Journal Home > Volume 1 , Issue 2

Transition metal sulfides (TMSs) are widely recognized for their potential as anode materials in the development of flexible lithium-ion capacitors (FLICs) owing to their high theoretical capacity. However, their practical application has been significantly limited by rapid capacity decay and sluggish kinetics associated with TMS volume variation. In response to these challenges, we have prepared ZnS/CuS nanoparticles embedded in continuous and multichannel carbon fibers (CFs). This was achieved through a process involving blow-spinning and subsequent sulfidation. Notably, the electrochemical performance of these materials was largely improved, owing to the synergistic effect of bimetallic sulfides. The ZnS/CuS-CF anode material demonstrated a high specific capacity of over 900 mAh g−1 at a current density of 0.2 A g−1. Furthermore, it exhibited superior rate capacity (300 mAh g−1 at 20 A g−1) and excellent cyclic stability, maintaining its performance over 1000 cycles at 10 A g−1. We also prepared lithium-ion capacitors (LICs) using the same method. These LICs exhibited a maximum energy density of 136 Wh kg−1, a high power density of 43.5 kW kg−1, and an impressive cyclic stability over 4000 cycles. In addition, the FLICs, when configured in the form of a pouch cell, demonstrated significant potential for the development of smart, flexible electronic devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

ZnS/CuS nanoparticles encapsulated in multichannel carbon fibers as high-performance anode materials for flexible Li-ion capacitors

Show Author's information Bohan Li1Chong Wang1Zhouyang Qin1Chenhui Luan3Changzhen Zhan1Liangliang Li1Ruitao Lv1,2Wanci Shen1Zheng-Hong Huang1,2( )
Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China

Abstract

Transition metal sulfides (TMSs) are widely recognized for their potential as anode materials in the development of flexible lithium-ion capacitors (FLICs) owing to their high theoretical capacity. However, their practical application has been significantly limited by rapid capacity decay and sluggish kinetics associated with TMS volume variation. In response to these challenges, we have prepared ZnS/CuS nanoparticles embedded in continuous and multichannel carbon fibers (CFs). This was achieved through a process involving blow-spinning and subsequent sulfidation. Notably, the electrochemical performance of these materials was largely improved, owing to the synergistic effect of bimetallic sulfides. The ZnS/CuS-CF anode material demonstrated a high specific capacity of over 900 mAh g−1 at a current density of 0.2 A g−1. Furthermore, it exhibited superior rate capacity (300 mAh g−1 at 20 A g−1) and excellent cyclic stability, maintaining its performance over 1000 cycles at 10 A g−1. We also prepared lithium-ion capacitors (LICs) using the same method. These LICs exhibited a maximum energy density of 136 Wh kg−1, a high power density of 43.5 kW kg−1, and an impressive cyclic stability over 4000 cycles. In addition, the FLICs, when configured in the form of a pouch cell, demonstrated significant potential for the development of smart, flexible electronic devices.

Keywords: anode, flexible, metal sulfides, lithium-ion capacitors, carbon fiber

References(56)

[1]

Li, B. L., Yu, M., Li, Z. S., Yu, C. L., Wang, H. Q., Li, Q. Y. (2022). Constructing flexible all-solid-state supercapacitors from 3D nanosheets active bricks via 3D manufacturing technology: A perspective review. Adv. Funct. Mater. 32, 2201166.

[2]

Asl, M. S., Hadi, R., Salehghadimi, L., Tabrizi, A. G., Farhoudian, S., Babapoor, A., Pahlevani, M. (2022). Flexible all-solid-state supercapacitors with high capacitance, long cycle life, and wide operational potential window: Recent progress and future perspectives. J. Energy Storage 50, 104223.

[3]

Ma, J., Kong, Y., Liu, S. C., Li, Y. T., Jiang, J. B., Zhou, Q. Y., Huang, Y. S., Han, S. (2020). Flexible phosphorus-doped graphene/metal-organic framework-derived porous Fe2O3 anode for lithium-ion battery. ACS Appl. Energy Mater. 3, 11900–11906.

[4]

Gao, L., Wu, G. S., Ma, J., Jiang, T. C., Chang, B., Huang, Y. S., Han, S. (2020). SnO2 quantum dots@graphene framework as a high-performance flexible anode electrode for lithium-ion batteries. ACS Appl. Mater. Interfaces 12, 12982–12989.

[5]

Zhang, M., Li, L. H., Jian, X. L., Zhang, S., Shang, Y. Y., Xu, T. T., Dai, S. G., Xu, J. M., Kong, D. Z., Wang, Y., et al. (2021). Free-standing and flexible CNT/(Fe@Si@SiO2) composite anodes with kernel-pulp-skin nanostructure for high-performance lithium-ion batteries. J. Alloys Compd. 878, 160396.

[6]

Que, L. F., Yu, F. D., Wang, Z. B., Gu, D. M. (2018). Pseudocapacitance of TiO2−x/CNT anodes for high-performance quasi-solid-state Li-ion and Na-ion capacitors. Small 14, 1704508.

[7]

Le, T., Tian, H., Cheng, J., Huang, Z. H., Kang, F. Y., Yang, Y. (2018). High performance lithium-ion capacitors based on scalable surface carved multi-hierarchical construction electrospun carbon fibers. Carbon 138, 325–336.

[8]

Shi, R. Y., Han, C. P., Xu, X. F., Qin, X. Y., Xu, L., Li, H. F., Li, J. Q., Wong, C. P., Li, B. H. (2018). Electrospun N-doped hierarchical porous carbon nanofiber with improved degree of graphitization for high-performance lithium ion capacitor. Chem. Eur. J. 24, 10460–10467.

[9]

Shi, J. J., Wang, S. L., Wang, Q., Chen, X., Du, X. Y., Wang, M., Zhao, Y. J., Dong, C., Ruan, L. M., Zeng, W. (2020). A new flexible zinc-ion capacitor based on δ-MnO2@Carbon cloth battery-type cathode and MXene@Cotton cloth capacitor-type anode. J. Power Sources 446, 227345.

[10]

Zhu, C. Y., Ye, Y. W., Guo, X., Cheng, F. (2022). Design and synthesis of carbon-based nanomaterials for electrochemical energy storage. New Carbon Mater. 37, 59–92.

[11]

Zhao, J. B., Zhang, Y. Y., Wang, Y. H., Li, H., Peng, Y. Y. (2018). The application of nanostructured transition metal sulfides as anodes for lithium ion batteries. J. Energy Chem. 27, 1536–1554.

[12]

Lu, S. J., Wang, Z. T., Zhang, X. H., He, Z. J., Tong, H., Li, Y. J., Zheng, J. C. (2020). In situ-formed hollow cobalt sulfide wrapped by reduced graphene oxide as an anode for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 12, 2671–2678.

[13]

Hou, T. Y., Liu, B. R., Sun, X. H., Fan, A. R., Xu, Z. K., Cai, S., Zheng, C. M., Yu, G. H., Tricoli, A. (2021). Covalent coupling-stabilized transition-metal sulfide/carbon nanotube composites for lithium/sodium-ion batteries. ACS Nano 15, 6735–6746.

[14]

Hou, Z. D., Jiang, M. W., Cao, Y. J., Liu, H. Y., Zhang, Y., Wang, J. G. (2022). Encapsulating ultrafine cobalt sulfides into multichannel carbon nanofibers for superior Li-ion energy storage. J. Power Sources 541, 231682.

[15]

Zhou, X. H., Su, K. M., Kang, W. M., Cheng, B. W., Li, Z. H., Jiang, Z. (2020). Locking metal sulfide nanoparticles in interconnected porous carbon nanofibers with protective macro-porous skin as freestanding anodes for lithium ion batteries. Chem. Eng. J. 397, 125271.

[16]

Xu, H. Z., Sun, L., Li, W., Gao, M. Y., Zhou, Q. N., Li, P., Yang, S. K., Lin, J. J. (2022). Facile synthesis of hierarchical g-C3N4@WS2 composite as lithium-ion battery anode. Chem. Eng. J. 435, 135129.

[17]

Cai, Y. Q., Liu, H. G., Li, H. R., Sun, Q. Z., Wang, X., Zhu, F. Y., Li, Z. Q., Kim, J. K., Huang, Z. D. (2023). Strong coordination interaction in amorphous Sn-Ti-ethylene glycol compound for stable Li-ion storage. Energy Mater. Devices 1, 9370013.

[18]

Fang, Y. J., Luan, D. Y., Lou, X. W. (2020). Recent advances on mixed metal sulfides for advanced sodium-ion batteries. Adv. Mater. 32, 2002976.

[19]

Liu, H. Q., He, Y. N., Zhang, H., Cao, K. Z., Wang, S. D., Jiang, Y., Jing, Q. S., Jiao, L. F. (2021). Lowering the voltage-hysteresis of CuS anode for Li-ion batteries via constructing heterostructure. Chem. Eng. J. 425, 130548.

[20]

Zhang, Z., Huang, Y., Liu, X. D., Chen, C., Xu, Z. P., Liu, P. B. (2020). Zeolitic imidazolate frameworks derived ZnS/Co3S4 composite nanoparticles doping on polyhedral carbon framework for efficient lithium/sodium storage anode materials. Carbon 157, 244–254.

[21]

Hu, Y., Zhang, L. F., Bai, J. X., Liu, F. H., Wang, Z., Wu, W. P., Bradley, R., Li, L., Ruan, H., Guo, S. W. (2021). Boosting high-rate sodium storage of CuS via a hollow spherical nanostructure and surface pseudocapacitive behavior. ACS Appl. Energy Mater. 4, 8901–8909.

[22]

Zeng, L. C., Pan, F. S., Li, W. H., Jiang, Y., Zhong, X. W., Yu, Y. (2014). Free-standing porous carbon nanofibers–sulfur composite for flexible Li–S battery cathode. Nanoscale 6, 9579–9587.

[23]

Wang, Y., Wen, Z., Wang, C. C., Yang, C. C., Jiang, Q. (2021). MOF-derived Fe7S8 nanoparticles/N-doped carbon nanofibers as an ultra-stable anode for sodium-ion batteries. Small 17, 2102349.

[24]

Xie, L. J., Tang, C., Bi, Z. H., Song, M. X., Fan, Y. F., Yan, C., Li, X. M., Su, F. Y., Zhang, Q., Chen, C. M. (2021). Hard carbon anodes for next-generation li-ion batteries: review and perspective. Adv. Energy Mater. 11, 2101650.

[25]

Zhang, M., Shoaib, M., Fei, H. L., Wang, T., Zhong, J., Fan, L., Wang, L., Luo, H. Y., Tan, S., Wang, Y. Y., et al. (2019). Hierarchically porous N-doped carbon fibers as a free-standing anode for high-capacity potassium-based dual-ion battery. Adv. Energy Mater. 9, 1901663.

[26]

Wu, Y. Q., Yang, H. X., Yang, Y., Pu, H., Meng, W. J., Gao, R. Z., Zhao, D. L. (2019). SnS2/Co3S4 hollow nanocubes anchored on S-doped graphene for ultrafast and stable Na-ion storage. Small 15, 1903873.

[27]

Rao, Y., Zhu, K. J., Liang, P. H., Zhang, J., Zheng, H. J., Wang, J., Liu, J. S., Yan, K., Bao, N. Z. (2022). Synthesis of heterostructured dual metal sulfides by a high-temperature mixing hydrothermal method as an ultra-high rate anode for Li-ion batteries. CrystEngComm 24, 4698–4704.

[28]

Yu, Q., Dong, T., Qiu, R. Y., Wang, H. W. (2021). Sulfur and nitrogen dual-doped carbon nanofiber with enlarged interlayer distance as a superior anode material for sodium-ion capacitors. Mater. Res. Bull. 138, 111211.

[29]

Xu, D. F., Chen, C. J., Xie, J., Zhang, B., Miao, L., Cai, J., Huang, Y. H., Zhang, L. (2016). A Hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv. Energy Mater. 6, 1501929.

[30]

Chen, M., Wang, W., Liang, X., Gong, S., Liu, J., Wang, Q., Guo, S. J., Yang, H. (2018). Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Adv. Energy Mater. 8, 1800171.

[31]

Kim, J. H., Ko, Y. I., Kim, Y. A., Kim, K. S., Yang, C. M. (2021). Sulfur-doped carbon nanotubes as a conducting agent in supercapacitor electrodes. J. Alloys Compd. 855, 157282.

[32]

Cao, D. W., Kang, W. P., Wang, W. H., Sun, K. A., Wang, Y. Y., Ma, P., Sun, D. F. (2020). Okra-like Fe7S8/C@ZnS/N-C@C with core–double-shelled structures as robust and high-rate sodium anode. Small 16, 1907641.

[33]

Zhang, W. L., Huang, Z. Y., Zhou, H. H., Li, S. L., Wang, C. Q., Li, H. X., Yan, Z. H., Wang, F., Kuang, Y. F. (2020). Facile synthesis of ZnS nanoparticles decorated on defective CNTs with excellent performances for lithium-ion batteries anode material. J. Alloys Compd. 816, 152633.

[34]

Nam, J. S., Lee, J. H., Hwang, S. M., Kim, Y. J. (2019). New insights into the phase evolution in CuS during lithiation and delithiation processes. J. Mater. Chem. A 7, 11699–11708.

[35]

Gan, Y. P., Xu, F. Q., Luo, J. M., Yuan, H. D., Jin, C. B., Zhang, L. Y., Fang, C., Sheng, O. W., Huang, H., Xia, Y., et al. (2016). One-pot biotemplate synthesis of FeS2 decorated sulfur-doped carbon fiber as high capacity anode for lithium-ion batteries. Electrochim. Acta 209, 201–209.

[36]

Pathak, D. D., Dutta, D. P., Ravuri, B. R., Ballal, A., Joshi, A. C., Tyagi, A. K. (2021). An insight into the effect of g-C3N4 support on the enhanced performance of ZnS nanoparticles as anode material for lithium-ion and sodium-ion batteries. Electrochim. Acta 370, 137715.

[37]

Zhang, J. C., Ni, S. B., Ma, J. J., Yang, X. L., Zhang, L. L. (2016). High capacity and superlong cycle life of Li3VO4/N–C hybrids as anode for high performance Li-ion batteries. J. Power Sources 301, 41–46.

[38]

Xu, X. X., Li, L. J., Chen, H. Q., Guo, X. S., Zhang, Z H., Liu, J., Mao, C. M., Li, G. C. (2020). Constructing heterostructured FeS2/CuS nanospheres as high rate performance lithium ion battery anodes. Inorg. Chem. Front. 7, 1900–1908.

[39]

Cao, L., Gao, X. W., Zhang, B., Ou, X., Zhang, J. F., Luo, W. B. (2020). Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries. ACS Nano 14, 3610–3620.

[40]

Ren, J. H., Wang, Z. Y., Xu, P., Wang, C., Gao, F., Zhao, D. C., Liu, S. P., Yang, H., Wang, D., Niu, C. M., et al. (2022). Porous Co2VO4 nanodisk as a high-energy and fast-charging anode for lithium-ion batteries. Nano-Micro Lett. 14, 5.

[41]

Li, Q., Li, H. S., Xia, Q. T., Hu, Z. Q., Zhu, Y., Yan, S. S., Ge, C., Zhang, Q. H., Wang, X. X., Shang, X. T., et al. (2021). Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nat. Mater. 20, 76–83.

[42]

Zhang, J. J., Cao, D. W., Wu, Y., Cheng, X. L., Kang, W. P., Xu, J. (2020). Phase transformation and sulfur vacancy modulation of 2D layered tin sulfide nanoplates as highly durable anodes for pseudocapacitive lithium storage. Chem. Eng. J. 392, 123722.

[43]

Cao, L., Zhang, B., Ou, X., Wang, C. H., Peng, C. L., Zhang, J. F. (2019). Synergistical coupling interconnected ZnS/SnS2 nanoboxes with polypyrrole-derived N/S dual-doped carbon for boosting high-performance sodium storage. Small 15, 1804861.

[44]

Fang, Y. J., Guan, B. Y., Luan, D. Y., Lou, X. W. (2019). Synthesis of CuS@CoS2 double-shelled nanoboxes with enhanced sodium storage properties. Angew. Chem., Int. Ed. 58, 7739–7743.

[45]

Zhao, N., Wang, C., Li, B. H., Shen, W. C., Kang, F. Y., Huang, Z. H. (2022). Construction of flexible lignin/polyacrylonitrile-based carbon nanofibers for dual-carbon sodium-ion capacitors. J. Mater. Sci. 57, 11809–11823.

[46]

Ren, X. L., Ai, D. S., Zhan, C. Z., Lv, R. T., Kang, F. Y., Huang, Z. H. (2020). 3D porous Li3VO4@C composite anodes with ultra-high rate capacity for lithium-ion capacitors. Electrochim. Acta 355, 136819.

[47]

Wang, R. H., Zhao, Q. N., Zheng, W. K., Ren, Z. L., Hu, X. L., Li, J., Lu, L., Hu, N., Molenda, J., Liu, X. J., et al. (2019). Achieving high energy density in a 4.5 V all nitrogen-doped graphene based lithium-ion capacitor. J. Mater. Chem. A 7, 19909–19921.

[48]

Sivakkumar, S. R., Nerkar, J. Y., Pandolfo, A. G. (2010). Rate capability of graphite materials as negative electrodes in lithium-ion capacitors. Electrochim. Acta 55, 3330–3335.

[49]

Dong, S. Y., Li, H. S., Wang, J. J., Zhang, X. G., Ji, X. L. (2017). Improved flexible Li-ion hybrid capacitors: techniques for superior stability. Nano Res. 10, 4448–4456.

[50]

Liu, C., Khosrozadeh, A., Ren, Q. Q., Yan, L. H., Goh, K., Li, S. H., Liu, J., Zhao, L., Gu, D. M., Wang, Z. B. (2021). Intercalation-pseudocapacitance hybrid anode for high rate and energy lithium-ion capacitors. J. Energy Chem. 55, 459–467.

[51]

Tao, S. S., Momen, R., Luo, Z., Zhu, Y. R., Xiao, X. H., Cao, Z. W., Xiong, D. Y., Deng, W. T., Liu, Y. C., Hou, H. S. et al. (2023). Trapping lithium selenides with evolving heterogeneous interfaces for high-power lithium-ion capacitors. Small 19, 2207975.

[52]

Wang, Y. K., Liu, M. C., Cao, J. Y., Zhang, H. J., Kong, L. B., Trudgeon, D. P., Li, X. H., Walsh, F. C. (2020). 3D hierarchically structured CoS nanosheets: Li+ storage mechanism and application of the high-performance lithium-ion capacitors. ACS Appl. Mater. Interfaces 12, 3709–3718.

[53]

Zhou, H. Y., Lin, L. W., Sui, Z. Y., Wang, H. Y., Han, B. H. (2023). Holey Ti3C2 MXene-derived anode enables boosted kinetics in lithium-ion capacitors. ACS Appl. Mater. Interfaces 15, 12161–12170.

[54]

Ma, Y. B., Wang, K., Xu, Y. N., Zhang, X. D., Peng, Q. F., Li, S. N., Zhang, X., Sun, X. Z., Ma, Y. W. (2023). Dehalogenation produces graphene wrapped carbon cages as fast-kinetics and large-capacity anode for lithium-ion capacitors. Carbon 202, 175–185.

[55]

Liu, W. J., An, Y. B, Wang, L., Hu, T., Li, C., Xu, Y. N., Wang, K., Sun, X. Z., Zhang, H. T., Zhang, X. et al. (2023). Mechanically flexible reduced graphene oxide/carbon composite films for high-performance quasi-solid-state lithium-ion capacitors. J. Energy Chem. 80, 68–76.

[56]

Lei, D., Hou, Z. D., Li, N., Cao, Y. J., Ren, L. B., Liu, H. Y., Zhang, Y., Wang, J. G. (2023). A homologous N/P-codoped carbon strategy to streamline nanostructured MnO/C and carbon toward boosted lithium-ion capacitors. Carbon 201, 260–268.

File
EMD-2023-0012_ESM.pdf (15.1 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 15 October 2023
Revised: 27 November 2023
Accepted: 01 December 2023
Published: 13 December 2023
Issue date: December 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

The authors gratefully acknowledge the support provided by the National Natural Science Foundation of China (Grant Nos. 52172047, 52202040), Inner Mongolia Autonomous Region Major Science and Technology project (Grant No. 2020ZD0024).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return