S. Makeig, and M. T. Tsuang, In search of biomarkers in psychiatry: EEG-based measures of brain function, Am. J. Med. Genet. B: Neuropsychiatr. Genet., vol. 165, no. 2, pp. 111–121, 2014.
S. K. Loo, A. Lenartowicz, and S. Makeig, Research review: Use of EEG biomarkers in child psychiatry research–current state and future directions, J. Child Psychol. Psychiatry, vol. 57, no. 1, pp. 4–17, 2016.
T. Sand, M. H. Bjørk, and A. E. Vaaler, Is EEG a useful test in adult psychiatry? Tidsskr. Nor. Laegeforen., vol. 133, no. 11, pp. 1200–1204, 2013.
M. J. Farah and S. J. Gillihan, Diagnostic brain imaging in psychiatry: Current uses and future prospects, Virtual Mentor, vol. 14, no. 6, pp. 464–471, 2012.
D. E. J. Linden, The challenges and promise of neuroimaging in psychiatry, Neuron, vol. 73, no. 1, pp. 8–22, 2012.
A. Abi-Dargham and G. Horga, The search for imaging biomarkers in psychiatric disorders, Nat. Med., vol. 22, no. 11, pp. 1248–1255, 2016.
F. Vandenberghe, M. Guidi, E. Choong, A. Von Gunten, P. Conus, C. Csajka, and C. B. Eap, Genetics-based population pharmacokinetics and pharmacodynamics of risperidone in a psychiatric cohort, Clin. Pharmacokinet., vol. 54, no. 12, pp. 1259–1272, 2015.
M. Wornow, Y. Xu, R. Thapa, B. Patel, E. Steinberg, S. Fleming, M. A. Pfeffer, J. Fries, and N. H. Shah, The shaky foundations of large language models and foundation models for electronic health records, npj Digit. Med., vol. 6, no. 1, p. 135, 2023.
L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, Model compression and hardware acceleration for neural networks: A comprehensive survey, Proc. IEEE, vol. 108, no. 4, pp. 485–532, 2020.
F. X. Doo, P. Kulkarni, E. L. Siegel, M. Toland, P. H. Yi, R. C. Carlos, and V. S. Parekh, Economic and environmental costs of cloud technologies for medical imaging and radiology artificial intelligence, J. Am. Coll. Radiol., vol. 21, no. 2, pp. 248–256, 2024.
J. E. Zini and M. Awad, On the explainability of natural language processing deep models, ACM Comput. Surv., vol. 55, no. 5, p. 103, 2022.
D. W. Joyce, A. Kormilitzin, K. A. Smith, and A. Cipriani, Explainable artificial intelligence for mental health through transparency and interpretability for understandability, npj Digit. Med., vol. 6, no. 1, p. 6, 2023.
J. Clusmann, F. R. Kolbinger, H. S. Muti, Z. I. Carrero, J. N. Eckardt, N. G. Laleh, C. M. L. Löffler, S. C. Schwarzkopf, M. Unger, G. P. Veldhuizen, et al., The future landscape of large language models in medicine, Commun. Med., vol. 3, no. 1, p. 141, 2023.
B. Meskó and E. J. Topol, The imperative for regulatory oversight of large language models (or generative AI) in healthcare, npj Digit. Med., vol. 6, no. 1, p. 120, 2023.
M. Moor, O. Banerjee, Z. S. H. Abad, H. M. Krumholz, J. Leskovec, E. J. Topol, and P. Rajpurkar, Foundation models for generalist medical artificial intelligence, Nature, vol. 616, no. 7956, p. 259–265, 2023.
B. S. Fernandes, L. M. Williams, J. Steiner, M. Leboyer, A. F. Carvalho, and M. Berk, The new field of ‘precision psychiatry’, BMC Med., vol. 15, no. 1, p. 80, 2017.
M. Bauer, S. Monteith, J. Geddes, M. J. Gitlin, P. Grof, P. C. Whybrow, and T. Glenn, Automation to optimise physician treatment of individual patients: Examples in psychiatry, Lancet Psychiatry, vol. 6, no. 4, pp. 338–349, 2019.
J. Qian, Z. Jin, Q. Zhang, G. Cai, and B. Liu, A liver cancer question-answering system based on next-generation intelligence and the large model Med-PaLM 2, International Journal of Computer Science and Information Technology, vol. 2, pp. 28–35, 2024.
R. Yang, T. F. Tan, W. Lu, A. J. Thirunavukarasu, D. S. W. Ting, and N. Liu, Large language models in health care: Development, applications, and challenges, Health Care Sci., vol. 2, no. 4, pp. 255–263, 2023.
G. Wang, X. Liu, Z. Ying, G. Yang, Z. Chen, Z. Liu, M. Zhang, H. Yan, Y. Lu, Y. Gao, et al., Optimized glycemic control of type 2 diabetes with reinforcement learning: A proof-of-concept trial, Nat. Med., vol. 29, no. 10, pp. 2633–2642, 2023.
S. Pal, M. Bhattacharya, S. S. Lee, and C. Chakraborty, A domain-specific next-generation large language model (LLM) or ChatGPT is required for biomedical engineering and research, Ann. Biomed. Eng., vol. 52, no. 3, pp. 451–454, 2024.
A. Abd-Alrazaq, R. AlSaad, D. Alhuwail, A. Ahmed, P. M. Healy, S. Latifi, S. Aziz, R. Damseh, S. A. Alrazak, and J. Sheikh, Large language models in medical education: Opportunities, challenges, and future directions, JMIR Med. Educ., vol. 9, p. e48291, 2023.
M. A. Fink, A. Bischoff, C. A. Fink, M. Moll, J. Kroschke, L. Dulz, C. P. Heußel, H. U. Kauczor, and T. F. Weber, Potential of ChatGPT and GPT-4 for data mining of free-text CT reports on lung cancer, Radiology, vol. 308, no. 3, p. e231362, 2023.
L. Campillos-Llanos, C. Thomas, É. Bilinski, A. Neuraz, S. Rosset, and P. Zweigenbaum, Lessons learned from the usability evaluation of a simulated patient dialogue system, J. Med. Syst., vol. 45, no. 7, p. 69, 2021.
P. Cuijpers, J. Li, S. G. Hofmann, and G. Andersson, Self-reported versus clinician-rated symptoms of depression as outcome measures in psychotherapy research on depression: A meta-analysis, Clin. Psychol. Rev., vol. 30, no. 6, pp. 768–778, 2010.
M. Sallam, N. Salim, M. Barakat, and A. Al-Tammemi, ChatGPT applications in medical, dental, pharmacy, and public health education: A descriptive study highlighting the advantages and limitations, Narra J, vol. 3, no. 1, p. e103, 2023.
321
Views
76
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).