Conversion of syngas into valuable fuels and chemicals has been studied for about 100 years since the discovery of Fischer–Tropsch synthesis (FTS) for conversion of syngas to fuels. Generally, the products in conventional FTS adhere to the Anderson–Schultz–Flory model, which has restricted selectivity to the target products. Other highly demanded compounds, such as valuable aromatics and oxygenates, could not be directly obtained from the conventional FTS. According to recent findings, the cascade reactions including isomerization, cracking, and aromatization can optimize the product selectivity, when the zeolite is added to FTS catalysts. Additionally, by offering a confined environment for the C–O bond formation, zeolite makes a substantial contribution to the conversion of syngas into oxygenates. In this review, we primarily focus on the role of zeolites in FTS processes and how it regulates the reaction pathways. The structure–performance interplay of zeolites was particularly discussed, which might be helpful to guide the rational design of zeolites in the development of more effective catalysts.
Publications
- Article type
- Year
- Co-author
Article type
Year
Open Access
Review
Issue
Carbon Future 2024, 1(1): 9200003
Published: 28 July 2023
Downloads:739
Total 1