AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (18.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Importance of zeolite in multifunctional catalysts for syngas conversion

Hangjie LiLiang Wang ( )Feng-Shou Xiao ( )
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310028, China
Show Author Information

Graphical Abstract

Zeolites can efficiently regulate the reaction pathways in Fischer–Tropsch synthesis processes due to their unique microporesand varied compositions, offering a good opportunity to rationally design efficient catalysts in the future.

Abstract

Conversion of syngas into valuable fuels and chemicals has been studied for about 100 years since the discovery of Fischer–Tropsch synthesis (FTS) for conversion of syngas to fuels. Generally, the products in conventional FTS adhere to the Anderson–Schultz–Flory model, which has restricted selectivity to the target products. Other highly demanded compounds, such as valuable aromatics and oxygenates, could not be directly obtained from the conventional FTS. According to recent findings, the cascade reactions including isomerization, cracking, and aromatization can optimize the product selectivity, when the zeolite is added to FTS catalysts. Additionally, by offering a confined environment for the C–O bond formation, zeolite makes a substantial contribution to the conversion of syngas into oxygenates. In this review, we primarily focus on the role of zeolites in FTS processes and how it regulates the reaction pathways. The structure–performance interplay of zeolites was particularly discussed, which might be helpful to guide the rational design of zeolites in the development of more effective catalysts.

References

[1]

Galvis, H. M. T.; Bitter, J. H.; Khare, C. B.; Ruitenbeek, M.; Dugulan, A. I.; de Jong, K. P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science 2012, 335, 835–838.

[2]

Zhou, W.; Cheng, K.; Kang, J. C.; Zhou, C.; Subramanian, V.; Zhang, Q. H.; Wang, Y. New horizon in C1 chemistry: Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chem. Soc. Rev. 2019, 48, 3193–3228.

[3]

Fang, W.; Wang, C. T.; Liu, Z. Q.; Wang, L.; Liu, L.; Li, H. J.; Xu, S. D.; Zheng, A. M.; Qin, X. D.; Liu, L. J. et al. Physical mixing of a catalyst and a hydrophobic polymer promotes CO hydrogenation through dehydration. Science 2022, 377, 406–410.

[4]

Cheng, Q. P.; Tian, Y.; Lyu, S. S.; Zhao, N.; Ma, K.; Ding, T.; Jiang, Z.; Wang, L. H.; Zhang, J.; Zheng, L. R. et al. Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer-Tropsch synthesis. Nat. Commun. 2018, 9, 3250.

[5]

Zhong, L. S.; Yu, F.; An, Y. L.; Zhao, Y. H.; Sun, Y. H.; Li, Z. J.; Lin, T. J.; Lin, Y. J.; Qi, X. Z.; Dai, Y. Y. et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Nature 2016, 538, 84–87.

[6]

Wang, C. T.; Fang, W.; Liu, Z. Q.; Wang, L.; Liao, Z. W.; Yang, Y. R.; Li, H. J.; Liu, L.; Zhou, H.; Qin, X. D. et al. Fischer–Tropsch synthesis to olefins boosted by MFI zeolite nanosheets. Nat. Nanotechnol. 2022, 17, 714–720.

[7]

Xu, Y. F. ; Li, X. Y. ; Gao, J. H. ; Wang, J. ; Ma, G. Y. ; Wen, X. D. ; Yang, Y. ; Li, Y. W. ; Ding, M. Y. A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products. Science 2021, 371, 610–613.

[8]

de Smit, E.; Weckhuysen, B. M. The renaissance of iron-based Fischer-Tropsch synthesis: On the multifaceted catalyst deactivation behaviour. Chem. Soc. Rev. 2008, 37, 2758–2781.

[9]

Galvis, H. M. T.; de Jong, K. P. Catalysts for production of lower olefins from synthesis gas: A review. ACS Catal. 2013, 3, 2130–2149.

[10]

Zhang, Q. H.; Kang, J. C.; Wang, Y. Development of novel catalysts for Fischer–Tropsch synthesis: Tuning the product selectivity. ChemCatChem 2010, 2, 1030–1058.

[11]

Henrici-Olivé, G.; Olivé, S. The Fischer-Tropsch synthesis: Molecular weight distribution of primary products and reaction mechanism. Angew. Chem., Int. Ed. 1976, 15, 136–141.

[12]

Li, C. L.; Xu, H. Y.; Kido, Y.; Yoneyama, Y.; Suehiro, Y.; Tsubaki, N. A capsule catalyst with a zeolite membrane prepared by direct liquid membrane crystallization. ChemSusChem 2012, 5, 862–866.

[13]

He, J. J.; Liu, Z. L.; Yoneyama, Y.; Nishiyama, N.; Tsubaki, N. Multiple-functional capsule catalysts: A tailor-made confined reaction environment for the direct synthesis of middle isoparaffins from syngas. Chem. -Eur. J. 2006, 12, 8296–8304.

[14]

Yang, G. H.; He, J. J.; Yoneyama, Y.; Tan, Y. S.; Han, Y. Z.; Tsubaki, N. Preparation, characterization and reaction performance of H-ZSM-5/cobalt/silica capsule catalysts with different sizes for direct synthesis of isoparaffins. Appl. Catal. A: Gen. 2007, 329, 99–105.

[15]

Bao, J. ; Yang, G. H. ; Okada, C. ; Yoneyama, Y. ; Tsubaki, N. H-type zeolite coated iron-based multiple-functional catalyst for direct synthesis of middle isoparaffins from syngas. Appl. Catal. A: Gen. 2011, 394, 195–200.

[16]

Yang, G. H.; Xing, C.; Hirohama, W.; Jin, Y. Z.; Zeng, C. Y.; Suehiro, Y.; Wang, T. J.; Yoneyama, Y.; Tsubaki, N. Tandem catalytic synthesis of light isoparaffin from syngas via Fischer–Tropsch synthesis by newly developed core-shell-like zeolite capsule catalysts. Catal. Today 2013, 215, 29–35.

[17]

Li, J.; He, Y. L.; Tan, L.; Zhang, P. P.; Peng, X. B.; Oruganti, A.; Yang, G. H.; Abe, H.; Wang, Y.; Tsubaki, N. Integrated tuneable synthesis of liquid fuels via Fischer–Tropsch technology. Nat. Catal. 2018, 1, 787–793.

[18]

Kang, J. C.; Wang, X. J.; Peng, X. B.; Yang, Y. D.; Cheng, K.; Zhang, Q. H.; Wang, Y. Mesoporous zeolite Y-supported Co nanoparticles as efficient Fischer–Tropsch catalysts for selective synthesis of diesel fuel. Ind. Eng. Chem. Res. 2016, 55, 13008–13019.

[19]

Wang, P.; Kang, J. C.; Zhang, Q. H.; Wang, Y. Lithium ion-exchanged zeolite faujasite as support of iron catalyst for Fischer–Tropsch synthesis. Catal. Lett. 2007, 114, 178–184.

[20]

Cheng, K.; Kang, J. C.; Huang, S. W.; You, Z. Y.; Zhang, Q. H.; Ding, J. S.; Hua, W. Q.; Lou, Y. C.; Deng, W. P.; Wang, Y. Mesoporous beta zeolite-supported ruthenium nanoparticles for selective conversion of synthesis gas to C5–C11 isoparaffins. ACS Catal. 2012, 2, 441–449.

[21]

Cheng, K.; Zhang, L.; Kang, J. C.; Peng, X. B.; Zhang, Q. H.; Wang, Y. Selective transformation of syngas into gasoline-range hydrocarbons over mesoporous H-ZSM-5-supported cobalt nanoparticles. Chem. -Eur. J. 2015, 21, 1928–1937.

[22]

Zhao, B.; Zhai, P.; Wang, P. F.; Li, J. Q.; Li, T.; Peng, M.; Zhao, M.; Hu, G.; Yang, Y.; Li, Y. W. et al. Direct transformation of syngas to aromatics over Na-Zn-Fe5C2 and hierarchical HZSM-5 tandem catalysts. Chem 2017, 3, 323–333.

[23]

Xu, Y. F.; Ma, G. Y.; Bai, J. Y.; Du, Y. X.; Qin, C.; Ding, M. Y. Yolk@shell FeMn@hollow HZSM-5 nanoreactor for directly converting syngas to aromatics. ACS Catal. 2021, 11, 4476–4485.

[24]

Khodakov, A. Y.; Chu, W.; Fongarland, P. Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem. Rev. 2007, 107, 1692–1744.

[25]

Xu, H.; Li, M. Z.; Nawaz, M. A.; Liu, D. H. Doping of K and Zn elements in FeZr-Ni/ZSM-5: Highly selective catalyst for syngas to aromatics. Catal. Commun. 2019, 121, 95–99.

[26]

Yang, X. L.; Su, X.; Chen, D.; Zhang, T.; Huang, Y. Q. Direct conversion of syngas to aromatics: A review of recent studies. Chin. J. Catal. 2020, 41, 561–573.

[27]

Weber, J. L.; Dugulan, I.; de Jongh, P. E.; de Jong, K. P. Bifunctional catalysis for the conversion of synthesis gas to olefins and aromatics. ChemCatChem 2018, 10, 1107–1112.

[28]

Spivey, J. J.; Egbebi, A. Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas. Chem. Soc. Rev. 2007, 36, 1514–1528.

[29]

Liu, G. B.; Yang, G. H.; Peng, X. B.; Wu, J. H.; Tsubaki, N. Recent advances in the routes and catalysts for ethanol synthesis from syngas. Chem. Soc. Rev. 2022, 51, 5606–5659.

[30]

Choi, Y.; Liu, P. Mechanism of ethanol synthesis from syngas on Rh (111). J. Am. Chem. Soc. 2009, 131, 13054–13061.

[31]

Gupta, M.; Smith, M. L.; Spivey, J. J. Heterogeneous catalytic conversion of dry syngas to ethanol and higher alcohols on Cu-based catalysts. ACS Catal. 2011, 1, 641–656.

[32]

Gong, J. L.; Yue, H. R.; Zhao, Y. J.; Zhao, S.; Zhao, L.; Lv, J.; Wang, S. P.; Ma, X. B. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites. J. Am. Chem. Soc. 2012, 134, 13922–13925.

[33]

Jiao, F.; Li, J. J.; Pan, X. L.; Xiao, J. P.; Li, H. B.; Ma, H.; Wei, M. M.; Pan, Y.; Zhou, Z. Y.; Li, M. R. et al. Selective conversion of syngas to light olefins. Science 2016, 351, 1065–1068.

[34]

Gao, P.; Li, S. G.; Bu, X. N.; Dang, S. S.; Liu, Z. Y.; Wang, H.; Zhong, L. S.; Qiu, M. H.; Yang, C. G.; Cai, J. et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nat. Chem. 2017, 9, 1019–1024.

[35]

Cheng, K.; Zhou, W.; Kang, J. C.; He, S.; Shi, S. L.; Zhang, Q. H.; Pan, Y.; Wen, W.; Wang, Y. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability. Chem 2017, 3, 334–347.

[36]

Zhang, P. P.; Tan, L.; Yang, G. H.; Tsubaki, N. One-pass selective conversion of syngas to para-xylene. Chem. Sci. 2017, 8, 7941–7946.

[37]

Liu, X. L.; Wang, M. H.; Yin, H. R.; Hu, J. T.; Cheng, K.; Kang, J. C.; Zhang, Q. H.; Wang, Y. Tandem catalysis for hydrogenation of CO and CO2 to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34. ACS Catal. 2020, 10, 8303–8314.

[38]

Cheng, K.; Gu, B.; Liu, X. L.; Kang, J. C.; Zhang, Q. H.; Wang, Y. Direct and highly selective conversion of synthesis gas into lower olefins: Design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling. Angew. Chem., Int. Ed. 2016, 55, 4725–4728.

[39]

Liu, Y. T.; Deng, D. H.; Bao, X. H. Catalysis for selected C1 chemistry. Chem 2020, 6, 2497–2514.

[40]

Pan, X. L.; Jiao, F.; Miao, D. Y.; Bao, X. H. Oxide-zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer–Tropsch synthesis. Chem. Rev. 2021, 121, 6588–6609.

[41]

Tang, Q.; Wang, P.; Zhang, Q.; Wang, Y. Utilization of microporous and mesoporous materials as supports of cobalt catalysts for regulating product distributions in Fischer–Tropsch synthesis. Chem. Lett. 2006, 35, 366–367.

[42]

Kang, J. C.; Zhang, S. L.; Zhang, Q. H.; Wang, Y. Ruthenium nanoparticles supported on carbon nanotubes as efficient catalysts for selective conversion of synthesis gas to diesel fuel. Angew. Chem., Int. Ed. 2009, 48, 2565–2568.

[43]

Kang, J. C.; Cheng, K.; Zhang, L.; Zhang, Q. H.; Ding, J. S.; Hua, W. Q.; Lou, Y. C.; Zhai, Q. G.; Wang, Y. Mesoporous zeolite-supported ruthenium nanoparticles as highly selective Fischer–Tropsch catalysts for the production of C5–C11 isoparaffins. Angew. Chem., Int. Ed. 2011, 50, 5200–5203.

[44]

Peng, X. B.; Cheng, K.; Kang, J. C.; Gu, B.; Yu, X.; Zhang, Q. H.; Wang, Y. Impact of hydrogenolysis on the selectivity of the Fischer-Tropsch synthesis: Diesel fuel production over mesoporous zeolite-Y-supported cobalt nanoparticles. Angew. Chem., Int. Ed. 2015, 54, 4553–4556.

[45]

Botes, F. G. The effect of a higher operating temperature on the Fischer–Tropsch/HZSM-5 bifunctional process. Appl. Catal. A: Gen. 2005, 284, 21–29.

[46]

Song, Y.; Xu, Y. B.; Suzuki, Y.; Nakagome, H.; Ma, X. X.; Zhang, Z. G. The distribution of coke formed over a multilayer Mo/HZSM-5 fixed bed in H2 co-fed methane aromatization at 1073 K: Exploration of the coking pathway. J. Catal. 2015, 330, 261–272.

[47]

Wang, S.; Huang, Z.; Luo, Y. J.; Wang, J. H.; Fang, Y.; Hua, W. M.; Yue, Y. H.; Xu, H. L.; Shen, W. Direct conversion of syngas into light aromatics over Cu-promoted ZSM-5 with ceria-zirconia solid solution. Catal. Sci. Technol. 2020, 10, 6562–6572.

[48]

Wei, J.; Ge, Q. J.; Yao, R. W.; Wen, Z. Y.; Fang, C. Y.; Guo, L. S.; Xu, H. Y.; Sun, J. Directly converting CO2 into a gasoline fuel. Nat. Commun. 2017, 8, 15174.

[49]

Chang, C. D.; Lang, W. H.; Silvestri, A. J. Synthesis gas conversion to aromatic hydrocarbons. J. Catal. 1979, 56, 268–273.

[50]

Li, G. Y.; Yang, J.; Chen, D. J.; Hu, S. Y. Impacts of the coming emission trading scheme on China's coal-to-materials industry in 2020. Appl. Energy 2017, 195, 837–849.

[51]

Arslan, M. T.; Qureshi, B. A.; Gilani, S. Z. A.; Cai, D. L.; Ma, Y. H.; Usman, M.; Chen, X.; Wang, Y.; Wei, F. Single-step conversion of H2-deficient syngas into high yield of tetramethylbenzene. ACS Catal. 2019, 9, 2203–2212.

[52]

Xu, Y. B.; Liu, D. P.; Liu, X. H. Conversion of syngas toward aromatics over hybrid Fe-based Fischer–Tropsch catalysts and HZSM-5 zeolites. Appl. Catal. A: Gen. 2018, 552, 168–183.

[53]

Li, M. Z.; Nawaz, M. A.; Song, G. Y.; Zaman, W. Q.; Liu, D. H. Influential role of elemental migration in a composite iron-zeolite catalyst for the synthesis of aromatics from syngas. Ind. Eng. Chem. Res. 2020, 59, 9043–9054.

[54]

Yang, X. L.; Wang, R. F.; Yang, J.; Qian, W. X.; Zhang, Y. R.; Li, X. N.; Huang, Y. Q.; Zhang, T.; Chen, D. Exploring the reaction paths in the consecutive Fe-based FT catalyst-zeolite process for syngas conversion. ACS Catal. 2020, 10, 3797–3806.

[55]

Tomás, R. A. F. ; Bordado, J. C. M. ; Gomes, J. F. P. p-Xylene oxidation to terephthalic acid: A literature review oriented toward process optimization and development. Chem. Rev. 2013, 113, 7421–7469.

[56]

Wang, T.; Xu, Y. B.; Shi, C. M.; Jiang, F.; Liu, B.; Liu, X. H. Direct production of aromatics from syngas over a hybrid FeMn Fischer–Tropsch catalyst and HZSM-5 zeolite: Local environment effect and mechanism-directed tuning of the aromatic selectivity. Catal. Sci. Technol. 2019, 9, 3933–3946.

[57]

Ni, Y. M.; Chen, Z. Y.; Fu, Y.; Liu, Y.; Zhu, W. L.; Liu, Z. M. Selective conversion of CO2 and H2 into aromatics. Nat. Commun. 2018, 9, 3457.

[58]

Wang, Y.; Gao, W. Z.; Wang, K. Z.; Gao, X. H.; Zhang, B. Z.; Zhao, H.; Ma, Q. X.; Zhang, P. P.; Yang, G. H.; Wu, M. B. et al. Boosting the synthesis of value-added aromatics directly from syngas via a Cr2O3 and Ga doped zeolite capsule catalyst. Chem. Sci. 2021, 12, 7786–7792.

[59]

Sun, T.; Lin, T. J.; An, Y. L.; Gong, K.; Zhong, L. S.; Sun, Y. H. Syngas conversion to aromatics over the Co2C-based catalyst and HZSM-5 via a tandem system. Ind. Eng. Chem. Res. 2020, 59, 4419–4427.

[60]

West, T. Ethanol mediates. Nat. Catal. 2021, 4, 263.

[61]

Luk, H. T.; Mondelli, C.; Ferré, D. C.; Stewart, J. A.; Pérez-Ramírez, J. Status and prospects in higher alcohols synthesis from syngas. Chem. Soc. Rev. 2017, 46, 1358–1426.

[62]

Wang, L. X.; Wang, L.; Zhang, J.; Liu, X. L.; Wang, H.; Zhang, W.; Yang, Q.; Ma, J. Y.; Dong, X.; Yoo, S. J. et al. Selective hydrogenation of CO2 to ethanol over cobalt catalysts. Angew. Chem., Int. Ed. 2018, 57, 6104–6108.

[63]

Wang, Y.; Wang, K. Z.; Zhang, B. Z.; Peng, X. B.; Gao, X. H.; Yang, G. H.; Hu, H.; Wu, M. B.; Tsubaki, N. Direct conversion of CO2 to ethanol boosted by intimacy-sensitive multifunctional catalysts. ACS Catal. 2021, 11, 11742–11753.

[64]

Luan, X. B.; Ren, Z. T.; Dai, X. P.; Zhang, X.; Yong, J. X.; Yang, Y.; Zhao, H. H.; Cui, M. L.; Nie, F.; Huang, X. L. Selective conversion of syngas into higher alcohols via a reaction-coupling strategy on multifunctional relay catalysts. ACS Catal. 2020, 10, 2419–2430.

[65]

Huang, C.; Zhu, C.; Zhang, M. W.; Chen, J. G.; Fang, K. G. Design of efficient ZnO/ZrO2 modified CuCoAl catalysts for boosting higher alcohol synthesis in syngas conversion. Appl. Catal. B: Environ. 2022, 300, 120739.

[66]

Sun, J.; Cai, Q. X.; Wan, Y.; Wan, S. L.; Wang, L.; Lin, J. D.; Mei, D. H.; Wang, Y. Promotional effects of cesium promoter on higher alcohol synthesis from syngas over cesium-promoted Cu/ZnO/Al2O3 catalysts. ACS Catal. 2016, 6, 5771–5785.

[67]

Prieto, G.; Beijer, S.; Smith, M. L.; He, M.; Au, Y. E.; Wang, Z.; Bruce, D. A.; de Jong, K. P.; Spivey, J. J.; de Jongh, P. E. Design and synthesis of copper-cobalt catalysts for the selective conversion of synthesis gas to ethanol and higher alcohols. Angew. Chem. 2014, 126, 6515–6519.

[68]

Lu, P.; Chen, Q. J.; Yang, G. H.; Tan, L.; Feng, X. B.; Yao, J.; Yoneyama, Y.; Tsubaki, N. Space-confined self-regulation mechanism from a capsule catalyst to realize an ethanol direct synthesis strategy. ACS Catal. 2020, 10, 1366–1374.

[69]
Feng, X. B.; Yao, J.; Li, H. J.; Fang, Y.; Yoneyama, Y.; Yang, G. H.; Tsubaki, N. A brand new zeolite catalyst for carbonylation reaction. Chem. Commun. 2019, 55, 1048–1051.
[70]

Li, X. G.; San, X. G.; Zhang, Y.; Ichii, T.; Meng, M.; Tan, Y. S.; Tsubaki, N. Direct synthesis of ethanol from dimethyl ether and syngas over combined H-mordenite and Cu/ZnO catalysts. ChemSusChem 2010, 3, 1192–1199.

[71]

Feng, X. B.; Zhang, P. P.; Fang, Y.; Charusiri, W.; Yao, J.; Gao, X. H.; Wei, Q. H.; Reubroycharoen, P.; Vitidsant, T.; Yoneyama, Y. et al. Designing a hierarchical nanosheet ZSM-35 zeolite to realize more efficient ethanol synthesis from dimethyl ether and syngas. Catal. Today 2020, 343, 206–214.

[72]

Gao, X. H.; Xu, B. L.; Yang, G. H.; Feng, X. B.; Yoneyama, Y.; Taka, U.; Tsubaki, N. Designing a novel dual bed reactor to realize efficient ethanol synthesis from dimethyl ether and syngas. Catal. Sci. Technol. 2018, 8, 2087–2097.

[73]

Cao, K. P.; Fan, D.; Li, L. Y.; Fan, B. H.; Wang, L. Y.; Zhu, D. L.; Wang, Q. Y.; Tian, P.; Liu, Z. M. Insights into the pyridine-modified MOR zeolite catalysts for DME carbonylation. ACS Catal. 2020, 10, 3372–3380.

[74]

Cheung, P.; Bhan, A.; Sunley, G. J.; Iglesia, E. Selective carbonylation of dimethyl ether to methyl acetate catalyzed by acidic zeolites. Angew. Chem., Int. Ed. 2006, 45, 1617–1620.

[75]

Boronat, M.; Martínez-Sánchez, C.; Law, D.; Corma, A. Enzyme-like specificity in zeolites: A unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO. J. Am. Chem. Soc. 2008, 130, 16316–16323.

[76]

He, T.; Ren, P. J.; Liu, X. C.; Xu, S. T.; Han, X. W.; Bao, X. H. Direct observation of DME carbonylation in the different channels of H-MOR zeolite by continuous-flow solid-state NMR spectroscopy. Chem. Commun. 2015, 51, 16868–16870.

[77]

Zhou, H.; Zhu, W. L.; Shi, L.; Liu, H. C.; Liu, S. P.; Xu, S. T.; Ni, Y. M.; Liu, Y.; Li, L. N.; Liu, Z. M. Promotion effect of Fe in mordenite zeolite on carbonylation of dimethyl ether to methyl acetate. Catal. Sci. Technol. 2015, 5, 1961–1968.

[78]

Li, Y.; Huang, S. Y.; Cheng, Z. Z.; Cai, K.; Li, L. D.; Milan, E.; Lv, J.; Wang, Y.; Sun, Q.; Ma, X. B. Promoting the activity of Ce-incorporated MOR in dimethyl ether carbonylation through tailoring the distribution of Brønsted acids. Appl. Catal. B: Environ. 2019, 256, 117777.

[79]

Janda, A.; Bell, A. T. Effects of Si/Al ratio on the distribution of framework Al and on the rates of alkane monomolecular cracking and dehydrogenation in H-MFI. J. Am. Chem. Soc. 2013, 135, 19193–19207.

[80]

Wang, M. X.; Huang, S. Y.; Lü, J.; Cheng, Z. Z.; Li, Y.; Wang, S. P.; Ma, X. B. Modifying the acidity of H-MOR and its catalytic carbonylation of dimethyl ether. Chin. J. Catal. 2016, 37, 1530–1537.

[81]

Liu, J. L.; Xue, H. F.; Huang, X. M.; Wu, P. H.; Huang, S. J.; Liu, S. B.; Shen, W. J. Stability enhancement of H-mordenite in dimethyl ether carbonylation to methyl acetate by pre-adsorption of pyridine. Chin. J. Catal. 2010, 31, 729–738.

[82]

Liu, S. P.; Liu, H. C.; Ma, X. G.; Liu, Y.; Zhu, W. L.; Liu, Z. M. Identifying and controlling the acid site distributions in mordenite zeolite for dimethyl ether carbonylation reaction by means of selective ion-exchange. Catal. Sci. Technol. 2020, 10, 4663–4672.

[83]

Yao, J.; Feng, X. B.; Fan, J. Q.; Komiyama, S.; Kugue, Y.; Guo, X. Y.; He. Y. L.; Yang, G. H.; Tsubaki, N. Self-assembled nano-filamentous zeolite catalyst to realize efficient one-step ethanol synthesis. Chem. -Eur. J. 2022, 28, e202201783.

[84]

Shao, J.; Fu, T. J.; Ma, Q.; Ma, Z.; Zhang, C. M.; Li, Z. Controllable synthesis of nano-ZSM-5 catalysts with large amount and high strength of acid sites for conversion of methanol to hydrocarbons. Microporous Mesoporous Mater. 2019, 273, 122–132.

[85]

Zhang, R. G.; Peng, M.; Wang, B. J. Catalytic selectivity of Rh/TiO2 catalyst in syngas conversion to ethanol: Probing into the mechanism and functions of TiO2 support and promoter. Catal. Sci. Technol. 2017, 7, 1073–1085.

[86]

Wang, C. T.; Huang, Y.; Wang, L.; Xiao, F. S. Structure–performance interplay of rhodium-based catalysts for syngas conversion to ethanol. Mater. Chem. Front. 2022, 6, 663–679.

[87]

Yang, C. S.; Mu, R. T.; Wang, G. S.; Song, J. M.; Tian, H.; Zhao, Z. J.; Gong, J. L. Hydroxyl-mediated ethanol selectivity of CO2 hydrogenation. Chem. Sci. 2019, 10, 3161–3167.

[88]

Fan, Z. L.; Chen, W.; Pan, X. L.; Bao, X. H. Catalytic conversion of syngas into C2 oxygenates over Rh-based catalysts-effect of carbon supports. Catal. Today 2009, 147, 86–93.

[89]

Xiao, J. P.; Pan, X. L.; Guo, S. J.; Ren, P. J.; Bao, X. H. Toward fundamentals of confined catalysis in carbon nanotubes. J. Am. Chem. Soc. 2015, 137, 477–482.

[90]

Wang, C. T.; Zhang, J.; Qin, G. Q.; Wang, L.; Zuidema, E.; Yang, Q.; Dang, S. S.; Yang, C. G.; Xiao, J. P.; Meng, X. J. et al. Direct conversion of syngas to ethanol within zeolite crystals. Chem 2020, 6, 646–657.

Carbon Future
Pages 9200003-1-9200003-12
Cite this article:
Li H, Wang L, Xiao F-S. Importance of zeolite in multifunctional catalysts for syngas conversion. Carbon Future, 2024, 1(1): 9200003. https://doi.org/10.26599/CF.2023.9200003

3242

Views

739

Downloads

1

Crossref

Altmetrics

Received: 08 January 2023
Revised: 10 February 2023
Accepted: 18 February 2023
Published: 28 July 2023
© The Author(s) 2023.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See https://creativecommons.org/licenses/by/4.0/.

Return