AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (86.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Large specific surface area carbons for electrochemical energy storage

Di Geng1,2Yichao Huang3( )Jing Feng4Chuanqing Wang1( )Tong Wei1( )Zhuangjun Fan1 ( )
Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
School of Food Engineering, Harbin University, Harbin 150040, China
State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, China
Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150040, China
Show Author Information

Graphical Abstract

This review provides a critical overview of recent advances in the development of large specific surface area (SSA) carbons from structures and properties, classification, and preparation strategies to energy storage applications in supercapacitors, Li-ion batteries, Li-S batteries, and Zn-air batteries.

Abstract

Large specific surface area (SSA) carbons have been demonstrated to be effective active materials and conductive substrates for energy storage devices, such as supercapacitors and batteries, due to their designable pore structures and buffering frameworks, as well as excellent electrical conductivity and chemical stability. Recently, tremendous efforts have been made in the design and preparation of large SSA carbons as electrode materials for energy storage devices, which can significantly enhance their capacitance, power and energy density, lifespan, and preeminent safety. In this review, recent advances in the development of large SSA carbons from structures and properties, porous carbon classifications, and preparation strategies to energy storage applications in supercapacitors, lithium-ion batteries, lithium-sulfur batteries, and zinc-air batteries are discussed. Finally, current challenges, future research directions, and prospects in the development of large SSA carbons for energy storage applications are highlighted.

References

[1]

Guo, X.; Zhang J. H.; Yuan, L.; Xi, B. J.; Gao, F.; Zheng, X. J.; Pan, R. Y.; Guo, L. Y.; An, X. G.; Fan, T. X.; et al. Biologically assisted construction of advanced electrode materials for electrochemical energy storage and conversion. Adv. Energy Mater. 2023, 13, 2204376.

[2]

Wei, X. K.; Domingo, N.; Sun, Y. N.; Balke, N.; Dunin-Borkowski, R. E.; Mayer, J. Progress on emerging ferroelectric materials for energy harvesting, storage and conversion. Adv. Energy Mater. 2022, 12, 2201199.

[3]
Energy conversion and storage at the centre of a global transition. Adv. Energy Mater. 2022, 12, 2103760.
[4]

Luo, X. Y.; Zheng, H.; Lai, W. D.; Yuan, P.; Li, S. W.; Li, D.; Chen, Y. Defect engineering of carbons for energy conversion and storage applications. Energy Environ. Mater. 2023, 6, e12402.

[5]

Sohouli, E.; Irannejad, N.; Ziarati, A.; Ehrlich, H.; Rahimi-Nasrabadi, M.; Ahmadi, F.; Luque, R. Application of polysaccharide-based biopolymers as supports in photocatalytic treatment of water and wastewater: A review. Environ. Chem. Lett. 2022, 20, 3789–3809.

[6]

Chakraborty, R.; K, V.; Pradhan, M.; Nayak, A. K. Recent advancement of biomass-derived porous carbon based materials for energy and environmental remediation applications. J. Mater. Chem. A 2022, 10, 6965–7005.

[7]

Jayaramulu, K.; Mukherjee, S.; Morales, D. M.; Dubal, D. P.; Nanjundan, A. K.; Schneemann, A.; Masa, J.; Kment, S.; Schuhmann, W.; Otyepka, M. et al. Graphene-based metal-organic framework hybrids for applications in catalysis, environmental, and energy technologies. Chem. Rev. 2022, 122, 17241–17338.

[8]

Sun, C. W.; Alonso, J. A.; Bian, J. J. Recent advances in perovskite-type oxides for energy conversion and storage applications. Adv. Energy Mater. 2021, 11, 2000459.

[9]

Peng, Y.; Bai, Y.; Liu, C. L.; Cao, S.; Kong, Q. Q.; Pang, H. Applications of metal-organic framework-derived N, P, S doped materials in electrochemical energy conversion and storage. Coord. Chem. Rev. 2022, 466, 214602.

[10]

Zhang, B. Y.; Wang, W. B.; Liang, L. N.; Xu, Z. C.; Li, X. Y.; Qiao, S. L. Prevailing conjugated porous polymers for electrochemical energy storage and conversion: Lithium-ion batteries, supercapacitors and water-splitting. Coord. Chem. Rev. 2021, 436, 213782.

[11]

Zhang, W. C.; Lu, J.; Guo, Z. P. Challenges and future perspectives on sodium and potassium ion batteries for grid-scale energy storage. Mater. Today 2021, 50, 400–417.

[12]

Wang, M.; Yao, W. T.; Zou, P. C.; Hu, S. Y.; Zhu, H. J.; Liu, K. W.; Yang, C. Battery-on-separator: A platform technology for arbitrary-shaped lithium ion batteries for high energy density storage. J. Power Sources 2021, 490, 229527.

[13]

Chen, M. Z.; Zhang, Y. Y.; Xing, G. C.; Chou, S. L.; Tang, Y. X. Electrochemical energy storage devices working in extreme conditions. Energy Environ. Sci. 2021, 14, 3323–3351.

[14]

Zhang, W.; Liu, H. Z.; Zhang, X. N.; Li, X. J.; Zhang, G. H.; Cao, P. 3D printed micro-electrochemical energy storage devices: From design to integration. Adv. Funct. Mater. 2021, 31, 2104909.

[15]

Zhao, Y. Y.; Zhang, Y. L.; Wang, Y.; Cao, D. X.; Sun, X.; Zhu, H. L. Versatile zero- to three-dimensional carbon for electrochemical energy storage. Carbon Energy 2021, 3, 895–915.

[16]

Mao, L. J.; Meng, Q. H.; Ahmad, A.; Wei, Z. X. Mechanical analyses and structural design requirements for flexible energy storage devices. Adv. Energy Mater. 2017, 7, 1700535.

[17]

Pan, S. W.; Ren, J.; Fang, X.; Peng, H. S. Integration: An effective strategy to develop multifunctional energy storage devices. Adv. Energy Mater. 2016, 6, 1501867.

[18]

Chen, W.; Rakhi, R. B.; Hedhili, M. N.; Alshareef, H. N. Shape-controlled porous nanocarbons for high performance supercapacitors. J. Mater. Chem. A 2014, 2, 5236–5243.

[19]

Li, B.; Dai, F.; Xiao, Q. F.; Yang, L.; Shen, J. M.; Zhang, C. M.; Cai, M. Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ. Sci. 2016, 9, 102–106.

[20]

Shang, Z.; An, X. Y.; Zhang, H.; Shen, M. X.; Baker, F.; Liu, Y. X.; Liu, L. Q.; Yang, J.; Cao, H. B.; Xu, Q. L. et al. Houttuynia-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitor. Carbon 2020, 161, 62–70.

[21]

Zhang, L.; Zhang, F.; Yang, X.; Long, G. K.; Wu, Y. P.; Zhang, T. F.; Leng, K.; Huang, Y.; Ma, Y. F.; Yu, A. et al. Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors. Sci. Rep. 2013, 3, 1408.

[22]

Mhamane, D.; Aravindan, V.; Kim, M. S.; Kim, H. K.; Roh, K. C.; Ruan, D.; Lee, S. H.; Srinivasan, M.; Kim, K. B. Silica-assisted bottom-up synthesis of graphene-like high surface area carbon for highly efficient ultracapacitor and Li-ion hybrid capacitor applications. J. Mater. Chem. A 2016, 4, 5578–5591.

[23]

Hu, J.; Xu, Z. L.; Li, X. Y.; Liang, S. J.; Chen, Y. M.; Lyu, L.; Yao, H. M.; Lu, Z. G.; Zhou, L. M. Partially graphitic hierarchical porous carbon nanofiber for high performance supercapacitors and lithium ion batteries. J. Power Sources 2020, 462, 228098.

[24]

Zheng, Z. M.; Zhang, X.; Pei, F.; Dai, Y.; Fang, X. L.; Wang, T. H.; Zheng, N. F. Hierarchical porous carbon microrods composed of vertically aligned graphene-like nanosheets for Li-ion batteries. J. Mater. Chem. A 2015, 3, 19800–19806.

[25]

Zhuang, G. L.; Bai, J. Q.; Tao, X. Y.; Luo, J. M.; Wang, X. D.; Gao, Y. F.; Zhong, X.; Li, X. N.; Wang, J. G. Synergistic effect of S, N-co-doped mesoporous carbon materials with high performance for oxygen-reduction reaction and Li-ion batteries. J. Mater. Chem. A 2015, 3, 20244–20253.

[26]

Lu, C. Z.; Fey, G. T. K.; Kao, H. M. Study of LiFePO4 cathode materials coated with high surface area carbon. J. Power Sources 2009, 189, 155–162.

[27]

Wang, Z. F.; Zhang, X. M.; Liu, X. L.; Zhang, Y. G.; Zhao, W. M.; Li, Y. Y.; Qin, C. L.; Bakenov, Z. High specific surface area bimodal porous carbon derived from biomass reed flowers for high performance lithium-sulfur batteries. J. Colloid Interface Sci. 2020, 569, 22–33.

[28]

Zhang, S. T.; Zheng, M. B.; Lin, Z. X.; Li, N. W.; Liu, Y. J.; Zhao, B.; Pang, H.; Cao, J. M.; He, P.; Shi, Y. Activated carbon with ultrahigh specific surface area synthesized from natural plant material for lithium-sulfur batteries. J. Mater. Chem. A 2014, 2, 15889–15896.

[29]

Yang, X.; Zhang, L.; Zhang, F.; Huang, Y.; Chen, Y. S. Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium-sulfur batteries. ACS Nano 2014, 8, 5208–5215.

[30]

Cai, J. J.; Zhou, Q. Y.; Gong, X. F.; Liu, B.; Zhang, Y. L.; Dai, Y. K.; Gu, D. M.; Zhao, L.; Sui, X. L.; Wang, Z. B. Metal-free amino acid glycine-derived nitrogen-doped carbon aerogel with superhigh surface area for highly efficient Zn-air batteries. Carbon 2020, 167, 75–84.

[31]

Wang, Z.; Cheng, D.; Chen, C.; Zhou, K. B. Hierarchically porous carbon microspheres with fully open and interconnected super-macropores for air cathodes of Zn-air batteries. Carbon 2018, 136, 54–62.

[32]

Shinde, S. S.; Lee, C. H.; Yu, J. Y.; Kim, D. H.; Lee, S. U.; Lee, J. H. Hierarchically designed 3D holey C2N aerogels as bifunctional oxygen electrodes for flexible and rechargeable Zn-air batteries. ACS Nano 2018, 12, 596–608.

[33]

Yu, L. Y.; Hu, L. F.; Anasori, B.; Liu, Y. T.; Zhu, Q. Z.; Zhang, P.; Gogotsi, Y.; Xu, B. MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors. ACS Energy Lett. 2018, 3, 1597–1603.

[34]

Karnan, M.; Subramani, K.; Sudhan, N.; Ilayaraja, N. Sathish, M. Aloe vera derived activated high-surface-area carbon for flexible and high-energy supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 35191–35202.

[35]

Lam, D. V.; Jo, K.; Kim, C. H.; Kim, J. H.; Lee, H. J.; Lee, S. M. Activated carbon textile via chemistry of metal extraction for supercapacitors. ACS Nano 2016, 10, 11351–11359.

[36]

Li, P.; Li, H.; Han, D. L.; Shang, T. X.; Deng, Y. Q.; Tao, Y.; Lv, W.; Yang, Q. H. Packing activated carbons into dense graphene network by capillarity for high volumetric performance supercapacitors. Adv. Sci. 2019, 6, 1802355.

[37]

Talreja, N.; Jung, S.; Yen, L. T. H.; Kim, T. Phenol-formaldehyde-resin-based activated carbons with controlled pore size distribution for high-performance supercapacitors. Chem. Eng. J. 2020, 379, 122332.

[38]

Pierre Mwizerwa, J.; Liu, C. Y.; Xu, K.; Zhao, N.; Li, Y. D.; Ndagijimana, P.; Chen, Z. W.; Shen, J. Activated carbon/reduced graphene oxide wrapped LiFePO4 cathode for Li-ion batteries with ultrahigh capacities and high specific energy density. FlatChem 2022, 34, 100393.

[39]

Luo, H.; Jiang, W. J.; Zhang, Y.; Niu, S.; Tang, T.; Huang, L. B.; Chen, Y. Y.; Wei, Z. D.; Hu, J. S. Self-terminated activation for high-yield production of N, P-codoped nanoporous carbon as an efficient metal-free electrocatalyst for Zn-air battery. Carbon 2018, 128, 97–105.

[40]

Zhao, J. J.; Zhang, L. T.; Li, X. Z.; Tao, X. Y.; Zhu, W. D.; Ye, X. R. Supercritical CO2 assisted fabrication of activated carbon-sulfur composite for improved lithium-sulfur batteries. J. Alloys Compd. 2017, 708, 264–269.

[41]

Bahadur, R.; Singh, G.; Bando, Y.; Vinu, A. Advanced porous borocarbonitride nanoarchitectonics: Their structural designs and applications. Carbon 2022, 190, 142–169.

[42]

Zhang, Y.; Lu, W.; Zhao, P.; Aboonasr Shiraz, M. H.; Manaig, D.; Freschi, D. J.; Liu, Y. L.; Liu, J. A durable lithium-tellurium battery: Effects of carbon pore structure and tellurium content. Carbon 2021, 173, 11–21.

[43]

Schutjajew, K.; Pampel, J.; Zhang, W. Y.; Antonietti, M.; Oschatz, M. Influence of pore architecture and chemical structure on the sodium storage in nitrogen-doped hard carbons. Small 2021, 17, 2006767.

[44]

Sun, Y.; Shi, X. L.; Yang, Y. L.; Suo, G. Q.; Zhang, L.; Lu, S. Y.; Chen, Z. G. Biomass-derived carbon for high-performance batteries: From structure to properties. Adv. Funct. Mater. 2022, 32, 2201584.

[45]

Zhang, S. T.; Zheng, M. B.; Tang, Y. J.; Zang, R.; Zhang, X. Y.; Huang, X.; Chen, Y.; Yamauchi, Y.; Kaskel, S.; Pang, H. Understanding synthesis-structure-performance correlations of nanoarchitectured activated carbons for electrochemical applications and carbon capture. Adv. Funct. Mater. 2022, 32, 2204714.

[46]

Tian, W. J.; Zhang, H. Y.; Duan, X. G.; Sun, H. Q.; Shao, G. S.; Wang, S. B. Porous carbons: Structure-oriented design and versatile applications. Adv. Funct. Mater. 2020, 30, 1909265.

[47]

Kong, D. B.; Gao, Y.; Xiao, Z. C.; Xu, X. H.; Li, X. L.; Zhi, L. J. Rational design of carbon-rich materials for energy storage and conversion. Adv. Mater. 2019, 31, 1804973.

[48]

Borchardt, L.; Zhu, Q. L.; Casco, M. E.; Berger, R.; Zhuang, X. D.; Kaskel, S.; Feng, X. L.; Xu, Q. Toward a molecular design of porous carbon materials. Mater. Today 2017, 20, 592–610.

[49]

Stein, A.; Wang, Z. Y.; Fierke, M. A. Functionalization of porous carbon materials with designed pore architecture. Adv. Mater. 2009, 21, 265–293.

[50]

Zhu, Q. C.; Zhao, D. Y.; Cheng, M. Y.; Zhou, J. Q.; Owusu, K. A.; Mai, L.; Yu, Y. A new view of supercapacitors: Integrated supercapacitors. Adv. Energy Mater. 2019, 9, 1901081.

[51]

Li, W.; Dahn, J. R.; Wainwright, D. S. Rechargeable lithium batteries with aqueous electrolytes. Science 1994, 264, 1115.

[52]

Wang, J. L.; Han, W. Q. A review of heteroatom doped materials for advanced lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2107166.

[53]

Zhou, T. P.; Zhang, N.; Wu, C. Z.; Xie, Y. Surface/interface nanoengineering for rechargeable Zn-air batteries. Energy Environ. Sci. 2020, 13, 1132–1153.

[54]
Becker, H. I. Low voltage electrolytic capacitor. U.S. Patent 2,800,616, July 23, 1957.
[55]

Choi, C.; Ashby, D. S.; Butts, D. M.; DeBlock, R. H.; Wei, Q. L.; Lau, J.; Dunn, B. Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 2020, 5, 5–19.

[56]

Zhang, L. H.; Qin, X. Y.; Zhao, S. Q.; Wang, A.; Luo, J.; Wang, Z. L.; Kang, F. Y.; Lin, Z. Q.; Li, B. H. Advanced matrixes for binder-free nanostructured electrodes in lithium-ion batteries. Adv. Mater. 2020, 32, 1908445.

[57]

Liu, M.; Deng, N. P.; Ju, J. G.; Fan, L. L.; Wang, L. Y.; Li, Z. J.; Zhao, H.; Yang, G.; Kang, W. M.; Yan, J. et al. A review: Electrospun nanofiber materials for lithium-sulfur batteries. Adv. Funct. Mater. 2019, 29, 1905467.

[58]

Tan, P.; Chen, B.; Xu, H. R.; Zhang, H. C.; Cai, W. Z.; Ni, M.; Liu, M. L.; Shao, Z. P. Flexible Zn- and Li-air batteries: Recent advances, challenges, and future perspectives. Energy Environ. Sci. 2017, 10, 2056–2080.

[59]

Arlt, T.; Schröder, D.; Krewer, U.; Manke, I. In operando monitoring of the state of charge and species distribution in zinc air batteries using X-ray tomography and model-based simulations. Phys. Chem. Chem. Phys. 2014, 16, 22273–22280.

[60]

Zhou, Y.; Qi, H. L.; Yang, J. Y.; Bo, Z.; Huang, F.; Islam, M. S.; Lu, X. Y.; Dai, L. M.; Amal, R.; Wang, C. H. et al. Two-birds-one-stone: Multifunctional supercapacitors beyond traditional energy storage. Energy Environ. Sci. 2021, 14, 1854–1896.

[61]

Lu, W.; Yan, L.; Ye, W. Q.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Defect engineering of electrode materials towards superior reaction kinetics for high-performance supercapacitors. J. Mater. Chem. A 2022, 10, 15267–15296.

[62]

Zhu, J. Y.; Childress, A. S.; Karakaya, M.; Dandeliya, S.; Srivastava, A.; Lin, Y.; Rao, A. M.; Podila, R. Defect-engineered graphene for high-energy- and high-power-density supercapacitor devices. Adv. Mater. 2016, 28, 7185–7192.

[63]

Brousse, T.; Bélanger, D.; Long, J. W. To be or not to be pseudocapacitive. J. Electrochem. Soc. 2015, 162, A5185–A5189.

[64]

Shao, H.; Wu, Y. C.; Lin, Z. F.; Taberna, P. L.; Simon, P. Nanoporous carbon for electrochemical capacitive energy storage. Chem. Soc. Rev. 2020, 49, 3005–3039.

[65]

Liang, H. Y.; Lin, J. H.; Jia, H. N.; Chen, S. L.; Qi, J. L.; Cao, J.; Lin, T. S.; Fei, W. D.; Feng, J. C. Hierarchical NiCo-LDH@NiOOH core–shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor. J. Power Sources 2018, 378, 248–254.

[66]

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928.

[67]

Palacín, M. R. Recent advances in rechargeable battery materials: A chemist’s perspective. Chem. Soc. Rev. 2009, 38, 2565–2575.

[68]

Zhou, T. F.; Zheng, Y.; Gao, H.; Min, S. D.; Li, S. A.; Liu, H. K.; Guo, Z. P. Surface engineering and design strategy for surface-amorphized TiO2@graphene hybrids for high power Li-ion battery electrodes. Adv. Sci. 2015, 2, 1500027.

[69]

Ren, J. G.; Yang, J. B.; Abouimrane, A.; Wang, D. P.; Amine, K. SnO2 nanocrystals deposited on multiwalled carbon nanotubes with superior stability as anode material for Li-ion batteries. J. Power Sources 2011, 196, 8701–8705.

[70]

Li, G. R.; Chen, Z. W.; Lu, J. Lithium-sulfur batteries for commercial applications. Chem 2018, 4, 3–7.

[71]

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

[72]

Fergus, J. W. Recent developments in cathode materials for lithium ion batteries. J. Power Sources 2010, 195, 939–954.

[73]

Pang, Q.; Liang, X.; Kwok, C. Y.; Kulisch, J.; Nazar, L. F. A comprehensive approach toward stable lithium-sulfur batteries with high volumetric energy density. Adv. Energy Mater. 2017, 7, 1601630.

[74]

Chen, R. J.; Zhao, T.; Wu, F. From a historic review to horizons beyond: Lithium-sulphur batteries run on the wheels. Chem. Commun. 2015, 51, 18–33.

[75]

Yan, B.; Li, X. F.; Bai, Z. M.; Song, X. S.; Xiong, D. B.; Zhao, M. L.; Li, D. J.; Lu, S. G. A review of atomic layer deposition providing high performance lithium sulfur batteries. J. Power Sources 2017, 338, 34–48.

[76]

Yan, Y. L.; Shi, M. M.; Wei, Y. Q.; Zhao, C.; Carnie, M.; Yang, R.; Xu, Y. H. Process optimization for producing hierarchical porous bamboo-derived carbon materials with ultrahigh specific surface area for lithium-sulfur batteries. J. Alloys Compd. 2018, 738, 16–24.

[77]

Akridge, J. R.; Mikhaylik, Y. V.; White, N. Li/S fundamental chemistry and application to high-performance rechargeable batteries. Solid State Ionics 2004, 175, 243–245.

[78]

Wild, M.; O’Neill, L.; Zhang, T.; Purkayastha, R.; Minton, G.; Marinescu, M.; Offer, G. J. Lithium sulfur batteries, a mechanistic review. Energy Environ. Sci. 2015, 8, 3477–3494.

[79]

Son, Y.; Lee, J. S.; Son, Y.; Jang, J. H.; Cho, J. Recent advances in lithium sulfide cathode materials and their use in lithium sulfur batteries. Adv. Energy Mater. 2015, 5, 1500110.

[80]

Sun, Y. M.; Liu, N.; Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 2016, 1, 16071.

[81]

Lee, J. S.; Kim, S. T.; Cao, R. G.; Choi, N. S.; Liu, M. L.; Lee, K. T.; Cho, J. Metal-air batteries with high energy density: Li-air versus Zn-air. Adv. Energy Mater. 2011, 1, 34–50.

[82]

Fu, J.; Cano, Z. P.; Park, M. G.; Yu, A. P.; Fowler, M.; Chen, Z. W. Electrically rechargeable zinc-air batteries: Progress, challenges, and perspectives. Adv. Mater. 2017, 29, 1604685.

[83]

Christensen, J.; Albertus, P.; Sanchez-Carrera, R. S.; Lohmann, T.; Kozinsky, B.; Liedtke, R.; Ahmed, J.; Kojic, A. A critical review of Li/air batteries. J. Electrochem. Soc. 2012, 159, R1–R30.

[84]

Li, Y. G.; Dai, H. J. Recent advances in zinc-air batteries. Chem. Soc. Rev. 2014, 43, 5257–5275.

[85]

Toussaint, G.; Stevens, P.; Akrour, L.; Rouget, R.; Fourgeot, F. Development of a rechargeable zinc-air battery. ECS Trans. 2010, 28, 25–34.

[86]

Shinde, S. S.; Lee, C. H.; Sami, A.; Kim, D. H.; Lee, S. U.; Lee, J. H. Scalable 3-D carbon nitride sponge as an efficient metal-free bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. ACS Nano 2017, 11, 347–357.

[87]

Gu, P.; Zheng, M. B.; Zhao, Q. X.; Xiao, X.; Xue, H. G.; Pang, H. Rechargeable zinc-air batteries: A promising way to green energy. J. Mater. Chem. A 2017, 5, 7651–7666.

[88]

Stevens, M. B.; Enman, L. J.; Batchellor, A. S.; Cosby, M. R.; Vise, A. E.; Trang, C. D. M.; Boettcher, S. W. Measurement techniques for the study of thin film heterogeneous water oxidation electrocatalysts. Chem. Mater. 2017, 29, 120–140.

[89]

Stephens, I. E. L.; Bondarenko, A. S.; Grønbjerg, U.; Rossmeisl, J.; Chorkendorff, I. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 2012, 5, 6744–6762.

[90]

Nguyen, T. D.; Scherer, G. G.; Xu, Z. J. A facile synthesis of size-controllable IrO2 and RuO2 nanoparticles for the oxygen evolution reaction. Electrocatalysis 2016, 7, 420–427.

[91]

Jung, H. G.; Jeong, Y. S.; Park, J. B.; Sun, Y. K.; Scrosati, B.; Lee, Y. J. Ruthenium-based electrocatalysts supported on reduced graphene oxide for lithium-air batteries. ACS Nano 2013, 7, 3532–3539.

[92]

Zhang, L.; Yang, X.; Zhang, F.; Long, G. K.; Zhang, T. F.; Leng, K.; Zhang, Y. W.; Huang, Y.; Ma, Y. F.; Zhang, M. T. et al. Controlling the effective surface area and pore size distribution of sp2 carbon materials and their impact on the capacitance performance of these materials. J. Am. Chem. Soc. 2013, 135, 5921–5929.

[93]

Olsson, E.; Cottom, J.; Au, H.; Guo, Z. Y.; Jensen, A. C. S.; Alptekin, H.; Drew, A. J.; Titirici, M. M.; Cai, Q. Elucidating the effect of planar graphitic layers and cylindrical pores on the storage and diffusion of Li, Na, and K in carbon materials. Adv. Funct. Mater. 2020, 30, 1908209.

[94]

Guo, Q. B.; Li, S.; Liu, X. J.; Lu, H. C.; Chang, X. Q.; Zhang, H. S.; Zhu, X. H.; Xia, Q. Y.; Yan, C. L.; Xia, H. Ultrastable sodium-sulfur batteries without polysulfides formation using slit ultramicropore carbon carrier. Adv. Sci. 2020, 7, 1903246.

[95]

Wang, X. H.; Zhou, H. T.; Sheridan, E.; Walmsley, J. C.; Ren, D. D.; Chen, D. Geometrically confined favourable ion packing for high gravimetric capacitance in carbon-ionic liquid supercapacitors. Energy Environ. Sci. 2016, 9, 232–239.

[96]

Zhai, Y. P.; Dou, Y. Q.; Zhao, D. Y.; Fulvio, P. F.; Mayes, R. T.; Dai, S. Carbon materials for chemical capacitive energy storage. Adv. Mater. 2011, 23, 4828–4850.

[97]

Zuo, Z. C.; Li, Y. L. Emerging electrochemical energy applications of graphdiyne. Joule 2019, 3, 899–903.

[98]

Zhu, Y. P.; Guo, C. X.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc. Chem. Res. 2017, 50, 915–923.

[99]

Han, C.; Li, Y. H.; Qi, M. Y.; Zhang, F.; Tang, Z. R.; Xu, Y. J. Surface/interface engineering of carbon-based materials for constructing multidimensional functional hybrids. Sol. RRL 2020, 4, 1900577.

[100]

Sheng, L. Z.; Jiang, L. L.; Wei, T.; Liu, Z.; Fan, Z. J. Spatial charge storage within honeycomb-carbon frameworks for ultrafast supercapacitors with high energy and power densities. Adv. Energy Mater. 2017, 7, 1700668.

[101]

Sun, F. G.; Cheng, H. Y.; Chen, J. Z.; Zheng, N.; Li, Y. S.; Shi, J. L. Heteroatomic Se n S8− n molecules confined in nitrogen-doped mesoporous carbons as reversible cathode materials for high-performance lithium batteries. ACS Nano 2016, 10, 8289–8298.

[102]

Liu, X. J.; Xu, N.; Qian, T.; Liu, J.; Shen, X. W.; Yan, C. L. High coulombic efficiency and high-rate capability lithium sulfur batteries with low-solubility lithium polysulfides by using alkylene radicals to covalently connect sulfur. Nano Energy 2017, 41, 758–764.

[103]

Hunter, R. D.; Ramírez-Rico, J.; Schnepp, Z. Iron-catalyzed graphitization for the synthesis of nanostructured graphitic carbons. J. Mater. Chem. A 2022, 10, 4489–4516.

[104]

Franklin, R. E.; Randall, J. T. Crystallite growth in graphitizing and non-graphitizing carbons. Proc. R. Soc. A: Math. Phys. Eng. Sci 1951, 209, 196–218.

[105]

Tang, X. D.; Dong, T. T.; Wang, M. Y.; Ma, S. L.; Xu, S. J.; Wang, J. Z.; Gao, B. Q.; Huang, Y.; Yang, Q. Y.; Hua, D. L. et al. From waste corn straw to graphitic porous carbon: A trade-off between specific surface area and graphitization degree for efficient peroxydisulfate activation. J. Hazard. Mater. 2024, 471, 134422.

[106]

Tang, T. T.; Yuan, R. L.; Guo, N. N.; Zhu, J. Y.; Gan, X. M.; Li, Q. Q.; Qin, F. W.; Luo, W. X.; Wang, L. X.; Zhang, S. et al. Improving the surface area of metal organic framework-derived porous carbon through constructing inner support by compatible graphene quantum dots. J. Colloid Interface Sci. 2022, 623, 77–85.

[107]

Jiang, Z. P.; Zhao, Y. M.; Lu, X.; Xie, J. Fullerenes for rechargeable battery applications: Recent developments and future perspectives. J. Energy Chem. 2021, 55, 70–79.

[108]

Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

[109]

Wang, Q. H.; Bellisario, D. O.; Drahushuk, L. W.; Jain, R. M.; Kruss, S.; Landry, M. P.; Mahajan, S. G.; Shimizu, S. F. E.; Ulissi, Z. W.; Strano, M. S. Low dimensional carbon materials for applications in mass and energy transport. Chem. Mater. 2014, 26, 172–183.

[110]

Zhang, Y. P.; Pan, C. X. Measurements of mechanical properties and number of layers of graphene from nano-indentation. Diam. Relat. Mater. 2012, 24, 1–5.

[111]

Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

[112]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

[113]

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

[114]

Xu, T.; Liu, K.; Sheng, N.; Zhang, M. H.; Liu, W.; Liu, H. Y.; Dai, L.; Zhang, X. Y.; Si, C. L.; Du, H. S. et al. Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: Properties, applications, and perspectives. Energy Storage Mater. 2022, 48, 244–262.

[115]

Wong, C. H.; Buntov, E. A.; Guseva, M. B.; Kasimova, R. E.; Rychkov, V. N.; Zatsepin, A. F. Superconductivity in ultra-thin carbon nanotubes and carbyne-nanotube composites: An ab-initio approach. Carbon 2017, 125, 509–515.

[116]

Nishihara, H.; Fujimoto, H.; Itoi, H.; Nomura, K.; Tanaka, H.; Miyahara, M. T.; Bonnaud, P. A.; Miura, R.; Suzuki, A.; Miyamoto, N. et al. Graphene-based ordered framework with a diverse range of carbon polygons formed in zeolite nanochannels. Carbon 2018, 129, 854–862.

[117]

Nishihara, H.; Kyotani, T. Zeolite-templated carbons-three-dimensional microporous graphene frameworks. Chem. Commun. 2018, 54, 5648–5673.

[118]

Zhang, S. D.; Wang, H. H.; Liu, J. P.; Bao, C. L. Measuring the specific surface area of monolayer graphene oxide in water. Mater. Lett. 2020, 261, 127098.

[119]

Richter, H.; Voss, H.; Kaltenborn, N.; Kämnitz, S.; Wollbrink, A.; Feldhoff, A.; Caro, J.; Roitsch, S.; Voigt, I. High-flux carbon molecular sieve membranes for gas separation. Angew. Chem., Int. Ed. 2017, 56, 7760–7763.

[120]

Itoi, H.; Nishihara, H.; Kogure, T.; Kyotani, T. Three-dimensionally arrayed and mutually connected 1.2-nm nanopores for high-performance electric double layer capacitor. J. Am. Chem. Soc. 2011, 133, 1165–1167.

[121]

Biswal, M.; Banerjee, A.; Deo, M.; Ogale, S. From dead leaves to high energy density supercapacitors. Energy Environ. Sci. 2013, 6, 1249–1259.

[122]

Kang, D. M.; Liu, Q. L.; Gu, J. J.; Su, Y. S.; Zhang, W.; Zhang, D. “Egg-box”-assisted fabrication of porous carbon with small mesopores for high-rate electric double layer capacitors. ACS Nano 2015, 9, 11225–11233.

[123]

Berenguer, R.; Nishihara, H.; Itoi, H.; Ishii, T.; Morallón, E.; Cazorla-Amorós, D.; Kyotani, T. Electrochemical generation of oxygen-containing groups in an ordered microporous zeolite-templated carbon. Carbon 2013, 54, 94–104.

[124]

Nishihara, H.; Yang, Q. H.; Hou, P. X.; Unno, M.; Yamauchi, S.; Saito, R.; Paredes, J. I.; Martínez-Alonso, A.; Tascón, J. M. D.; Sato, Y. et al. A possible buckybowl-like structure of zeolite templated carbon. Carbon 2009, 47, 1220–1230.

[125]

Zhu, G. Y.; Ma, L. B.; Lv, H. L.; Hu, Y.; Chen, T.; Chen, R. P.; Liang, J.; Wang, X.; Wang, Y. R.; Yan, C. Z. et al. Pine needle-derived microporous nitrogen-doped carbon frameworks exhibit high performances in electrocatalytic hydrogen evolution reaction and supercapacitors. Nanoscale 2017, 9, 1237–1243.

[126]

Rose, M.; Kockrick, E.; Senkovska, I.; Kaskel, S. High surface area carbide-derived carbon fibers produced by electrospinning of polycarbosilane precursors. Carbon 2010, 48, 403–407.

[127]

Chmiola, J.; Yushin, G.; Dash, R.; Gogotsi, Y. Effect of pore size and surface area of carbide derived carbons on specific capacitance. J. Power Sources 2006, 158, 765–772.

[128]

Wang, M.; Mao, X.; Liu, J. Y.; Deng, B. T.; Deng, S.; Jin, S. H.; Li, W.; Gong, J.; Deng, R. H.; Zhu, J. T. A versatile 3D-confined self-assembly strategy for anisotropic and ordered mesoporous carbon microparticles. Adv. Sci. 2022, 9, 2202394.

[129]

Jiang, H.; Lee, P. S.; Li, C. Z. 3D carbon based nanostructures for advanced supercapacitors. Energy Environ. Sci. 2013, 6, 41–53.

[130]

Liu, B.; Wen, J. K.; Chen, H. B.; Yang, M.; Liu, Y.; Li, H. M. O/N co-doped, layered porous carbon with mesoporosity up to 99% for ultrahigh-rate capability supercapacitors. Batter. Supercaps 2020, 3, 1091–1098.

[131]

Zhou, H.; Zhu, S.; Hibino, M.; Honma, I.; Ichihara, M. Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance. Adv. Mater. 2003, 15, 2107–2111.

[132]

Gao, J.; Wang, X. Y.; Zhang, Y. W.; Liu, J.; Lu, Q.; Chen, M. F.; Bai, Y. S. Preparation and supercapacitive performance of nanosized manganese dioxide/ordered mesoporous carbon composites. Electrochim. Acta 2016, 192, 234–242.

[133]

Chen, H. Y.; Yang, X.; Yang, W. C.; Zhang, S. Y.; Wang, X. R.; Liu, B. Y.; Dai, C. Y.; Zhang, J. B.; Ma, X. X. Confined space synthesis of Ni(OH)2-impregnated three-dimensional ordered mesoporous carbon as a high-performance supercapacitor electrode. Carbon Res. Convers. 2022, 5, 101–110.

[134]

Liu, D. D.; Wei, Z. Y.; Liu, L. M.; Pan, H.; Duan, X. M.; Xia, L.; Zhong, B.; Wang, H. T.; Jia, D. C.; Zhou, Y. et al. Ultrafine SnO2 anchored in ordered mesoporous carbon framework for lithium storage with high capacity and rate capability. Chem. Eng. J. 2021, 406, 126710.

[135]

Li, Y. X.; Zeng, Y. X.; Chen, Y.; Luan, D. Y.; Gao, S. Y.; Lou, X. W. Mesoporous N-rich carbon with single-Ni atoms as a multifunctional sulfur host for Li-S batteries. Angew. Chem., Int. Ed. 2022, 61, e202212680.

[136]

Zhang, Y. T.; Zhang, Z.; Jiang, G. P.; Mamaghani, A. H.; Sy, S.; Gao, R.; Jiang, Y.; Deng, Y. P.; Bai, Z. Y.; Yang, L. et al. Three-dimensionally ordered mesoporous Co3O4 decorated with Mg as bifunctional oxygen electrocatalysts for high-performance zinc-air batteries. Nano Energy 2022, 100, 107425.

[137]

Zhang, W.; Tan, Y. Y.; Gao, Y. L.; Wu, J. X.; Hu, J. B.; He, S. Y.; Stein, A.; Tang, B. H. J. In2O3 nanoparticles on three-dimensionally ordered macroporous (3DOM) carbon for pseudocapacitor electrodes. Electrochim. Acta 2015, 176, 861–867.

[138]

Lu, X. B.; Xiao, Y.; Lei, Z. B.; Chen, J. P. Graphitized macroporous carbon microarray with hierarchical mesopores as host for the fabrication of electrochemical biosensor. Biosens. Bioelectron. 2009, 25, 244–247.

[139]

Kang, S; Yu, J. S.; Kruk, M.; Jaroniec, M. Synthesis of an ordered macroporous carbon with 62 nm spherical pores that exhibit unique gas adsorption properties. Chem. Commun. 2002, 1670–1671.

[140]

Ji, S. N.; Imtiaz, S.; Sun, D.; Xin, Y.; Li, Q.; Huang, T. Z.; Zhang, Z. L.; Huang, Y. H. Coralline-like N-doped hierarchically porous carbon derived from enteromorpha as a host matrix for lithium-sulfur battery. Chem.—Eur. J. 2017, 23, 18208–18215.

[141]

Wei, S. C.; Zhang, H.; Huang, Y. Q.; Wang, W. K.; Xia, Y. Z.; Yu, Z. B. Pig bone derived hierarchical porous carbon and its enhanced cycling performance of lithium-sulfur batteries. Energy Environ. Sci. 2011, 4, 736–740.

[142]

Hou, J. H.; Cao, C. B.; Idrees, F.; Ma, X. L. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 2015, 9, 2556–2564.

[143]

Qian, W. J.; Sun, F. X.; Xu, Y. H.; Qiu, L. H.; Liu, C. H.; Wang, S. D.; Yan, F. Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ. Sci. 2014, 7, 379–386.

[144]

Wang, H. L.; Xu, Z. W.; Kohandehghan, A.; Li, Z.; Cui, K.; Tan, X. H.; Stephenson, T. J.; King’ondu, C. K.; Holt, C. M. B.; Olsen, B. C. et al. Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano 2013, 7, 5131–5141.

[145]

Jiang, J.; Zhu, J. H.; Ai, W.; Fan, Z. X.; Shen, X. N.; Zou, C. J.; Liu, J. P.; Zhang, H.; Yu, T. Evolution of disposable bamboo chopsticks into uniform carbon fibers: A smart strategy to fabricate sustainable anodes for Li-ion batteries. Energy Environ. Sci. 2014, 7, 2670–2679.

[146]

Zhong, Y.; Xia, X. H.; Deng, S. J.; Zhan, J. Y.; Fang, R. Y.; Xia, Y.; Wang, X. L.; Zhang, Q.; Tu, J. P. Popcorn inspired porous macrocellular carbon: Rapid puffing fabrication from rice and its applications in lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1701110.

[147]

Wang, L. J.; Sun, F.; Gao, J. H.; Pi, X. X.; Qu, Z. B.; Zhao, G. B. Adjusting the porosity of coal-based activated carbons based on a catalytic physical activation process for gas and liquid adsorption. Energy Fuels 2018, 32, 1255–1264.

[148]

Yang, T.; Lua, A. C. Characteristics of activated carbons prepared from pistachio-nut shells by physical activation. J. Colloid Interface Sci. 2003, 267, 408–417.

[149]

Plaza-Recobert, M.; Trautwein, G.; Pérez-Cadenas, M.; Alcañiz-Monge, J. Superactivated carbons by CO2 activation of loquat stones. Fuel Process. Technol. 2017, 159, 345–352.

[150]

Smets, K.; de Jong, M.; Lupul, I.; Gryglewicz, G.; Schreurs, S.; Carleer, R.; Yperman, J. Rapeseed and raspberry seed cakes as inexpensive raw materials in the production of activated carbon by physical activation: Effect of activation conditions on textural and phenol adsorption characteristics. Materials 2016, 9, 565.

[151]

Nazem, M. A.; Zare, M. H.; Shirazian, S. Preparation and optimization of activated nano-carbon production using physical activation by water steam from agricultural wastes. RSC Adv. 2020, 10, 1463–1475.

[152]

Yoshikawa, Y.; Teshima, K.; Futamura, R.; Tanaka, H.; Neimark, A. V.; Kaneko, K. Structural mechanism of reactivation with steam of pitch-based activated carbon fibers. J. Colloid Interface Sci. 2020, 578, 422–430.

[153]

Luo, W.; Wang, B.; Heron, C. G.; Allen, M. J.; Morre, J.; Maier, C. S.; Stickle, W. F.; Ji, X. L. Pyrolysis of cellulose under ammonia leads to nitrogen-doped nanoporous carbon generated through methane formation. Nano Lett. 2014, 14, 2225–2229.

[154]

Wang, R. T.; Wang, P. Y.; Yan, X. B.; Lang, J. W.; Peng, C.; Xue, Q. J. Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance. ACS Appl. Mater. Interfaces 2012, 4, 5800–5806.

[155]

Zhai, Z. Z.; Ren, B.; Zheng, Y. X.; Xu, Y. L.; Wang, S. S.; Zhang, L. H.; Liu, Z. F. Nitrogen-containing carbon aerogels with high specific surface area for supercapacitors. ChemElectroChem 2019, 6, 5993–6001.

[156]

Villota, E. M.; Lei, H. W.; Qian, M.; Yang, Z. X.; Villota, S. M. A.; Zhang, Y. Y.; Yadavalli, G. Optimizing microwave-assisted pyrolysis of phosphoric acid-activated biomass: Impact of concentration on heating rate and carbonization time. ACS Sustain. Chem. Eng. 2018, 6, 1318–1326.

[157]

Pokrzywinski, J.; Keum, J. K.; Ruther, R. E.; Self, E. C.; Chi, M. F.; Meyer III, H.; Littrell, K. C.; Aulakh, D.; Marble, S.; Ding, J. et al. Unrivaled combination of surface area and pore volume in micelle-templated carbon for supercapacitor energy storage. J. Mater. Chem. A 2017, 5, 13511–13525.

[158]

Fan, X. M.; Yu, C.; Yang, J.; Ling, Z.; Hu, C.; Zhang, M. D.; Qiu, J. S. A layered-nanospace-confinement strategy for the synthesis of two-dimensional porous carbon nanosheets for high-rate performance supercapacitors. Adv. Energy Mater. 2015, 5, 1401761.

[159]

Cheng, P.; Gao, S. Y.; Zang, P. Y.; Yang, X. F.; Bai, Y. L.; Xu, H.; Liu, Z. H.; Lei, Z. B. Hierarchically porous carbon by activation of shiitake mushroom for capacitive energy storage. Carbon 2015, 93, 315–324.

[160]

Jain, A.; Aravindan, V.; Jayaraman, S.; Kumar, P. S.; Balasubramanian, R.; Ramakrishna, S.; Madhavi, S.; Srinivasan, M. P. Activated carbons derived from coconut shells as high energy density cathode material for Li-ion capacitors. Sci. Rep. 2013, 3, 3002.

[161]

Xia, C. L.; Kang, C.; Patel, M. D.; Cai, L. P.; Gwalani, B.; Banerjee, R.; Shi, S. Q.; Choi, W. Pine wood extracted activated carbon through self-activation process for high-performance lithium-ion battery. ChemistrySelect 2016, 1, 4000–4007.

[162]

Niu, J.; Shao, R.; Liang, J. J.; Dou, M. L.; Li, Z. L.; Huang, Y. Q.; Wang, F. Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode materials for Li-ion batteries and supercapacitors. Nano Energy 2017, 36, 322–330.

[163]

Bommier, C.; Xu, R.; Wang, W.; Wang, X. F.; Wen, D.; Lu, J.; Ji, X. L. Self-activation of cellulose: A new preparation methodology for activated carbon electrodes in electrochemical capacitors. Nano Energy 2015, 13, 709–717.

[164]

Molina-Sabio, M.; Gonzalez, M. T.; Rodriguez-Reinoso, F.; Sepúlveda-Escribano, A. Effect of steam and carbon dioxide activation in the micropore size distribution of activated carbon. Carbon 1996, 34, 505–509.

[165]

Abbas, Q.; Mirzaeian, M.; Ogwu, A. A.; Mazur, M.; Gibson, D. Effect of physical activation/surface functional groups on wettability and electrochemical performance of carbon/activated carbon aerogels based electrode materials for electrochemical capacitors. Int. J. Hydrogen Energy 2020, 45, 13586–13595.

[166]

Román, S.; González, J. F.; González-García, C. M.; Zamora, F. Control of pore development during CO2 and steam activation of olive stones. Fuel Process. Technol. 2008, 89, 715–720.

[167]

Kim, N. D.; Kim, S. J.; Kim, G. P.; Nam, I.; Yun, H. J.; Kim, P.; Yi, J. NH3-activated polyaniline for use as a high performance electrode material in supercapacitors. Electrochim. Acta 2012, 78, 340–346.

[168]

Wang, W. W.; Xu, S. P.; Wang, K. C.; Liang, J.; Zhang, W. De-intercalation of the intercalated potassium in the preparation of activated carbons by KOH activation. Fuel Process. Technol. 2019, 189, 74–79.

[169]

Wang, J. C.; Kaskel, S. KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 2012, 22, 23710–23725.

[170]

Islam, M. A.; Ahmed, M. J.; Khanday, W. A.; Asif, M.; Hameed, B. H. Mesoporous activated carbon prepared from NaOH activation of rattan ( Lacosperma secundiflorum) hydrochar for methylene blue removal. Ecotoxicol. Environ. Saf. 2017, 138, 279–285.

[171]

Xi, Y. B.; Yang, D. J.; Qiu, X. Q.; Wang, H.; Huang, J. H.; Li, Q. Renewable lignin-based carbon with a remarkable electrochemical performance from potassium compound activation. Ind. Crops Prod. 2018, 124, 747–754.

[172]

Kong, J. J.; Gu, R.; Yuan, J. N.; Liu, W. Q.; Wu, J. C.; Fei, Z. H.; Yue, Q. Y. Adsorption behavior of Ni(II) onto activated carbons from hide waste and high-pressure steaming hide waste. Ecotoxicol. Environ. Saf. 2018, 156, 294–300.

[173]

Garba, Z. N.; Rahim, A. A. Process optimization of K2C2O4-activated carbon from Prosopis africana seed hulls using response surface methodology. J. Anal. Appl. Pyrolysis 2014, 107, 306–312.

[174]

Prauchner, M. J.; Sapag, K.; Rodríguez-Reinoso, F. Tailoring biomass-based activated carbon for CH4 storage by combining chemical activation with H3PO4 or ZnCl2 and physical activation with CO2. Carbon 2016, 110, 138–147.

[175]

Wang, C. J.; Wu, D. P.; Wang, H. J.; Gao, Z. Y.; Xu, F.; Jiang, K. A green and scalable route to yield porous carbon sheets from biomass for supercapacitors with high capacity. J. Mater. Chem. A 2018, 6, 1244–1254.

[176]

Qiu, D. P.; Guo, N. N.; Gao, A.; Zheng, L.; Xu, W. J.; Li, M.; Wang, F.; Yang, R. Preparation of oxygen-enriched hierarchically porous carbon by KMnO4 one-pot oxidation and activation: Mechanism and capacitive energy storage. Electrochim. Acta 2019, 294, 398–405.

[177]

Cao, L. C.; Yu, I. K. M.; Tsang, D. C. W.; Zhang, S. C.; Ok, Y. S.; Kwon, E. E.; Song, H.; Poon, C. S. Phosphoric acid-activated wood biochar for catalytic conversion of starch-rich food waste into glucose and 5-hydroxymethylfurfural. Bioresour. Technol. 2018, 267, 242–248.

[178]

Liu, H.; Zhang, J.; Bao, N.; Cheng, C.; Ren, L.; Zhang, C. L. Textural properties and surface chemistry of lotus stalk-derived activated carbons prepared using different phosphorus oxyacids: Adsorption of trimethoprim. J. Hazard. Mater. 2012, 235–236, 367–375.

[179]

Liu, L.; Deng, Q. F.; Liu, Y. P.; Ren, T. Z.; Yuan, Z. Y. HNO3-activated mesoporous carbon catalyst for direct dehydrogenation of propane to propylene. Catal. Commun. 2011, 16, 81–85.

[180]

Hayashi, J. I.; Kazehaya, A.; Muroyama, K.; Watkinson, A. P. Preparation of activated carbon from lignin by chemical activation. Carbon 2000, 38, 1873–1878.

[181]

Wu, Z.; Sun, Y.; Hu, L.; Xu, N.; Dai, B. L. Preparation of activated carbon from formic acid hydrolysis residue by chemical activation of ZnCl2. Adv. Mater. Res. 2014, 860, 527–533.

[182]

Kang, J. S.; Kim, S.; Chung, D. Y.; Son, Y. J.; Jo, K.; Su, X.; Lee, M. J.; Joo, H.; Hatton, T. A.; Yoon, J. et al. Rapid inversion of surface charges in heteroatom-doped porous carbon: A route to robust electrochemical desalination. Adv. Funct. Mater. 2020, 30, 1909387.

[183]

Chen, C. J.; Wei, L. B.; Zhao, P. C.; Li, Y.; Hu, H. Y.; Qin, Y. B. Study on preparation of activated carbon from corncob furfural residue with ZnCl2 by microwave irradiation. Adv. Mater. Res. 2010, 152–153, 1322–1327.

[184]

Hu, Z.; Srinivasan, M. P.; Ni, Y. Preparation of mesoporous high-surface-area activated carbon. 3.0.CO;2-B">Adv. Mater. 2000, 12, 62–65.

[185]

Mozammel, H. M.; Masahiro, O.; Sc, B. Activated charcoal from coconut shell using ZnCl2 activation. Biomass Bioenergy 2002, 22, 397–400.

[186]

Yorgun, S.; Vural, N.; Demiral, H. Preparation of high-surface area activated carbons from paulownia wood by ZnCl2 activation. Microporous Mesoporous Mater. 2009, 122, 189–194.

[187]

Wang, T. H.; Tan, S. X.; Liang, C. H. Preparation and characterization of activated carbon from wood via microwave-induced ZnCl2 activation. Carbon 2009, 47, 1880–1883.

[188]

Uğurlu, M.; Gürses, A.; Doğar, Ç. Adsorption studies on the treatment of textile dyeing effluent by activated carbon prepared from olive stone by ZnCl2 activation. Color. Technol. 2007, 123, 106–114.

[189]

He, X. J.; Ling, P. H.; Yu, M. X.; Wang, X. T.; Zhang, X. Y.; Zheng, M. D. Rice husk-derived porous carbons with high capacitance by ZnCl2 activation for supercapacitors. Electrochim. Acta 2013, 105, 635–641.

[190]

Solum, M. S.; Pugmire, R. J.; Jagtoyen, M.; Derbyshire, F. Evolution of carbon structure in chemically activated wood. Carbon 1995, 33, 1247–1254.

[191]

Wu, Y. J.; Xia, C. L.; Cai, L. P.; Shi, S. Q. Controlling pore size of activated carbon through self-activation process for removing contaminants of different molecular sizes. J. Colloid Interface Sci. 2018, 518, 41–47.

[192]

Wang, Y. K.; Zhang, M. K.; Dai, Y.; Wang, H. Q.; Zhang, H. Y.; Wang, Q. Q.; Hou, W. B.; Yan, H.; Li, W. R.; Zheng, J. C. Nitrogen and phosphorus co-doped silkworm-cocoon-based self-activated porous carbon for high performance supercapacitors. J. Power Sources 2019, 438, 227045.

[193]

Zeng, G.; Zhou, B. L.; Yi, L. C.; Li, H.; Hu, X.; Li, Y. Green and facile fabrication of hierarchical N-doped porous carbon from water hyacinths for high performance lithium/sodium ion batteries. Sustain. Energy Fuels 2018, 2, 855–861.

[194]

Sulaiman, N. S.; Hashim, R.; Mohamad Amini, M. H.; Danish, M.; Sulaiman, O. Optimization of activated carbon preparation from cassava stem using response surface methodology on surface area and yield. J. Clean. Prod. 2018, 198, 1422–1430.

[195]

Stadie, N. P.; Murialdo, M.; Ahn, C. C.; Fultz, B. Anomalous isosteric enthalpy of adsorption of methane on zeolite-templated carbon. J. Am. Chem. Soc. 2013, 135, 990–993.

[196]

Srinivasu, P.; Vinu, A.; Gokulakrishnan, N.; Anandan, S.; Asthana, A.; Mori, T.; Ariga, K. Novel microporous carbon material with flower like structure templated by MCM-22. J. Nanosci. Nanotechnol. 2007, 7, 2913–2916.

[197]

Sazama, P.; Pastvova, J.; Rizescu, C.; Tirsoaga, A.; Parvulescu, V. I.; Garcia, H.; Kobera, L.; Seidel, J.; Rathousky, J.; Klein, P. et al. Catalytic properties of 3D graphene-like microporous carbons synthesized in a zeolite template. ACS Catal. 2018, 8, 1779–1789.

[198]

Olejniczak, A.; Lezanska, M.; Wloch, J.; Kucinska, A.; Lukaszewicz, J. P. Novel nitrogen-containing mesoporous carbons prepared from chitosan. J. Mater. Chem. A 2013, 1, 8961–8967.

[199]

Korenblit, Y.; Rose, M.; Kockrick, E.; Borchardt, L.; Kvit, A.; Kaskel, S.; Yushin, G. High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon. ACS Nano 2010, 4, 1337–1344.

[200]

Lang, J. W.; Yan, X. B.; Liu, W. W.; Wang, R. T.; Xue, Q. J. Influence of nitric acid modification of ordered mesoporous carbon materials on their capacitive performances in different aqueous electrolytes. J. Power Sources 2012, 204, 220–229.

[201]

Kado, Y.; Soneda, Y.; Yoshizawa, N. Contribution of mesopores in MgO-templated mesoporous carbons to capacitance in non-aqueous electrolytes. J. Power Sources 2015, 276, 176–180.

[202]

Strubel, P.; Thieme, S.; Biemelt, T.; Helmer, A.; Oschatz, M.; Brückner, J.; Althues, H.; Kaskel, S. ZnO hard templating for synthesis of hierarchical porous carbons with tailored porosity and high performance in lithium-sulfur battery. Adv. Funct. Mater. 2015, 25, 287–297.

[203]

Song, Y. J.; Li, Z.; Guo, K. K.; Shao, T. Hierarchically ordered mesoporous carbon/graphene composites as supercapacitor electrode materials. Nanoscale 2016, 8, 15671–15680.

[204]

Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 2008, 130, 5390–5391.

[205]

Jiang, H. L.; Liu, B.; Lan, Y. Q.; Kuratani, K.; Akita, T.; Shioyama, H.; Zong, F. Q.; Xu, Q. From metal-organic framework to nanoporous carbon: Toward a very high surface area and hydrogen uptake. J. Am. Chem. Soc. 2011, 133, 11854–11857.

[206]

Srinivas, G.; Krungleviciute, V.; Guo, Z. X.; Yildirim, T. Exceptional CO2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume. Energy Environ. Sci. 2014, 7, 335–342.

[207]

Dai, J. D.; Tian, S. J.; Jiang, Y. H.; Chang, Z. S.; Xie, A. T.; Zhang, R. L.; Yan, Y. S. Facile synthesis of porous carbon sheets from potassium acetate via in-situ template and self-activation for highly efficient chloramphenicol removal. J. Alloys Compd. 2018, 732, 222–232.

[208]

Sevilla, M.; Fuertes, A. B. Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors. ACS Nano 2014, 8, 5069–5078.

[209]

Kim, D.; Jin, X. Z.; Cho, Y.; Lim, J.; Yan, B. Y.; Ko, D.; Kim, D. K.; Piao, Y. Facile preparation of N-doped porous carbon nanosheets derived from potassium citrate/melamine for high-performance supercapacitors. J. Electroanal. Chem. 2021, 892, 115302.

[210]

Sun, S. X.; Ding, B.; Liu, R. N.; Wu, X. L. Facile synthesis of three-dimensional interconnected porous carbon derived from potassium alginate for high performance supercapacitor. J. Alloys Compd. 2019, 803, 401–406.

[211]

Wu, X. L.; Ding, B.; Zhang, C. G.; Li, B.; Fan, Z. J. Self-activation of nitrogen and sulfur dual-doping hierarchical porous carbons for asymmetric supercapacitors with high energy densities. Carbon 2019, 153, 225–233.

[212]

Xiu, S.; Kim, D. K.; Kang, Y. J.; Duan, S. M.; Wang, Q.; Chen, T. Y.; Piao, Y.; Suk, J.; Jin, X. Z.; Quan, B. One-step synthesis of nitrogen and sulfur co-doped hierarchical porous carbon derived from acesulfame potassium as a dual-function agent for supercapacitors and lithium-sulfur batteries. J. Energy Storage 2023, 66, 107214.

[213]

Liu, Y. W.; Cui, H. M.; Xu, J. G.; Shi, J. S.; Yan, N. F.; Zou, J. Y.; You, S. Y. Direct synthesis of honeycomb-like porous carbons from potassium cinnamate for CO2 capture. Mater. Lett. 2023, 344, 134443.

[214]

Lu, T. Y.; Ma, C. D.; Demir, M.; Yu, Q. Y.; Aghamohammadi, P.; Wang, L. L.; Hu, X. One-pot synthesis of potassium benzoate-derived porous carbon for CO2 capture and supercapacitor application. Sep. Purif. Technol. 2022, 301, 122053.

[215]

Lu, T. Y.; Bai, J. L.; Demir, M.; Hu, X.; Huang, J. M.; Wang, L. L. Synthesis of potassium bitartrate-derived porous carbon via a facile and self-activating strategy for CO2 adsorption application. Sep. Purif. Technol. 2022, 296, 121368.

[216]

Xia, Y. D.; Mokaya, R.; Walker, G. S.; Zhu, Y. Q. Superior CO2 adsorption capacity on N-doped, high-surface-area, microporous carbons templated from zeolite. Adv. Energy Mater. 2011, 1, 678–683.

[217]

Wu, X. H.; Hong, X. T.; Nan, J. M.; Luo, Z. P.; Zhang, Q. Y.; Li, L. S.; Chen, H. Y.; Hui, K. S. Electrochemical double-layer capacitor performance of novel carbons derived from SAPO zeolite templates. Microporous Mesoporous Mater. 2012, 160, 25–31.

[218]

Lei, S.; Miyamoto, J. I.; Ohba, T.; Kanoh, H.; Kaneko, K. Novel nanostructures of porous carbon synthesized with zeolite LTA-template and methanol. J. Phys. Chem. C 2007, 111, 2459–2464.

[219]

Wang, J. J.; Liu, Z. H.; Dong, X. L.; Hsiung, C. E.; Zhu, Y. H.; Liu, L. M.; Han, Y. Microporous cokes formed in zeolite catalysts enable efficient solar evaporation. J. Mater. Chem. A 2017, 5, 6860–6865.

[220]

Ruiz-Rosas, R.; Valero-Romero, M. J.; Salinas-Torres, D.; Rodríguez-Mirasol, J.; Cordero, T.; Morallón, E.; Cazorla-Amorós, D. Electrochemical performance of hierarchical porous carbon materials obtained from the infiltration of lignin into zeolite templates. ChemSusChem 2014, 7, 1458–1467.

[221]

Park, M. S.; Jeong, B. O.; Kim, T. J.; Kim, S.; Kim, K. J.; Yu, J. S.; Jung, Y.; Kim, Y. J. Disordered mesoporous carbon as polysulfide reservoir for improved cyclic performance of lithium-sulfur batteries. Carbon 2014, 68, 265–272.

[222]

Zhou, H.; Wang, J. C.; Zhuang, J. D.; Liu, Q. A covalent route for efficient surface modification of ordered mesoporous carbon as high performance microwave absorbers. Nanoscale 2013, 5, 12502–12511.

[223]

Ignat, M.; Van Oers, C. J.; Vernimmen, J.; Mertens, M.; Potgieter-Vermaak, S.; Meynen, V.; Popovici, E.; Cool, P. Textural property tuning of ordered mesoporous carbon obtained by glycerol conversion using SBA-15 silica as template. Carbon 2010, 48, 1609–1618.

[224]

Gierszal, K. P.; Jaroniec, M.; Liang, C. D.; Dai, S. Electron microscopy and nitrogen adsorption studies of film-type carbon replicas with large pore volume synthesized by using colloidal silica and SBA-15 as templates. Carbon 2007, 45, 2171–2177.

[225]

Yoo, Y.; Kim, M. S.; Kim, J. K.; Kim, Y. S.; Kim, W. Fast-response supercapacitors with graphitic ordered mesoporous carbons and carbon nanotubes for AC line filtering. J. Mater. Chem. A 2016, 4, 5062–5068.

[226]

Kim, J.; Lee, J.; Choi, Y.; Jo, C. Synthesis of hierarchical linearly assembled graphitic carbon nanoparticles via catalytic graphitization in SBA-15. Carbon 2014, 75, 95–103.

[227]

Konno, H.; Onishi, H.; Yoshizawa, N.; Azumi, K. MgO-templated nitrogen-containing carbons derived from different organic compounds for capacitor electrodes. J. Power Sources 2010, 195, 667–673.

[228]

Fan, Z. J.; Liu, Y.; Yan, J.; Ning, G. Q.; Wang, Q.; Wei, T.; Zhi, L. J.; Wei, F. Template-directed synthesis of pillared-porous carbon nanosheet architectures: High-performance electrode materials for supercapacitors. Adv. Energy Mater. 2012, 2, 419–424.

[229]

Mbuyisa, P.; Bhardwaj, S. P.; Rigoni, F.; Carlino, E.; Pagliara, S.; Sangaletti, L.; Goldoni, A.; Ndwandwe, M.; Cepek, C. Controlled synthesis of carbon nanostructures using aligned ZnO nanorods as templates. Carbon 2012, 50, 5472–5480.

[230]

Mecklenburg, M.; Schuchardt, A.; Mishra, Y. K.; Kaps, S.; Adelung, R.; Lotnyk, A.; Kienle, L.; Schulte, K. Aerographite: Ultra lightweight, flexible nanowall, carbon microtube material with outstanding mechanical performance. Adv. Mater. 2012, 24, 3486–3490.

[231]

Kyotani, T.; Tsai, L. F.; Tomita, A. Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film. Chem. Mater. 1996, 8, 2109–2113.

[232]

Lee, J. S.; Gu, G. H.; Kim, H.; Jeong, K. S.; Bae, J.; Suh, J. S. Growth of carbon nanotubes on anodic aluminum oxide templates: Fabrication of a tube-in-tube and linearly joined tube. Chem. Mater. 2001, 13, 2387–2391.

[233]

Ahn, H. J.; Sohn, J. I.; Kim, Y. S.; Shim, H. S.; Kim, W. B.; Seong, T. Y. Electrochemical capacitors fabricated with carbon nanotubes grown within the pores of anodized aluminum oxide templates. Electrochem. Commun. 2006, 8, 513–516.

[234]

Hu, X.; Ling, Z. Y.; Wang, K.; Li, Y. Fabrication of three dimensional interconnected porous carbons from branched anodic aluminum oxide template. Electrochem. Commun. 2011, 13, 1082–1085.

[235]

Zeng, Z. Y.; Huang, X.; Yin, Z. Y.; Li, H.; Chen, Y.; Li, H.; Zhang, Q.; Ma, J.; Boey, F.; Zhang, H. Fabrication of graphene nanomesh by using an anodic aluminum oxide membrane as a template. Adv. Mater. 2012, 24, 4138–4142.

[236]

de A A Soler-Illia, G. J.; Sanchez, C.; Lebeau, B.; Patarin, J. Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev. 2002, 102, 4093–4138.

[237]

Li, Z. J.; Yan, W. F.; Dai, S. A novel vesicular carbon synthesized using amphiphilic carbonaceous material and micelle templating approach. Carbon 2004, 42, 767–770.

[238]

Wu, J.; Jin, C.; Yang, Z. R.; Tian, J. H.; Yang, R. Z. Synthesis of phosphorus-doped carbon hollow spheres as efficient metal-free electrocatalysts for oxygen reduction. Carbon 2015, 82, 562–571.

[239]

Li, H. Q.; Liu, R. L.; Zhao, D. Y.; Xia, Y. Y. Electrochemical properties of an ordered mesoporous carbon prepared by direct tri-constituent co-assembly. Carbon 2007, 45, 2628–2635.

[240]

Ramasamy, E.; Chun, J.; Lee, J. Soft-template synthesized ordered mesoporous carbon counter electrodes for dye-sensitized solar cells. Carbon 2010, 48, 4563–4565.

[241]

Liu, R. L.; Shi, Y. F.; Wan, Y.; Meng, Y.; Zhang, F. Q.; Gu, D.; Chen, Z. X.; Tu, B.; Zhao, D. Y. Triconstituent co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas. J. Am. Chem. Soc. 2006, 128, 11652–11662.

[242]

Xiong, S. Q.; Fan, J. C.; Wang, Y.; Zhu, J.; Yu, J. R.; Hu, Z. M. A facile template approach to nitrogen-doped hierarchical porous carbon nanospheres from polydopamine for high-performance supercapacitors. J. Mater. Chem. A 2017, 5, 18242–18252.

[243]

Feng, D.; Lv, Y. Y.; Wu, Z. X.; Dou, Y. Q.; Han, L.; Sun, Z. K.; Xia, Y. Y.; Zheng, G. F.; Zhao, D. Y. Free-standing mesoporous carbon thin films with highly ordered pore architectures for nanodevices. J. Am. Chem. Soc. 2011, 133, 15148–15156.

[244]

Zhang, F. Q.; Meng, Y.; Gu, D.; Yan Y.; Chen, Z. X.; Tu, B.; Zhao, D. Y. An aqueous cooperative assembly route to synthesize ordered mesoporous carbons with controlled structures and morphology. Chem. Mater. 2006, 18, 5279–5288.

[245]

Meng, Y.; Gu, D.; Zhang, F. Q.; Shi, Y. F.; Cheng, L.; Feng, D.; Wu, Z. X.; Chen, Z. X.; Wan, Y.; Stein, A. et al. A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly. Chem. Mater. 2006, 18, 4447–4464.

[246]

Liang, C. D.; Hong, K. L.; Guiochon, G. A.; Mays, J. W.; Dai, S. Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers. Angew. Chem. 2004, 116, 5909–5913.

[247]

Deng, Y. H.; Liu, J.; Liu, C.; Gu, D.; Sun, Z. K.; Wei, J.; Zhang, J. Y.; Zhang, L. J.; Tu, B.; Zhao, D. Y. Ultra-large-pore mesoporous carbons templated from poly(ethylene oxide)-b-polystyrene diblock copolymer by adding polystyrene homopolymer as a pore expander. Chem. Mater. 2008, 20, 7281–7286.

[248]

Li, J. G.; Lin, Y. D.; Kuo, S. W. From microphase separation to self-organized mesoporous phenolic resin through competitive hydrogen bonding with double-crystalline diblock copolymers of poly(ethylene oxide-b-ε-caprolactone). Macromolecules 2011, 44, 9295–9309.

[249]

Deng, Y. H.; Liu, C.; Gu, D.; Yu, T.; Tu, B.; Zhao, D. Y. Thick wall mesoporous carbons with a large pore structure templated from a weakly hydrophobic PEO-PMMA diblock copolymer. J. Mater. Chem. 2008, 18, 91–97.

[250]

Werner, J. G.; Hoheisel, T. N.; Wiesner, U. Synthesis and characterization of gyroidal mesoporous carbons and carbon monoliths with tunable ultralarge pore size. ACS nano 2014, 8, 731–743.

[251]

Yaghi, O. M.; Li, H. L. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc. 1995, 117, 10401–10402.

[252]

Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, e1230444.

[253]

Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. Ö.; Snurr, R. Q.; O’Keeffe, M.; Kim, J. et al. Ultrahigh porosity in metal-organic frameworks. Science 2010, 329, 424–428.

[254]

Cui, Y. J.; Li, B.; He, H. J.; Zhou, W.; Chen, B. L.; Qian, G. D. Metal-organic frameworks as platforms for functional materials. Acc. Chem. Res. 2016, 49, 483–493.

[255]

Xia, W.; Mahmood, A.; Zou, R. Q.; Xu, Q. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 2015, 8, 1837–1866.

[256]

Hu, J.; Wang, H. L.; Gao, Q. M.; Guo, H. L. Porous carbons prepared by using metal-organic framework as the precursor for supercapacitors. Carbon 2010, 48, 3599–3606.

[257]

Chen, Y. Z.; Wang, C. M.; Wu, Z. Y.; Xiong, Y. J.; Xu, Q.; Yu, S. H.; Jiang, H. L. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 2015, 27, 5010–5016.

[258]

Jeon, J. W.; Sharma, R.; Meduri, P.; Arey, B. W.; Schaef, H. T.; Lutkenhaus, J. L.; Lemmon, J. P.; Thallapally, P. K.; Nandasiri, M. I.; McGrail, B. P. et al. In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors. ACS appl. Mater. Interfaces 2014, 6, 7214–7222.

[259]

Huang, G.; Yang, L.; Ma, X.; Jiang, J.; Yu, S. H.; Jiang, H. L. Metal-organic framework-templated porous carbon for highly efficient catalysis: The critical role of pyrrolic nitrogen species. Chem.—Eur. J. 2016, 22, 3470–3477.

[260]

Liu, B.; Shioyama, H.; Jiang, H. L.; Zhang, X. B.; Xu, Q. Metal-organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor. Carbon 2010, 48, 456–463.

[261]

Pachfule, P.; Shinde, D.; Majumder, M.; Xu, Q. Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework. Nat. Chem. 2016, 8, 718–724.

[262]

Torad, N. L.; Hu, M.; Kamachi, Y.; Takai, K.; Imura, M.; Naito, M.; Yamauchi, Y. Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals. Chem. Commun. 2013, 49, 2521–2523.

[263]

Aijaz, A.; Fujiwara, N.; Xu, Q. From metal-organic framework to nitrogen-decorated nanoporous carbons: High CO2 uptake and efficient catalytic oxygen reduction. J. Am. Chem. Soc. 2014, 136, 6790–6793.

[264]

Hao, F.; Li, L.; Zhang, X. H.; Chen, J. H. Synthesis and electrochemical capacitive properties of nitrogen-doped porous carbon micropolyhedra by direct carbonization of zeolitic imidazolate framework-11. Mater. Res. Bull. 2015, 66, 88–95.

[265]

Tang, J.; Salunkhe, R. R.; Liu, J.; Torad, N. L.; Imura, M.; Furukawa, S.; Yamauchi, Y. Thermal conversion of core–shell metal-organic frameworks: A new method for selectively functionalized nanoporous hybrid carbon. J. Am. Chem. Soc. 2015, 137, 1572–1580.

[266]

Yang, S. J.; Kim, T.; Im, J. H.; Kim, Y. S.; Lee, K.; Jung, H.; Park, C. R. MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem. Mater. 2012, 24, 464–470.

[267]

Hu, M.; Reboul, J.; Furukawa, S.; Torad, N. L.; Ji, Q. M.; Srinivasu, P.; Ariga, K.; Kitagawa, S.; Yamauchi, Y. Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon. J. Am. Chem. Soc. 2012, 134, 2864–2867.

[268]

Shih, Y. H.; Fu, C. P.; Liu, W. L.; Lin, C. H.; Huang, H. Y.; Ma, S. Q. Nanoporous carbons derived from metal-organic frameworks as novel matrices for surface-assisted laser desorption/ionization mass spectrometry. Small 2016, 12, 2057–2066.

[269]

Aijaz, A.; Akita, T.; Yang, H.; Xu, Q. From ionic-liquid@metal-organic framework composites to heteroatom-decorated large-surface area carbons: Superior CO2 and H2 uptake. Chem. Commun. 2014, 50, 6498–6501.

[270]

Yang, J. L.; Ju, Z. C.; Jiang, Y.; Xing, Z.; Xi, B. J.; Feng, J. K.; Xiong, S. L. Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 2018, 30, 1700104.

[271]

Salunkhe, R. R.; Kamachi, Y.; Torad, N. L.; Hwang, S. M.; Sun, Z. Q.; Dou, S. X.; Kim, J. H.; Yamauchi, Y. Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons. J. Mater. Chem. A 2014, 2, 19848–19854.

[272]

Tang, D. H.; Hu, S.; Dai, F.; Yi, R.; Gordin, M. L.; Chen, S. R.; Song, J. X.; Wang, D. H. Self-templated synthesis of mesoporous carbon from carbon tetrachloride precursor for supercapacitor electrodes. ACS Appl. Mater. Interfaces 2016, 8, 6779–6783.

[273]

Sevilla, M.; Ferrero, G. A.; Diez, N.; Fuertes, A. B. One-step synthesis of ultra-high surface area nanoporous carbons and their application for electrochemical energy storage. Carbon 2018, 131, 193–200.

[274]

Ai, W.; Wang, X. W.; Zou, C. J.; Du, Z. Z.; Fan, Z. X.; Zhang, H.; Chen, P.; Yu, T.; Huang, W. Molecular-level design of hierarchically porous carbons codoped with nitrogen and phosphorus capable of in situ self-activation for sustainable energy systems. Small 2017, 13, 1602010.

[275]

Xiao, J.; Han, J. W.; Zhang, C.; Ling, G. W.; Kang, F. Y.; Yang, Q. H. Dimensionality, function and performance of carbon materials in energy storage devices. Adv. Energy Mater. 2022, 12, 2100775.

[276]

Geng, X. M.; Guo, Y. F.; Li, D. F.; Li, W. W.; Zhu, C.; Wei, X. F.; Chen, M. L.; Gao, S.; Qiu, S. Q.; Gong, Y. P. et al. Interlayer catalytic exfoliation realizing scalable production of large-size pristine few-layer graphene. Sci. Rep. 2013, 3, 1134.

[277]

Orooji, Y.; Khojasteh, H.; Amiri, O.; Amiri, M.; Hasanifard, S.; Khanahmadzadeh, S.; Salavati-Niasari, M. A combination of hydrothermal, intercalation and electrochemical methods for the preparation of high-quality graphene: Characterization and using to prepare graphene-polyurethane nanocomposite. J. Alloys Compd. 2020, 848, 156495.

[278]

Lin, S.; Dong, L.; Zhang, J. J.; Lu, H. B. Room-temperature intercalation and ~ 1000-fold chemical expansion for scalable preparation of high-quality graphene. Chem. Mater. 2016, 28, 2138–2146.

[279]

Chen, J.; Fan, X. L.; Ji, X.; Gao, T.; Hou, S.; Zhou, X. Q.; Wang, L. N.; Wang, F.; Yang, C. Y.; Chen, L. et al. Intercalation of Bi nanoparticles into graphite results in an ultra-fast and ultra-stable anode material for sodium-ion batteries. Energy Environ. Sci. 2018, 11, 1218–1225.

[280]

Kinoshita, H.; Jeon, I.; Maruyama, M.; Kawahara, K.; Terao, Y.; Ding, D.; Matsumoto, R.; Matsuo, Y.; Okada, S.; Ago, H. Highly conductive and transparent large-area bilayer graphene realized by MoCl5 intercalation. Adv. Mater. 2017, 29, 1702141.

[281]

Pham, D. T.; Lee, T. H.; Luong, D. H.; Yao, F.; Ghosh, A.; Le, V. T.; Kim, T. H.; Li, B.; Chang, J.; Lee, Y. H. Carbon nanotube-bridged graphene 3D building blocks for ultrafast compact supercapacitors. ACS Nano 2015, 9, 2018–2027.

[282]

Liu, Z. A.; Tao, Y. X.; Song, X. Z.; Bao, M.; Tan, Z. Q. A three dimensional N-doped graphene/CNTs/AC hybrid material for high-performance supercapacitors. RSC Adv. 2017, 7, 6664–6670.

[283]

Yan, J.; Wei, T.; Shao, B.; Ma, F. Q.; Fan, Z. J.; Zhang, M. L.; Zheng, C.; Shang, Y. C.; Qian, W. Z.; Wei, F. Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors. Carbon 2010, 48, 1731–1737.

[284]

Lin, J. H. The anionic surfactant/ionic liquids intercalated reduced graphene oxide for high-performance supercapacitors. Nanoscale Res. Lett. 2018, 13, 215.

[285]

Dimiev, A. M.; Ceriotti, G.; Metzger, A.; Kim, N. D.; Tour, J. M. Chemical mass production of graphene nanoplatelets in ~ 100% yield. ACS Nano 2016, 10, 274–279.

[286]

Mehravar, S.; Fatemi, S.; Komiyama, M. The role of cerium intercalation in the efficient dry exfoliation of graphene layers at a low temperature. Diam. Relat. Mater. 2020, 101, 107615.

[287]

Wang, L. C.; Ni, X. J.; Cao, Y. H.; Cao, G. Q. Adsorption behavior of bisphenol A on CTAB-modified graphite. Appl. Surf. Sci. 2018, 428, 165–170.

[288]

Eigler, S. Graphite sulphate—A precursor to graphene. Chem. Commun. 2015, 51, 3162–3165.

[289]

Wang, L. L.; Zhu, Y. C.; Guo, C.; Zhu, X. B.; Liang, J. W.; Qian, Y. T. Ferric chloride-graphite intercalation compounds as anode materials for Li-ion batteries. ChemSusChem 2014, 7, 87–91.

[290]

Wang, F.; Li, W.; Hou, M. Y.; Li, C.; Wang, Y. G.; Xia, Y. Y. Sandwich-like Cr2O3-graphite intercalation composites as high-stability anode materials for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 1703–1708.

[291]

Leong, K.; Forsman, W. C. Electron transfer to protons in graphite intercalation. Synth. Met. 1983, 6, 61–63.

[292]

Gaier, J. R.; Slabe, M. E.; Shaffer, N. Stability of the electrical resistivity of bromine, iodine monochloride, copper(II) chloride, and nickel(II) chloride intercalated pitch-based graphite fibers. Carbon 1988, 26, 381–387.

[293]

Matsumoto, R.; Okabe, Y. Electrical conductivity and air stability of FeCl3, CuCl2, MoCl5, and SbCl5 graphite intercalation compounds prepared from flexible graphite sheets. Synth. Met. 2016, 212, 62–68.

[294]

Yan, Z.; Peng, Z. W.; Casillas, G.; Lin, J.; Xiang, C. S.; Zhou, H. Q.; Yang, Y.; Ruan, G. D.; Raji, A. R. O.; Samuel, E. L. G. et al. Rebar graphene. ACS Nano 2014, 8, 5061–5068.

[295]

Lin, C. X.; Xu, M. C.; Zhang, W.; Yang, L.; Xiang, Z.; Liu, X. Y. Highly ordered and multiple-responsive graphene oxide/azoimidazolium surfactant intercalation hybrids: A versatile control platform. Langmuir 2017, 33, 3099–3111.

[296]

Huang, J. Y.; Liang, Y. R.; Hu, H.; Liu, S. M.; Cai, Y. J.; Dong, H. W.; Zheng, M. T.; Xiao, Y.; Liu, Y. L. Ultrahigh-surface-area hierarchical porous carbon from chitosan: Acetic acid mediated efficient synthesis and its application in superior supercapacitors. J. Mater. Chem. A 2017, 5, 24775–24781.

[297]

Karthikeyan, K.; Amaresh, S.; Lee, S. N.; Sun, X. L.; Aravindan, V.; Lee, Y. G.; Lee, Y. S. Construction of high-energy-density supercapacitors from pine-cone-derived high-surface-area carbons. ChemSusChem 2014, 7, 1435–1442.

[298]

Liu, R. L.; Wan, L.; Liu, S. Q.; Pan, L. X.; Wu, D. Q.; Zhao, D. Y. An interface-induced co-assembly approach towards ordered mesoporous carbon/graphene aerogel for high-performance supercapacitors. Adv. Funct. Mater. 2015, 25, 526–533.

[299]

Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 2006, 313, 1760–1763.

[300]

De Levie, R.; Vogt, A. A simple model for desorption transients. J. Electroanal. Chem. 1992, 341, 353–360.

[301]

Dzubiella, J.; Hansen, J. P. Electric-field-controlled water and ion permeation of a hydrophobic nanopore. J. Chem. Phys. 2005, 122, 234706.

[302]

Ohkubo, T.; Konishi, T.; Hattori, Y.; Kanoh, H.; Fujikawa, T.; Kaneko, K. Restricted hydration structures of Rb and Br ions confined in slit-shaped carbon nanospace. J. Am. Chem. Soc. 2002, 124, 11860–11861.

[303]

Chang, C. S.; Li, M.; Wang, H.; Wang, S. L.; Liu, X.; Liu, H. K.; Li, L. A novel fabrication strategy for doped hierarchical porous biomass-derived carbon with high microporosity for ultrahigh-capacitance supercapacitors. J. Mater. Chem. A 2019, 7, 19939–19949.

[304]

Bagri, A.; Mattevi, C.; Acik, M.; Chabal, Y. J.; Chhowalla, M.; Shenoy, V. B. Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2010, 2, 581–587.

[305]

Liu, Z.; Jiang, L. L.; Sheng, L. Z.; Zhou, Q. H.; Wei, T.; Zhang, B. S.; Fan, Z. J. Oxygen clusters distributed in graphene with “paddy land” structure: Ultrahigh capacitance and rate performance for supercapacitors. Adv. Funct. Mater. 2018, 28, 1705258.

[306]

Lin, T. Q.; Chen, I. W.; Liu, F. X.; Yang, C. Y.; Bi, H.; Xu, F. F.; Huang, F. Q. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 2015, 350, 1508–1513.

[307]

Dai, Z.; Ren, P. G.; Jin, Y. L.; Zhang, H.; Ren, F.; Zhang, Q. Nitrogen-sulphur co-doped graphenes modified electrospun lignin/polyacrylonitrile-based carbon nanofiber as high performance supercapacitor. J. Power Sources 2019, 437, 226937.

[308]

Sun, J. T.; Niu, J.; Liu, M. Y.; Ji, J.; Dou, M. L.; Wang, F. Biomass-derived nitrogen-doped porous carbons with tailored hierarchical porosity and high specific surface area for high energy and power density supercapacitors. Appl. Surf. Sci. 2018, 427, 807–813.

[309]

Zhang, R.; Jing, X. X.; Chu, Y. T.; Wang, L.; Kang, W. J.; Wei, D. H.; Li, H. B.; Xiong, S. L. Nitrogen/oxygen co-doped monolithic carbon electrodes derived from melamine foam for high-performance supercapacitors. J. Mater. Chem. A 2018, 6, 17730–17739.

[310]

Tang, Z. J.; Pei, Z. X.; Wang, Z. F.; Li, H. F.; Zeng, J.; Ruan, Z. H.; Huang, Y.; Zhu, M. S.; Xue, Q.; Yu, J. et al. Highly anisotropic, multichannel wood carbon with optimized heteroatom doping for supercapacitor and oxygen reduction reaction. Carbon 2018, 130, 532–543.

[311]

Jiao, C.; Zhang, Z. J.; Chen, X. Y. Nitrogen and fluorine dual-doped carbon nanosheets for high-performance supercapacitors. Nano 2019, 14, 1950042.

[312]

Wang, C. L.; Zhang, X. G.; Wang, J. S.; Ma, Y. J.; Lv, S. X.; Xiang, J. Y.; Chu, M. N.; Sun, T.; Qin, C. Boron/nitrogen/oxygen co-doped carbon with high volumetric performance for aqueous symmetric supercapacitors. J. Electrochem. Soc. 2018, 165, A856–A866.

[313]

Zhou, H. H.; Peng, Y. T.; Wu, H. B.; Sun, F.; Yu, H.; Liu, F.; Xu, Q. J.; Lu, Y. F. Fluorine-rich nanoporous carbon with enhanced surface affinity in organic electrolyte for high-performance supercapacitors. Nano Energy 2016, 21, 80–89.

[314]

Yan, J.; Shen, J.; Li, L.; Ma, X. K.; Cui, J. H.; Wang, L. Z.; Zhang, Y. Template-like N, S and O tri-doping activated carbon derived from helianthus pallet as high-performance material for supercapacitors. Diam. Relat. Mater. 2020, 102, 107693.

[315]

Maria Sundar Raj, F. R.; Jaya, N. V.; Boopathi, G.; Kalpana, D.; Pandurangan, A. S-doped activated mesoporous carbon derived from the borassus flabellifer flower as active electrodes for supercapacitors. Mater. Chem. Phys. 2020, 240, 122151.

[316]

Jiang, L. L.; Sheng, L. Z.; Long, C. L.; Wei, T.; Fan, Z. J. Functional pillared graphene frameworks for ultrahigh volumetric performance supercapacitors. Adv. Energy Mater. 2015, 5, 1500771.

[317]

Tang, Q. F.; Zhong, M.; Liu, H.; Chen, X. Y.; Zhang, Z. J.; Chen, S. H. Integrating effect of surface modification of microporous carbon by phosphorus/oxygen as well as the redox additive of p-aminophenol for high-performance supercapacitors. Adv. Mater. Interfaces 2020, 7, 1901933.

[318]

Razmjooei, F.; Singh, K. P.; Bae, E. J.; Yu, J. S. A new class of electroactive Fe- and P-functionalized graphene for oxygen reduction. J. Mater. Chem. A 2015, 3, 11031–11039.

[319]

Jung, M. J.; Jeong, E.; Kim, S.; Lee, S. I.; Yoo, J. S.; Lee, Y. S. Fluorination effect of activated carbon electrodes on the electrochemical performance of electric double layer capacitors. J. Fluorine Chem. 2011, 132, 1127–1133.

[320]

Kim, M. H.; Yang, J. H.; Kang, Y. M.; Park, S. M.; Han, J. T.; Kim, K. B.; Roh, K. C. Fluorinated activated carbon with superb kinetics for the supercapacitor application in nonaqueous electrolyte. Colloids Surf. A: Physicochem. Eng. Asp. 2014, 443, 535–539.

[321]

Fan, Z. J.; Yan, J.; Wei, T.; Zhi, L. J.; Ning, G. Q.; Li, T. Y.; Wei, F. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 2011, 21, 2366–2375.

[322]

Wu, J. F.; Zhang, Q. E.; Wang, J. J.; Huang, X. P.; Bai, H. A self-assembly route to porous polyaniline/reduced graphene oxide composite materials with molecular-level uniformity for high-performance supercapacitors. Energy Environ. Sci. 2018, 11, 1280–1286.

[323]

Liu, Y.; Fu, N. Q.; Zhang, G. G.; Xu, M.; Lu, W.; Zhou, L. M.; Huang, H. T. Design of hierarchical Ni-Co@Ni-Co layered double hydroxide core–shell structured nanotube array for high-performance flexible all-solid-state battery-type supercapacitors. Adv. Funct. Mater. 2017, 27, 1605307.

[324]

Ma, L.; Su, L. J.; Zhang, J.; Zhao, D. Y.; Qin, C. L.; Jin, Z.; Zhao, K. A controllable morphology GO/PANI/metal hydroxide composite for supercapacitor. J. Electroanal. Chem. 2016, 777, 75–84.

[325]

Zhang, J.; Su, L. J.; Ma, L.; Zhao, D. Y.; Qin, C. L.; Jin, Z.; Zhao, K. Preparation of inflorescence-like ACNF/PANI/NiO composite with three-dimension nanostructure for high performance supercapacitors. J. Electroanal. Chem. 2017, 790, 40–49.

[326]

Jeyaranjan, A.; Sakthivel, T. S.; Neal, C. J.; Seal, S. Scalable ternary hierarchical microspheres composed of PANI/rGO/CeO2 for high performance supercapacitor applications. Carbon 2019, 151, 192–202.

[327]

Zhang, C.; Lv, W.; Tao, Y.; Yang, Q. H. Towards superior volumetric performance: Design and preparation of novel carbon materials for energy storage. Energy Environ. Sci. 2015, 8, 1390–1403.

[328]

Liu, C. C.; Yan, X. J.; Hu, F.; Gao, G. H.; Wu, G. M.; Yang, X. W. Toward superior capacitive energy storage: Recent advances in pore engineering for dense electrodes. Adv. Mater. 2018, 30, 1705713.

[329]

Xu, Y.; Tao, Y.; Zheng, X. Y.; Ma, H. Y.; Luo, J. Y.; Kang, F. Y.; Yang, Q. H. A metal-free supercapacitor electrode material with a record high volumetric capacitance over 800 F cm-3. Adv. Mater. 2015, 27, 8082–8087.

[330]

Ouyang, T.; Cheng, K.; Gao, Y. Y.; Kong, S. Y.; Ye, K.; Wang, G. L.; Cao, D. X. Molten salt synthesis of nitrogen doped porous carbon: A new preparation methodology for high-volumetric capacitance electrode materials. J. Mater. Chem. A 2016, 4, 9832–9843.

[331]

Long, C. L.; Chen, X.; Jiang, L. L.; Zhi, L. J.; Fan, Z. J. Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors. Nano Energy 2015, 12, 141–151.

[332]

Zhao, F. G.; Kong, Y. T.; Pan, B. Y. G.; Hu, C. M.; Zuo, B.; Dong, X. P.; Li, B. X.; Li, W. S. In situ tunable pillaring of compact and high-density graphite fluoride with pseudocapacitive diamines for supercapacitors with combined predominance in gravimetric and volumetric performances. J. Mater. Chem. A 2019, 7, 3353–3365.

[333]

Wang, Y. S.; Li, S. M.; Hsiao, S. T.; Liao, W. H.; Chen, P. H.; Yang, S. Y.; Tien, H. W.; Ma, C. C. M.; Hu, C. C. Integration of tailored reduced graphene oxide nanosheets and electrospun polyamide-66 nanofabrics for a flexible supercapacitor with high-volume- and high-area-specific capacitance. Carbon 2014, 73, 87–98.

[334]

Yoon, Y.; Lee, K.; Kwon, S.; Seo, S.; Yoo, H.; Kim, S.; Shin, Y.; Park, Y.; Kim, D.; Choi, J. Y. et al. Vertical alignments of graphene sheets spatially and densely piled for fast ion diffusion in compact supercapacitors. ACS Nano 2014, 8, 4580–4590.

[335]

Pan, Z. H.; Yang, J.; Zhang, Q. C.; Liu, M. N.; Hu, Y. T.; Kou, Z. K.; Liu, N.; Yang, X.; Ding, X. Y.; Chen, H. et al. All-solid-state fiber supercapacitors with ultrahigh volumetric energy density and outstanding flexibility. Adv. Energy Mater. 2019, 9, 1802753.

[336]

Feng, S. H.; Liu, Z. H.; Yu, Q.; Zhuang, Z. C.; Chen, Q.; Fu, S. D.; Zhou, L.; Mai, L. Monodisperse carbon sphere-constructed pomegranate-like structures for high-volumetric-capacitance supercapacitors. ACS Appl. Mater. Interfaces 2019, 11, 4011–4016.

[337]

Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279.

[338]

Wang, J.; Park, T.; Yi, J. W.; Ding, B.; Henzie, J.; Chang, Z.; Dou, H.; Zhang, X. G.; Yamauchi, Y. Scalable synthesis of holey graphite nanosheets for supercapacitors with high volumetric capacitance. Nanoscale Horiz. 2019, 4, 526–530.

[339]

Yao, L.; Lin, J. S.; Yang, H. T.; Wu, Q.; Wang, D. R.; Li, X. J.; Deng, L. B.; Zheng, Z. J. Two-dimensional hierarchically porous carbon nanosheets for flexible aqueous supercapacitors with high volumetric capacitance. Nanoscale 2019, 11, 11086–11092.

[340]

Sun, Z.; Song, X. F.; Zhang, P.; Gao, L. Template-assisted synthesis of multi-shelled carbon hollow spheres with an ultralarge pore volume as anode materials in Li-ion batteries. RSC Adv. 2015, 5, 3657–3664.

[341]

Zuo, L.; Chen, S. H.; Wu, J. F.; Wang, L.; Hou, H. Q.; Song, Y. H. Facile synthesis of three-dimensional porous carbon with high surface area by calcining metal-organic framework for lithium-ion batteries anode materials. RSC Adv. 2014, 4, 61604–61610.

[342]

Cheng, M. Y.; Hwang, B. J. Mesoporous carbon-encapsulated NiO nanocomposite negative electrode materials for high-rate Li-ion battery. J. Power Sources 2010, 195, 4977–4983.

[343]

Zhang, L. P.; Mu, J. C.; Wang, Z.; Li, G. M.; Zhang, Y. L.; He, Y. H. One-pot synthesis of NiO/C composite nanoparticles as anode materials for lithium-ion batteries. J. Alloys Compd. 2016, 671, 60–65.

[344]

Li, X. J.; Fan, L. L.; Li, X. F.; Shan, H.; Chen, C.; Yan, B.; Xiong, D. B.; Li, D. J. Enhanced anode performance of flower-like NiO/RGO nanocomposites for lithium-ion batteries. Mater. Chem. Phys. 2018, 217, 547–552.

[345]

Zhang, H. J.; Tao, H. H.; Jiang, Y.; Jiao, Z.; Wu, M. H.; Zhao, B. Ordered CoO/CMK-3 nanocomposites as the anode materials for lithium-ion batteries. J. Power Sources 2010, 195, 2950–2955.

[346]

Zhang, M.; Uchaker, E.; Hu, S.; Zhang, Q. F.; Wang, T. H.; Cao, G. Z.; Li, J. Y. CoO-carbon nanofiber networks prepared by electrospinning as binder-free anode materials for lithium-ion batteries with enhanced properties. Nanoscale 2013, 5, 12342–12349.

[347]

Sun, Y. M.; Hu, X. L.; Luo, W.; Huang, Y. H. Ultrathin CoO/graphene hybrid nanosheets: A highly stable anode material for lithium-ion batteries. J. Phys. Chem. C 2012, 116, 20794–20799.

[348]

Huang, G.; Zhang, F. F.; Du, X. C.; Qin, Y. L.; Yin, D. M.; Wang, L. M. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano 2015, 9, 1592–1599.

[349]

Sun, Y.; Huang, F. Z.; Li, S. K.; Shen, Y. H.; Xie, A. J. Novel porous starfish-like Co3O4@nitrogen-doped carbon as an advanced anode for lithium-ion batteries. Nano Res. 2017, 10, 3457–3467.

[350]

Jahel, A.; Ghimbeu, C. M.; Monconduit, L.; Vix-Guterl, C. Confined ultrasmall SnO2 particles in micro/mesoporous carbon as an extremely long cycle-life anode material for Li-ion batteries. Adv. Energy Mater. 2014, 4, 1400025.

[351]

Qiao, H.; Li, J.; Fu, J. P.; Kumar, D.; Wei, Q. F.; Cai, Y. B.; Huang, F. L. Sonochemical synthesis of ordered SnO2/CMK-3 nanocomposites and their lithium storage properties. ACS Appl. Mater. Interfaces 2011, 3, 3704–3708.

[352]

Zhou, X. S.; Wan, L. J.; Guo, Y. G. Facile synthesis of MoS2@CMK-3 nanocomposite as an improved anode material for lithium-ion batteries. Nanoscale 2012, 4, 5868–5871.

[353]

Sun, W. Y.; Hu, Z.; Wang, C. Y.; Tao, Z. L.; Chou, S. L.; Kang, Y. M.; Liu, H. K. Effects of carbon content on the electrochemical performances of MoS2-C nanocomposites for Li-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 22168–22174.

[354]

Zhang, S. Q.; Lin, R.; Yue, W. B.; Niu, F. Z.; Ma, J.; Yang, X. J. Novel synthesis of metal sulfides-loaded porous carbon as anode materials for lithium-ion batteries. Chem. Eng. J. 2017, 314, 19–26.

[355]

Tao, S. S.; Yue, W. B.; Zhong, M. Y.; Chen, Z. J.; Ren, Y. Fabrication of graphene-encapsulated porous carbon-metal oxide composites as anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 6332–6339.

[356]

Zeng, Z. P.; Zhao, H. L.; Wang, J.; Lv, P. P.; Zhang, T. H.; Xia, Q. Nanostructured Fe3O4@C as anode material for lithium-ion batteries. J. Power Sources 2014, 248, 15–21.

[357]

Fu, Y. Z.; Manthiram, A. Silicon nanoparticles supported on graphitic carbon paper as a hybrid anode for Li-ion batteries. Nano Energy 2013, 2, 1107–1112.

[358]

Jeong, S.; Li, X. L.; Zheng, J. M.; Yan, P. F.; Cao, R. G.; Jung, H. J.; Wang, C. M.; Liu, J.; Zhang, J. G. Hard carbon coated nano-Si/graphite composite as a high performance anode for Li-ion batteries. J. Power Sources 2016, 329, 323–329.

[359]

Fan, Z. Y.; Liang, J.; Yu, W.; Ding, S. J.; Cheng, S. D.; Yang, G.; Wang, Y. L.; Xi, Y. X.; Xi, K.; Kumar, R. V. Ultrathin NiO nanosheets anchored on a highly ordered nanostructured carbon as an enhanced anode material for lithium ion batteries. Nano Energy 2015, 16, 152–162.

[360]

Yang, S. B.; Feng, X. L.; Ivanovici, S.; Müllen, K. Fabrication of graphene-encapsulated oxide nanoparticles: Towards high-performance anode materials for lithium storage. Angew. Chem., Int. Ed. 2010, 49, 8408–8411.

[361]

Zhang, W. M.; Wu, X. L.; Hu, J. S.; Guo, Y. G.; Wan, L. J. Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv. Funct. Mater. 2008, 18, 3941–3946.

[362]

Hong, Y.; Mao, W. F.; Hu, Q. Q.; Chang, S. Y.; Li, D. J.; Zhang, J. B.; Liu, G.; Ai, G. Nitrogen-doped carbon coated SnO2 nanoparticles embedded in a hierarchical porous carbon framework for high-performance lithium-ion battery anodes. J. Power Sources 2019, 428, 44–52.

[363]

Zhao, W. J.; Tan, P. H.; Liu, J.; Ferrari, A. C. Intercalation of few-layer graphite flakes with FeCl3: Raman determination of Fermi level, layer by layer decoupling, and stability. J. Am. Chem. Soc. 2011, 133, 5941–5946.

[364]

Maluangnont, T.; Bui, G. T.; Huntington, B. A.; Lerner, M. M. Preparation of a homologous series of graphite alkylamine intercalation compounds including an unusual parallel bilayer intercalate arrangement. Chem. Mater. 2011, 23, 1091–1095.

[365]

Xu, J. T.; Dou, Y. H.; Wei, Z. X.; Ma, J. M.; Deng, Y. H.; Li, Y. T.; Liu, H. K.; Dou, S. X. Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries. Adv. Sci. 2017, 4, 1700146.

[366]

Wen, Y. P.; Chen, L.; Pang, Y.; Guo, Z. W.; Bin, D.; Wang, Y. G.; Wang, C. X.; Xia, Y. Y. TiP2O7 and expanded graphite nanocomposite as anode material for aqueous lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 8075–8082.

[367]

Cao, Z. J.; Ma, X. B. Encapsulated Fe3O4 into tubular mesoporous carbon as a superior performance anode material for lithium-ion batteries. J. Alloys Compd. 2020, 815, 152542.

[368]

Wang, X. F.; Feng, Z. J.; Hou, X. L.; Liu, L. L.; He, M.; He, X. S.; Huang, J. T.; Wen, Z. H. Fluorine doped carbon coating of LiFePO4 as a cathode material for lithium-ion batteries. Chem. Eng. J. 2020, 379, 122371.

[369]

Ihsan, M.; Meng, Q.; Li, L.; Li, D.; Wang, H. Q.; Seng, K. H.; Chen, Z. X.; Kennedy, S. J.; Guo, Z. P.; Liu, H. K. V2O5/mesoporous carbon composite as a cathode material for lithium-ion batteries. Electrochim. Acta 2015, 173, 172–177.

[370]

Wang, H. L.; Yang, Y.; Liang, Y. Y.; Cui, L. F.; Casalongue, H. S.; Li, Y. G.; Hong, G. S.; Cui, Y.; Dai, H. J. LiMn1− x Fe x PO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angew. Chem., Int. Ed. 2011, 50, 7364–7368.

[371]

Zhu, H.; Wu, X. Z.; Zan, L.; Zhang, Y. X. Three-dimensional macroporous graphene-Li2FeSiO4 composite as cathode material for lithium-ion batteries with superior electrochemical performances. ACS Appl. Mater. Interfaces 2014, 6, 11724–11733.

[372]

Chen, J. M.; Hsu, C. H.; Lin, Y. R.; Hsiao, M. H.; Fey, G. T. K. High-power LiFePO4 cathode materials with a continuous nano carbon network for lithium-ion batteries. J. Power Sources 2008, 184, 498–502.

[373]

Su, C.; Bu, X. D.; Xu, L. H.; Liu, J. L.; Zhang, C. A novel LiFePO4/graphene/carbon composite as a performance-improved cathode material for lithium-ion batteries. Electrochim. Acta 2012, 64, 190–195.

[374]

Yang, Y.; Li, L.; Fei, H. L.; Peng, Z. W.; Ruan, G. D.; Tour, J. M. Graphene nanoribbon/V2O5 cathodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 9590–9594.

[375]

Luo, Y. Z.; Xu, X.; Zhang, Y. X.; Pi, Y. Q.; Yan, M. Y.; Wei, Q. L.; Tian, X. C.; Mai, L. Three-dimensional LiMnPO4·Li3V2(PO4)3/C nanocomposite as a bicontinuous cathode for high-rate and long-life lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 17527–17534.

[376]

Jin, F. Y.; Xiao, S.; Lu, L. J.; Wang, Y. Efficient activation of high-loading sulfur by small CNTs confined inside a large CNT for high-capacity and high-rate lithium-sulfur batteries. Nano Lett. 2016, 16, 440–447.

[377]

Zheng, Z. M.; Guo, H. C.; Pei, F.; Zhang, X.; Chen, X. Y.; Fang, X. L.; Wang, T. H.; Zheng, N. F. High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene-like nanosheets for Li-S batteries. Adv. Funct. Mater. 2016, 26, 8952–8959.

[378]

Han, J. K.; Li, Y.; Li, S. W.; Long, P.; Cao, C.; Cao, Y. Z.; Wang, W. Z.; Feng, Y. Y.; Feng, W. A low cost ultra-microporous carbon scaffold with confined chain-like sulfur molecules as a superior cathode for lithium-sulfur batteries. Sustain. Energy Fuels 2018, 2, 2187–2196.

[379]

Zhao, Q.; Zhu, Q. Z.; Miao, J. W.; Guan, Z. R. X.; Liu, H.; Chen, R. J.; An, Y. B.; Wu, F.; Xu, B. Three-dimensional carbon current collector promises small sulfur molecule cathode with high areal loading for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 10882–10889.

[380]

Xin, S.; Gu, L.; Zhao, N. H.; Yin, Y. X.; Zhou, L. J.; Guo, Y. G.; Wan, L. J. Smaller sulfur molecules promise better lithium-sulfur batteries. J. Am. Chem. Soc. 2012, 134, 18510–18513.

[381]

Hou, T. Z.; Chen, X.; Peng, H. J.; Huang, J. Q.; Li, B. Q.; Zhang, Q.; Li, B. Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium-sulfur batteries. Small 2016, 12, 3283–3291.

[382]

Pei, F.; An, T. H.; Zang, J.; Zhao, X. J.; Fang, X. L.; Zheng, M. S.; Dong, Q. F.; Zheng, N. F. From hollow carbon spheres to N-doped hollow porous carbon bowls: Rational design of hollow carbon host for Li-S batteries. Adv. Energy Mater. 2016, 6, 1502539.

[383]

Mi, K.; Chen, S. W.; Xi, B. J.; Kai, S.; Jiang, Y.; Feng, J. K.; Qian, Y. T.; Xiong, S. L. Sole chemical confinement of polysulfides on nonporous nitrogen/oxygen dual-doped carbon at the kilogram scale for lithium-sulfur batteries. Adv. Funct. Mater. 2017, 27, 1604265.

[384]

Pang, Q.; Tang, J. T.; Huang, H.; Liang, X.; Hart, C.; Tam, K. C.; Nazar, L. F. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium-sulfur batteries. Adv. Mater. 2015, 27, 6021–6028.

[385]

Yan, R.; Zhao, Z. Y.; Zhu, R.; Wu, M.; Liu, X.; Adeli, M.; Yin, B.; Cheng, C.; Li, S. Alveoli-inspired carbon cathodes with interconnected porous structure and asymmetric coordinated vanadium sites for superior Li-S batteries. Angew. Chem., Int. Ed. 2024, 63, e202404019.

[386]

Sun, X. J.; Zhang, Y. W.; Song, P.; Pan, J.; Zhuang, L.; Xu, W. L.; Xing, W. Fluorine-doped carbon blacks: Highly efficient metal-free electrocatalysts for oxygen reduction reaction. ACS Catal. 2013, 3, 1726–1729.

[387]

Yang, Z.; Yao, Z.; Li, G. F.; Fang, G. Y.; Nie, H. G.; Liu, Z.; Zhou, X. M.; Chen, X. A.; Huang, S. M. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 2012, 6, 205–211.

[388]

Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.

[389]

Wang, Y. Q.; Tao, L.; Xiao, Z. H.; Chen, R.; Jiang, Z. Q.; Wang, S. Y. 3D carbon electrocatalysts in situ constructed by defect-rich nanosheets and polyhedrons from NaCl-sealed zeolitic imidazolate frameworks. Adv. Funct. Mater. 2018, 28, 1705356.

[390]

Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.

[391]

Yang, H. B.; Miao, J. W.; Hung, S. F.; Chen, J. Z.; Tao, H. B.; Wang, X. Z.; Zhang, L. P.; Chen, R.; Gao, J. J.; Chen, H. M. et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Sci. Adv. 2016, 2, e1501122.

[392]

Liu, Q.; Wang, Y. B.; Dai, L. M.; Yao, J. N. Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn-air batteries. Adv. Mater. 2016, 28, 3000–3006.

[393]

Lu, X. Y.; Yim, W. L.; Suryanto, B. H. R.; Zhao, C. Electrocatalytic oxygen evolution at surface-oxidized multiwall carbon nanotubes. J. Am. Chem. Soc. 2015, 137, 2901–2907.

[394]

Su, C. Y.; Cheng, H.; Li, W.; Liu, Z. Q.; Li, N.; Hou, Z. F.; Bai, F. Q.; Zhang, H. X.; Ma, T. Y. Atomic modulation of FeCo-nitrogen-carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery. Adv. Energy Mater. 2017, 7, 1602420.

[395]

Yang, M. J.; Hu, X. H.; Fang, Z. S.; Sun, L.; Yuan, Z. K.; Wang, S. Y.; Hong, W.; Chen, X. D.; Yu, D. S. Bifunctional MOF-derived carbon photonic crystal architectures for advanced Zn-air and Li-S batteries: Highly exposed graphitic nitrogen matters. Adv. Funct. Mater. 2017, 27, 1701971.

[396]

Lai, Q. X.; Zhao, Y. X.; Liang, Y. Y.; He, J. P.; Chen, J. H. In situ confinement pyrolysis transformation of ZIF-8 to nitrogen-enriched meso-microporous carbon frameworks for oxygen reduction. Adv. Funct. Mater. 2016, 26, 8334–8344.

[397]

Zhong, H. X.; Wang, J.; Zhang, Y. W.; Xu, W. L.; Xing, W.; Xu, D.; Zhang, Y. F.; Zhang, X. B. ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts. Angew. Chem., Int. Ed. 2014, 53, 14235–14239.

[398]

Ye, L.; Chai, G. L.; Wen, Z. H. Zn-MOF-74 derived N-doped mesoporous carbon as pH-universal electrocatalyst for oxygen reduction reaction. Adv. Funct. Mater. 2017, 27, 1606190.

[399]

Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem., Int. Ed. 2012, 51, 11496–11500.

[400]

Wang, S. Y.; Iyyamperumal, E.; Roy, A.; Xue, Y. H.; Yu, D. S.; Dai, L. M. Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: A synergetic effect by co-doping with boron and nitrogen. Angew. Chem., Int. Ed. 2011, 50, 11756–11760.

[401]

Zhu, J. W.; Li, W. Q.; Li, S. H.; Zhang, J.; Zhou, H.; Zhang, C. T.; Zhang, J. N.; Mu, S. C. Defective N/S-codoped 3D cheese-like porous carbon nanomaterial toward efficient oxygen reduction and Zn-air batteries. Small 2018, 14, 1800563.

[402]

Wang, S. Y.; Zhang, L. P.; Xia, Z. H.; Roy, A.; Chang, D. W.; Baek, J. B.; Dai, L. M. BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2012, 51, 4209–4212.

[403]

Zhao, Y.; Yang, L. J.; Chen, S.; Wang, X. Z.; Ma, Y. W.; Wu, Q.; Jiang, Y. F.; Qian, W. J.; Hu, Z. Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes? J. Am. Chem. Soc. 2013, 135, 1201–1204.

[404]

Peera, S. G.; Sahu, A. K.; Arunchander, A.; Bhat, S. D.; Karthikeyan, J.; Murugan, P. Nitrogen and fluorine co-doped graphite nanofibers as high durable oxygen reduction catalyst in acidic media for polymer electrolyte fuel cells. Carbon 2015, 93, 130–142.

[405]

Choi, C. H.; Park, S. H.; Woo, S. I. Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity. ACS Nano 2012, 6, 7084–7091.

[406]

Meng, Y. Y.; Voiry, D.; Goswami, A.; Zou, X. X.; Huang, X. X.; Chhowalla, M.; Liu, Z. W.; Asefa, T. N-, O-, and S-tridoped nanoporous carbons as selective catalysts for oxygen reduction and alcohol oxidation reactions. J. Am. Chem. Soc. 2014, 136, 13554–13557.

[407]

Wang, W.; Chen, W. H.; Miao, P. Y.; Luo, J.; Wei, Z. D.; Chen, S. L. NaCl crystallites as dual-functional and water-removable templates to synthesize a three-dimensional graphene-like macroporous Fe-N-C catalyst. ACS Catal. 2017, 7, 6144–6149.

[408]

Liang, Z. Z.; Fan, X.; Lei, H. T.; Qi, J.; Li, Y. Y.; Gao, J. P.; Huo, M. L.; Yuan, H. T.; Zhang, W.; Lin, H. P. et al. Cobalt-nitrogen-doped helical carbonaceous nanotubes as a class of efficient electrocatalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2018, 57, 13187–13191.

[409]

Yao, Y. D.; Mahmood, N.; Pan, L.; Shen, G. Q.; Zhang, R. R.; Gao, R. J.; Aleem, F. E.; Yuan, X. Y.; Zhang, X. W.; Zou, J. J. Iron phosphide encapsulated in P-doped graphitic carbon as efficient and stable electrocatalyst for hydrogen and oxygen evolution reactions. Nanoscale 2018, 10, 21327–21334.

[410]

Amiinu, I. S.; Pu, Z. H.; Liu, X. B.; Owusu, K. A.; Monestel, H. G. R.; Boakye, F. O.; Zhang, H. N.; Mu, S. C. Multifunctional Mo-N/C@MoS2 electrocatalysts for HER, OER, ORR, and Zn-air batteries. Adv. Funct. Mater. 2017, 27, 1702300.

[411]

Chung, H. T.; Won, J. H.; Zelenay, P. Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat. Commun. 2013, 4, 1922.

[412]

Zhang, M. D.; Dai, Q. B.; Zheng, H. G.; Chen, M. D.; Dai, L. M. Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting. Adv. Mater. 2018, 30, 1705431.

[413]

Liang, J.; Zhou, R. F.; Chen, X. M.; Tang, Y. H.; Qiao, S. Z. Fe-N decorated hybrids of CNTs grown on hierarchically porous carbon for high-performance oxygen reduction. Adv. Mater. 2014, 26, 6074–6079.

[414]

Varnell, J. A.; Tse, E. C. M.; Schulz, C. E.; Fister, T. T.; Haasch, R. T.; Timoshenko, J.; Frenkel, A. I.; Gewirth, A. A. Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts. Nat. Commun. 2016, 7, 12582.

[415]

Liu, K.; Li, J.; Wang, Q. F.; Wang, X. P.; Qian, D.; Jiang, J. B.; Li, J. H.; Chen, Z. H. Designed synthesis of LaCoO3/N-doped reduced graphene oxide nanohybrid as an efficient bifunctional electrocatalyst for ORR and OER in alkaline medium. J. Alloys Compd. 2017, 725, 260–269.

[416]

Wang, M.; Chen, K.; Liu, J.; He, Q. G.; Li, G. L.; Li, F. Z. Efficiently enhancing electrocatalytic activity of α-MnO2 nanorods/N-doped ketjenblack carbon for oxygen reduction reaction and oxygen evolution reaction using facile regulated hydrothermal treatment. Catalysts 2018, 8, 138.

[417]

Liu, X.; Wang, L.; Yu, P.; Tian, C. G.; Sun, F. F.; Ma, J. Y.; Li, W.; Fu, H. G. A stable bifunctional catalyst for rechargeable zinc-air batteries: Iron-cobalt nanoparticles embedded in a nitrogen-doped 3D carbon matrix. Angew. Chem., Int. Ed. 2018, 57, 16166–16170.

[418]

Wei, S. J.; Wang, Y.; Chen, W. X.; Li, Z.; Cheong, W. C.; Zhang, Q. H.; Gong, Y.; Gu, L.; Chen, C.; Wang, D. S. et al. Atomically dispersed Fe atoms anchored on COF-derived N-doped carbon nanospheres as efficient multi-functional catalysts. Chem. Sci. 2020, 11, 786–790.

[419]

Xiao, F.; Xu, G. L.; Sun, C. J.; Xu, M. J.; Wen, W.; Wang, Q.; Gu, M.; Zhu, S. Q.; Li, Y. Y.; Wei, Z. D. et al. Nitrogen-coordinated single iron atom catalysts derived from metal organic frameworks for oxygen reduction reaction. Nano Energy 2019, 61, 60–68.

[420]

Lai, Q. X.; Zheng, L. R.; Liang, Y. Y.; He, J. P.; Zhao, J. X.; Chen, J. H. Metal-organic-framework-derived Fe-N/C electrocatalyst with five-coordinated Fe-N x sites for advanced oxygen reduction in acid media. ACS Catal. 2017, 7, 1655–1663.

[421]

Zhu, C. Z.; Shi, Q. R.; Xu, B. Z.; Fu, S. F.; Wan, G.; Yang, C.; Yao, S. Y.; Song, J. H.; Zhou, H.; Du, D. et al. Hierarchically porous M-N-C (M = Co and Fe) single-atom electrocatalysts with robust MN x active moieties enable enhanced ORR performance. Adv. Energy Mater. 2018, 8, 1801956.

[422]

Zang, W. J.; Sumboja, A.; Ma, Y. Y.; Zhang, H.; Wu, Y.; Wu, S. S.; Wu, H. J.; Liu, Z. L.; Guan, C.; Wang, J. et al. Single co atoms anchored in porous N-doped carbon for efficient zinc-air battery cathodes. ACS Catal. 2018, 8, 8961–8969.

[423]

Yang, Y.; Mao, K. T.; Gao, S. Q.; Huang, H.; Xia, G. L.; Lin, Z. Y.; Jiang, P.; Wang, C. L.; Wang, H.; Chen, Q. W. O-, N-atoms-coordinated Mn cofactors within a graphene framework as bioinspired oxygen reduction reaction electrocatalysts. Adv. Mater. 2018, 30, 1801732.

[424]

Han, G. K.; Zheng, Y.; Zhang, X.; Wang, Z. Q.; Gong, Y.; Du, C. Y.; Banis, M. N.; Yiu, Y. M.; Sham, T. K.; Gu, L. et al. High loading single-atom Cu dispersed on graphene for efficient oxygen reduction reaction. Nano Energy 2019, 66, 104088.

[425]

Li, W.; Min, C. G.; Tan, F.; Li, Z. P.; Zhang, B. S.; Si, R.; Xu, M. L.; Liu, W. P.; Zhou, L. X.; Wei, Q. M. et al. Bottom-up construction of active sites in a Cu-N4-C catalyst for highly efficient oxygen reduction reaction. ACS Nano 2019, 13, 3177–3187.

[426]

Li, P. P.; Jin, Z. Y.; Qian, Y. M.; Fang, Z. W.; Xiao, D.; Yu, G. H. Supramolecular confinement of single Cu atoms in hydrogel frameworks for oxygen reduction electrocatalysis with high atom utilization. Mater. Today 2020, 35, 78–86.

[427]

Song, P.; Luo, M.; Liu, X. Z.; Xing, W.; Xu, W. L.; Jiang, Z.; Gu, L. Zn single atom catalyst for highly efficient oxygen reduction reaction. Adv. Funct. Mater. 2017, 27, 1700802.

[428]

Zhang, Z. P.; Sun, J. T.; Wang, F.; Dai, L. M. Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework. Angew. Chem., Int. Ed. 2018, 57, 9038–9043.

Carbon Future
Article number: 9200024
Cite this article:
Geng D, Huang Y, Feng J, et al. Large specific surface area carbons for electrochemical energy storage. Carbon Future, 2024, 1(4): 9200024. https://doi.org/10.26599/CF.2024.9200024

415

Views

87

Downloads

0

Crossref

Altmetrics

Received: 16 October 2024
Revised: 14 November 2024
Accepted: 22 November 2024
Published: 25 December 2024
© The Author(s) 2024.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See https://creativecommons.org/licenses/by/4.0/.

Return