PDF (2.8 MB)
Collect
Submit Manuscript
Review Article | Open Access | Online First

Resveratrol in degenerative musculoskeletal diseases: a homology of medicine and food perspective

Xuan Zhang1,2,3,4Hong-Fa Zhou1,2,3,4Jing-Yuan Chen1,2,3,4Jin-Hao Deng1,2,3,4Zi-Meng Zhou1,2,3,4Hao-Xian Tang4Jing-Tao Huang4,5Yi-En Zheng6Hui Zeng7()Kai Ren8()Fei Yu8()
Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen 518036, China
Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Shenzhen 518036, China
Shantou University Medical College, Shantou 515041, China
Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, China
Institute for Macromolecular Chemistry, University of Freiburg, Freiburg 79104, Germany
Department of Orthopedics, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
Department of Spine Surgery, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
Show Author Information

Highlights

(1) Resveratrol’s Therapeutic Potential: Resveratrol helps treat degenerative musculoskeletal diseases (DMDs) by reducing inflammation, oxidative stress, and cell degradation.

(2) Medicine-Food Homology: Resveratrol serves as both a medicine and dietary supplement, supporting long-term DMD management through regular consumption of foods rich in this compound.

(3) Diet-Pharmacology Integration: Combining resveratrol-rich diets with conventional treatments provides a holistic, sustainable approach to DMDs prevention and care.

Graphical Abstract

View original image Download original image
The sources, structure, dual use in medicine and food of resveratrol, and its therapeutic effects along with potential mechanisms on osteoarthritis, osteoporosis, and sarcopenia.

Abstract

This review examines the therapeutic potential of resveratrol (RES) in managing degenerative musculoskeletal diseases (DMDs), including osteoarthritis (OA), osteoporosis, and sarcopenia. With the rising incidence of these diseases in aging populations, effective interventions are increasingly urgent. RES, a polyphenolic compound found in foods such as grapes and peanuts, has shown promise due to its antioxidant and anti-inflammatory properties. Acting within the framework of medicine and food homology, RES holds dual roles as both a dietary supplement and therapeutic agent. RES exerts its effects by modulating various signaling pathways, which collectively reduce inflammation, oxidative stress, and cellular apoptosis, thereby slowing the progression of DMDs. Clinical trials suggest that RES improves bone mineral density, alleviates OA symptoms, and helps preserve muscle mass. However, challenges like limited bioavailability and targeted delivery remain. Future research should focus on optimizing RES’s bioavailability and exploring its synergistic effects with other natural compounds to enhance its therapeutic impact. Overall, RES exemplifies a holistic approach to DMDs management by integrating dietary and pharmacological benefits, offering a sustainable strategy for disease management and prevention.

References

[1]

Yin, P., Jiang, Y., Fang, X., et al. Cell-Based therapies for degenerative musculoskeletal diseases. Advanced Science, 2023, 10: e2207050. https://doi.org/10.1002/advs.202207050

[2]

Wen, Z. Q., Lin, J, Xie, W. Q., et al. Insights into the underlying pathogenesis and therapeutic potential of endoplasmic reticulum stress in degenerative musculoskeletal diseases. Military Medical Research, 2023, 10: 54. https://doi.org/10.1186/s40779-023-00485-5

[3]

GBD 2021 Osteoarthritis Collaborators. Global, regional, and national burden of osteoarthritis, 1990-2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021. The Lancet Rheumatology, 2023, 5: e508–522. https://doi.org/10.1016/S2665-9913(23)00163-7

[4]

Ensrud, K. E., Crandall, C. J. Osteoporosis. Annals of Internal Medicine, 2017, 167: ITC17–32. https://doi.org/10.7326/AITC201708010

[5]

Yuan, S., Larsson, S. C. Epidemiology of sarcopenia: prevalence, risk factors, and consequences. Metabolism: Clinical and Experimental, 2023, 144: 155533. https://doi.org/10.1016/j.metabol.2023.155533

[6]
Guo, J., Huang, X., Dou, L., et al. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduction and Targeted Therapy, 2022 , 7: 391. https://doi.org/10.1038/s41392-022-01251-0
[7]

Partridge, L., Deelen, J., Slagboom, P. E. Facing up to the global challenges of ageing. Nature, 2018, 561: 45–56. https://doi.org/10.1038/s41586-018-0457-8

[8]

Taruc-Uy, R. L., Lynch, S. A. Diagnosis and treatment of osteoarthritis. Primary Care, 2013, 40: 821–836. https://doi.org/10.1016/j.pop.2013.08.003

[9]

Skou, S. T., Roos, E. M. Physical therapy for patients with knee and hip osteoarthritis: supervised, active treatment is current best practice. Clinical and Experimental Rheumatology, 2019, 37: 112–117.

[10]
Ali, M., Kim, Y. S. A comprehensive review and advanced biomolecule-based therapies for osteoporosis. Journal of Advanced Research, 2024 . https://doi.org/10.1016/j.jare.2024.05.024
[11]
Najm, A., Niculescu, A. G., Grumezescu, A. M., et al. Emerging therapeutic strategies in Sarcopenia: an updated review on pathogenesis and treatment advances. International Journal of Molecular Sciences, 2024 , 25: 4300. https://doi.org/10.3390/ijms25084300
[12]
Nonomura, S., Kanagawa, H., Makimoto, A. Yakugaku zasshi: Journal of the Pharmaceutical Society of Japan, 1963 , 83: 988-990.
[13]
Zhang, L. X., Li, C. X., Kakar, M. U., et al. Resveratrol (RV): a pharmacological review and call for further research. Biomedicine & Pharmacotherapy, 2021 , 143: 112164. https://doi.org/10.1016/j.biopha.2021.112164
[14]
Huang, X. T., Li, X., Xie, M. L., et al. Resveratrol: review on its discovery, anti-leukemia effects and pharmacokinetics. Chemico-biological Interactions, 2019 , 306: 29–38. https://doi.org/10.1016/j.cbi.2019.04.001
[15]
Nadile, M., Retsidou, M. I., Gioti, K., et al. Resveratrol against cervical cancer: evidence from in vitro and in vivo studies. Nutrients, 2022 , 14: 5273. https://doi.org/10.3390/nu14245273
[16]

Tian, B., Liu, J. Resveratrol: a review of plant sources, synthesis, stability, modification and food application. Journal of the Science of Food and Agriculture, 2020, 100: 1392–1404. https://doi.org/10.1002/jsfa.10152

[17]
Meng, X., Zhou, J., Zhao, C. N., et al. Health benefits and molecular mechanisms of resveratrol: a narrative review. Foods, 2020 , 9: 340. https://doi.org/10.3390/foods9030340
[18]

Breuss, J. M., Atanasov, A. G., Uhrin, P. Resveratrol and its effects on the vascular system. International Journal of Molecular Sciences, 2019, 20: 1523. https://doi.org/10.3390/ijms20071523

[19]
Zhou, D. D., Luo, M., Huang, S. Y., et al. Effects and mechanisms of resveratrol on aging and age-related diseases. Oxidative Medicine and Cellular Longevity, 2021 , 2021: 9932218. https://doi.org/10.1155/2021/9932218
[20]
Hou, C. Y., Tain, Y. L., Yu, H. R., et al. The effects of resveratrol in the treatment of metabolic syndrome. International Journal of Molecular Sciences, 2019 , 20: 535. https://doi.org/10.3390/ijms20030535
[21]
Wu, S. X., Xiong, R. G., Huang, S. Y., et al. Effects and mechanisms of resveratrol for prevention and management of cancers: an updated review. Critical Reviews in Food Science and Nutrition, 2023 , 63: 12422–12440. https://doi.org/10.1080/10408398.2022.2101428
[22]
Islam, F., Nafady, M. H., Islam, M. R., et al. Resveratrol and neuroprotection: an insight into prospective therapeutic approaches against Alzheimer’s disease from bench to bedside. Molecular Neurobiology, 2022 , 59: 4384–4404. https://doi.org/10.1007/s12035-022-02859-7
[23]
Deng, Z., Li, Y., Liu, H., et al. The role of sirtuin 1 and its activator, resveratrol in osteoarthritis. Bioscience Reports, 2019 , 39: BSR20190189. https://doi.org/10.1042/BSR20190189
[24]
Ebrahim, H. A., Alzamil, N. M., Al-Ani, B., et al. Suppression of knee joint osteoarthritis induced secondary to type 2 diabetes mellitus in rats by resveratrol: role of glycated haemoglobin and hyperlipidaemia and biomarkers of inflammation and oxidative stress. Archives of Physiology and Biochemistry, 2022 , 128: 1375–1382. https://doi.org/10.1080/13813455.2020.1771378
[25]

Shakibaei, M., Buhrmann, C., Mobasheri, A. Resveratrol-mediated SIRT-1 interactions with p300 modulate receptor activator of NF-kappaB ligand (RANKL) activation of NF-kappaB signaling and inhibit osteoclastogenesis in bone-derived cells. The Journal of Biological Chemistry, 2011, 286: 11492–11505. https://doi.org/10.1074/jbc.M110.198713

[26]
Huang, Y., Zhu, X., Chen, K., et al. Resveratrol prevents sarcopenic obesity by reversing mitochondrial dysfunction and oxidative stress via the PKA/LKB1/AMPK pathway. Aging (Albany NY ), 2019 , 11: 2217–2240. https://doi.org/10.18632/aging.101910
[27]
Valsamidou, E., Amerikanou, C., Tzavara, C., et al. A standardized nutraceutical supplement contributes to pain relief, improves quality of life and regulates inflammation in knee osteoarthritis patients; a randomized clinical trial. Heliyon, 2023 , 9: e20143. https://doi.org/10.1016/j.heliyon.2023.e20143
[28]

Thaung Zaw, J. J., Howe, P. R. C., Wong, R. H. X. Long-term resveratrol supplementation improves pain perception, menopausal symptoms, and overall well-being in postmenopausal women: findings from a 24-month randomized, controlled, crossover trial. Menopause, 2020, 28: 40–49. https://doi.org/10.1097/GME.0000000000001643

[29]
Nguyen, C., Boutron, I., Baron, G., et al. Evolution of pain at 3 months by oral resveratrol in knee osteoarthritis (ARTHROL): protocol for a multicentre randomised double-blind placebo-controlled trial. BMJ Open, 2017 , 7: e017652. https://doi.org/10.1136/bmjopen-2017-017652
[30]
Wong, R. H., Thaung Zaw, J. J., Xian, C. J., et al. Regular Supplementation with resveratrol improves bone mineral density in postmenopausal women: a randomized, placebo-controlled trial. Journal of Bone and Mineral Research, 2020 , 35: 2121–2131. https://doi.org/10.1002/jbmr.4115
[31]
Alway, S. E., McCrory, J. L., Kearcher, K., et al. Resveratrol enhances exercise-induced cellular and functional adaptations of skeletal muscle in older men and women. The Journals of Gerontology, 2017 , 72: 1595–1606. https://doi.org/10.1093/gerona/glx089
[32]
Petrella, C., Di Certo, M. G., Gabanella, F., et al. Mediterranean diet, brain and muscle: olive polyphenols and resveratrol protection in neurodegenerative and neuromuscular disorders. Current Medicinal Chemistry, 2021 , 28: 7595–7613. https://doi.org/10.2174/0929867328666210504113445
[33]
Sofi, F., Cesari, F., Abbate, R., et al. Adherence to Mediterranean diet and health status: meta-analysis. BMJ, 2008 , 337: a1344. https://doi.org/10.1136/bmj.a1344
[34]
Farinetti, A., Zurlo, V., Manenti, A., et al. Mediterranean diet and colorectal cancer: a systematic review. Nutrition, 2017 , 43–44: 83–88. https://doi.org/10.1016/j.nut.2017.06.008
[35]
Dyer, J., Davison, G., Marcora, S. M., et al. Effect of a Mediterranean type diet on inflammatory and cartilage degradation biomarkers in patients with osteoarthritis. The Journal of Nutrition, Health & Aging, 2017 , 21: 562–566. https://doi.org/10.1007/s12603-016-0806-y
[36]
Mazza, E., Ferro, Y., Pujia, R., et al. Mediterranean diet in healthy aging. The Journal of Nutrition, Health & Aging, 2021 , 25: 1076–1083. https://doi.org/10.1007/s12603-021-1675-6
[37]
Chen, L., Huang, D., Jiang, L., et al. A review of botany, phytochemistry, pharmacology, and applications of the herb with the homology of medicine and food: Ligustrum lucidum W.T. Aiton. Frontiers in Pharmacology, 2024 , 15: 1330732. https://doi.org/10.3389/fphar.2024.1330732
[38]
Gong, X., Ji, M., Xu, J., et al. Hypoglycemic effects of bioactive ingredients from medicine food homology and medicinal health food species used in China. Critical Reviews in Food Science and Nutrition, 2020 , 60: 2303–2326. https://doi.org/10.1080/10408398.2019.1634517
[39]
Martel-Pelletier, J., Barr, A. J., Cicuttini, F. M., et al. Osteoarthritis. Nature Reviews Disease Primers, 2016 , 2: 16072. https://doi.org/10.1038/nrdp.2016.72
[40]
Glyn-Jones, S., Palmer, A. J., Agricola, R., et al. Osteoarthritis. Lancet, 2015 , 386: 376–387. https://doi.org/10.1016/S0140-6736(14)60802-3
[41]
Silverwood, V., Blagojevic-Bucknall, M., Jinks, C., et al. Current evidence on risk factors for knee osteoarthritis in older adults: a systematic review and meta-analysis. Osteoarthritis and Cartilage, 2015 , 23: 507–515. https://doi.org/10.1016/j.joca.2014.11.019
[42]
Van Raemdonck, K., Umar, S., Szekanecz, Z., et al. Impact of obesity on autoimmune arthritis and its cardiovascular complications. Autoimmunity Reviews, 2018 , 17: 821–835. https://doi.org/10.1016/j.autrev.2018.02.007
[43]

Abramoff, B., Caldera, F. E. Osteoarthritis: pathology, diagnosis, and treatment options. The Medical Clinics of North America, 2020, 104: 293–311. https://doi.org/10.1016/j.mcna.2019.10.007

[44]
Xia, B., Chen, D., Zhang, J., et al. Osteoarthritis pathogenesis: a review of molecular mechanisms. Calcified Tissue International, 2014 , 95: 495–505. https://doi.org/10.1007/s00223-014-9917-9
[45]
Prieto-Potin, I., Largo, R., Roman-Blas, J. A., et al. Characterization of multinucleated giant cells in synovium and subchondral bone in knee osteoarthritis and rheumatoid arthritis. BMC Musculoskeletal Disorders, 2015 , 16: 226. https://doi.org/10.1186/s12891-015-0664-5
[46]
Mimpen, J. Y., Hedley, R., Ridley, A., et al. Cellular characterisation of advanced osteoarthritis knee synovium. Arthritis Research & Therapy, 2023 , 25: 154. https://doi.org/10.1186/s13075-023-03110-x
[47]
Xie, C., Chen, Q. Adipokines: new therapeutic target for osteoarthritis? Current Rheumatology Reports, 2019 , 21: 71. https://doi.org/10.1007/s11926-019-0868-z
[48]
Salman, L. A., Ahmed, G., Dakin, S. G., et al. Osteoarthritis: a narrative review of molecular approaches to disease management. Arthritis Research & Therapy, 2023 , 25: 27. https://doi.org/10.1186/s13075-023-03006-w
[49]
Liu, D., Cai, Z. J., Yang, Y. T., et al. Mitochondrial quality control in cartilage damage and osteoarthritis: new insights and potential therapeutic targets. Osteoarthritis and Cartilage, 2022 , 30: 395–405. https://doi.org/10.1016/j.joca.2021.10.009
[50]

Loeser, R. F., Collins, J. A., Diekman, B. O. Ageing and the pathogenesis of osteoarthritis. Nature Reviews Rheumatology, 2016, 12: 412–420. https://doi.org/10.1038/nrrheum.2016.65

[51]
Bannuru, R. R., Osani, M. C., Vaysbrot, E. E., et al. OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthritis and Cartilage, 2019 , 27: 1578–1589. https://doi.org/10.1016/j.joca.2019.06.011
[52]
Monsegue, A. P., Emans, P., van Loon, L. J. C., et al. Resistance exercise training to improve post-operative rehabilitation in knee arthroplasty patients: a narrative review. European Journal of Sport Science, 2024 , 24: 938–949. https://doi.org/10.1002/ejsc.12114
[53]
Cheng, H. Y., Liang, C. W., Lee, Y. H., et al. Effects of the combination of various pharmacological treatments and exercise on knee osteoarthritis: a systematic review and network meta-analysis. EFORT Open Reviews, 2024 , 9: 668–675. https://doi.org/10.1530/EOR-23-0136
[54]
Wang, H., Yuan, T., Wang, Y., et al. Osteoclasts and osteoarthritis: novel intervention targets and therapeutic potentials during aging. Aging Cell, 2024 , 23: e14092. https://doi.org/10.1111/acel.14092
[55]
Kumar, A., Palit, P., Thomas, S., et al. Osteoarthritis: prognosis and emerging therapeutic approach for disease management. Drug Development Research, 2021 , 82: 49–58. https://doi.org/10.1002/ddr.21741
[56]

Madry, H. Surgical therapy in osteoarthritis. Osteoarthritis and Cartilage, 2022, 30: 1019–1034. https://doi.org/10.1016/j.joca.2022.01.012

[57]
Mohamed, K. E., Larsen, A. T., Melander, S., et al. The dual amylin and calcitonin receptor agonist KBP-336 elicits a unique combination of weight loss, antinociception and bone protection-a novel disease-modifying osteoarthritis drug. Arthritis Research & Therapy, 2024 , 26: 129. https://doi.org/10.1186/s13075-024-03361-2
[58]
Sogo, Y., Toyoda, E., Nagai, T., et al. Disease-Modifying effects of lenvatinib, a multiple receptor tyrosine kinase inhibitor, on posttraumatic osteoarthritis of the knee. International Journal of Molecular Sciences, 2024 , 25: 6514. https://doi.org/10.3390/ijms25126514
[59]
Yang, H., Zhou, Y., Ying, B., et al. Effects of human umbilical cord mesenchymal stem cell-derived exosomes in the rat osteoarthritis models. Stem Cells Translational Medicine, 2024 , 13: 803–811. https://doi.org/10.1093/stcltm/szae031
[60]
Tian, X., Qu, Z., Cao, Y., et al. Relative efficacy and safety of mesenchymal stem cells for osteoarthritis: a systematic review and meta-analysis of randomized controlled trials. Frontiers in Endocrinology, 2024 , 15: 1366297. https://doi.org/10.3389/fendo.2024.1366297
[61]
Chen, J., Hao, Z., Li, H., et al. Osteoporotic osseointegration: therapeutic hallmarks and engineering strategies. Theranostics, 2024 , 14: 3859–3899. https://doi.org/10.7150/thno.96516
[62]
LeBoff, M. S., Greenspan, S. L., Insogna, K. L., et al. The clinician’s guide to prevention and treatment of osteoporosis. Osteoporosis International, 2022 , 33: 2049–2102. https://doi.org/10.1007/s00198-021-05900-y
[63]

Poole, K. E., Compston, J. E. Osteoporosis and its management. BMJ, 2006, 333: 1251–1256. https://doi.org/10.1136/bmj.39050.597350.47

[64]

Vilaca, T., Eastell, R., Schini, M. Osteoporosis in men. The Lancet. Diabetes & Endocrinology, 2022, 10: 273–283. https://doi.org/10.1016/S2213-8587(22)00012-2

[65]
Shi, C., Wu, T., He, Y., et al. Recent advances in bone-targeted therapy. Pharmacology & Therapeutics, 2020 , 207: 107473. https://doi.org/10.1016/j.pharmthera.2020.107473
[66]

Buck, D. W., Dumanian, G. A. Bone biology and physiology: part I. the fundamentals. Plastic and Reconstructive Surgery, 2012, 129: 1314–1320. https://doi.org/10.1097/PRS.0b013e31824eca94

[67]
Mellis, D. J., Itzstein, C., Helfrich, M. H., et al. The skeleton: a multi-functional complex organ: the role of key signalling pathways in osteoclast differentiation and in bone resorption. The Journal of Endocrinology, 2011 , 211: 131–143. https://doi.org/10.1530/JOE-11-0212
[68]

Jayakumar, P., Di Silvio, L. Osteoblasts in bone tissue engineering. Proceedings of the Institution of Mechanical Engineers, 2010, 224: 1415–1440. https://doi.org/10.1243/09544119JEIM821

[69]

Ono, T., Nakashima, T. Recent advances in osteoclast biology. Histochemistry and Cell Biology, 2018, 149: 325–341. https://doi.org/10.1007/s00418-018-1636-2

[70]

Adams, J. E. Advances in bone imaging for osteoporosis. Nature Reviews Endocrinology, 2013, 9: 28–42. https://doi.org/10.1038/nrendo.2012.217

[71]
Ikebuchi, Y., Aoki, S., Honma, M., et al. Coupling of bone resorption and formation by RANKL reverse signalling. Nature, 2018 , 561: 195–200. https://doi.org/10.1038/s41586-018-0482-7
[72]

Rachner, T. D., Khosla, S., Hofbauer, L. C. Osteoporosis: now and the future. Lancet, 2011, 377: 1276–1287. https://doi.org/10.1016/S0140-6736(10)62349-5

[73]

Foessl, I., Dimai, H. P., Obermayer-Pietsch, B. Long-term and sequential treatment for osteoporosis. Nature Reviews Endocrinology, 2023, 19: 520–533. https://doi.org/10.1038/s41574-023-00866-9

[74]

Blake, J., Cosman, F. A., Lewiecki, E. M., et al. Management of osteoporosis in postmenopausal women: the 2021 position statement of The North American Menopause Society. Menopause, 2021, 28: 973–997. https://doi.org/10.1097/GME.0000000000001831

[75]

Khosla, S., Hofbauer, L. C. Osteoporosis treatment: recent developments and ongoing challenges. The Lancet. Diabetes & Endocrinology, 2017, 5: 898–907. https://doi.org/10.1016/S2213-8587(17)30188-2

[76]
McClung, M. R., Grauer, A., Boonen, S., et al. Romosozumab in postmenopausal women with low bone mineral density. The New England Journal of Medicine, 2014 , 370: 412–420. https://doi.org/10.1056/NEJMoa1305224
[77]
Hartz, M. C., Johannessen, F. B., Harsløf, T., et al. The Effectiveness and safety of romosozumab and teriparatide in postmenopausal women with osteoporosis. The Journal of Clinical Endocrinology and Metabolism, 2024 : dgae484. https://doi.org/10.1210/clinem/dgae484
[78]
Zheng, J., Li, X., Zhang, F., et al. Targeting osteoblast-osteoclast cross-talk bone homeostasis repair microcarriers promotes intervertebral fusion in osteoporotic rats. Advanced Healthcare Materials, 2024 , 13: e2402117. https://doi.org/10.1002/adhm.202402117
[79]
Rajput, S., Kulkarni, C., Sharma, S., et al. Osteogenic effect of an adiponectin-derived short peptide that rebalances bone remodeling: a potential disease-modifying approach for postmenopausal osteoporosis therapy. Archives of Pharmacal Research, 2024 , 47: 736–755. https://doi.org/10.1007/s12272-024-01509-x
[80]
He, J., Zhao, D., Peng, B., et al. A novel mechanism of Vildagliptin in regulating bone metabolism and mitigating osteoporosis. International Immunopharmacology, 2024 , 130: 111671. https://doi.org/10.1016/j.intimp.2024.111671
[81]

Cruz-Jentoft, A. J., Sayer, A. A. Sarcopenia. Lancet, 2019, 393: 2636–2646. https://doi.org/10.1016/S0140-6736(19)31138-9

[82]
Cruz-Jentoft, A. J., Bahat, G., Bauer, J., et al. Sarcopenia: revised European consensus on definition and diagnosis. Age and Ageing, 2019 , 48: 16–31. https://doi.org/10.1093/ageing/afy169
[83]

Cho, M. R., Lee, S., Song, S. K. A Review of sarcopenia pathophysiology, diagnosis, treatment and future direction. Journal of Korean Medical Science, 2022, 37: e146. https://doi.org/10.3346/jkms.2022.37.e146

[84]

Vitale, G., Cesari, M., Mari, D. Aging of the endocrine system and its potential impact on sarcopenia. European Journal of Internal Medicine, 2016, 35: 10–15. https://doi.org/10.1016/j.ejim.2016.07.017

[85]

Dennison, E. M., Sayer, A. A., Cooper, C. Epidemiology of sarcopenia and insight into possible therapeutic targets. Nature Reviews Rheumatology, 2017, 13: 340–347. https://doi.org/10.1038/nrrheum.2017.60

[86]
Todosenko, N., Yurova, K., Khaziakhmatova, O., et al. (Epi)genetic aspects of metabolic syndrome pathogenesis in relation to brain-derived neurotrophic factor expression: a review. Gene Expression, 2024 , 23: 127–138. https://doi.org/10.14218/GE.2023.00202
[87]

Palmer, A. K., Jensen, M. D. Metabolic changes in aging humans: current evidence and therapeutic strategies. The Journal of Clinical Investigation, 2022, 132: e158451. https://doi.org/10.1172/JCI158451

[88]

Batsis, J. A., Villareal, D. T. Sarcopenic obesity in older adults: aetiology, epidemiology and treatment strategies. Nature Reviews Endocrinology, 2018, 14: 513–537. https://doi.org/10.1038/s41574-018-0062-9

[89]
Lisco, G., Disoteo, O. E., De Tullio, A., et al. Sarcopenia and diabetes: a detrimental liaison of advancing age. Nutrients, 2023 , 16: 63. https://doi.org/10.3390/nu16010063
[90]

Kirk, B., Zanker, J., Duque, G. Osteosarcopenia: epidemiology, diagnosis, and treatment-facts and numbers. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11: 609–618. https://doi.org/10.1002/jcsm.12567

[91]
Bano, G., Trevisan, C., Carraro, S., et al. Inflammation and sarcopenia: a systematic review and meta-analysis. Maturitas, 2017 , 96: 10–15. https://doi.org/10.1016/j.maturitas.2016.11.006
[92]
Jimenez-Gutierrez, G. E., Martínez-Gómez, L. E., Martínez-Armenta, C., et al. Molecular mechanisms of inflammation in sarcopenia: diagnosis and therapeutic update. Cells, 2022 , 11: 2359. https://doi.org/10.3390/cells11152359
[93]

Coletta, G., Phillips, S. M. An elusive consensus definition of sarcopenia impedes research and clinical treatment: a narrative review. Ageing Research Reviews, 2023, 86: 101883. https://doi.org/10.1016/j.arr.2023.101883

[94]
Dent, E., Morley, J. E., Cruz-Jentoft, A. J., et al. International Clinical Practice Guidelines for Sarcopenia (ICFSR): screening, diagnosis and management. The Journal of Nutrition, Health & Aging, 2018 , 22: 1148–1161. https://doi.org/10.1007/s12603-018-1139-9
[95]

Sayer, A. A., Cruz-Jentoft, A. Sarcopenia definition, diagnosis and treatment: consensus is growing. Age and Ageing, 2022, 51: afac220. https://doi.org/10.1093/ageing/afac220

[96]
Liu, C., Cheung, W. H., Li, J., et al. Understanding the gut microbiota and sarcopenia: a systematic review. Journal of Cachexia, Sarcopenia and Muscle, 2021 , 12: 1393–1407. https://doi.org/10.1002/jcsm.12784
[97]
Kim, D. H., Kim, J., Park, J., et al. Blockade of forkhead box protein O1 signaling alleviates primary sclerosing cholangitis-induced sarcopenia in mice model. Life Sciences, 2024 , 356: 123042. https://doi.org/10.1016/j.lfs.2024.123042
[98]
Huang, L., Jiao, Y., Xia, H., et al. Strontium zinc silicate simultaneously alleviates osteoporosis and sarcopenia in tail-suspended rats via Piezo1-mediated Ca2+ signaling. Journal of Orthopaedic Translation, 2024 , 48: 146–155. https://doi.org/10.1016/j.jot.2024.07.014
[99]
Kim, H., Ranjit, R., Claflin, D. R., et al. Unacylated ghrelin protects against age-related loss of muscle mass and contractile dysfunction in skeletal muscle. Aging Cell, 2024 , 23: e14323. https://doi.org/10.1111/acel.14323
[100]
Wu, Q., Xu, Z., Huang, W., et al. Effect of high plant protein/peptide nutrition supplementation on knee osteoarthritis in older adults with sarcopenia: a randomized, double-blind, placebo-controlled trial. Clinical Nutrition, 2024 , 43: 2177–2185. https://doi.org/10.1016/j.clnu.2024.07.037
[101]
Meng, T., Xiao, D., Muhammed, A., et al. Anti-Inflammatory action and mechanisms of resveratrol. Molecules, 2021 , 26: 229. https://doi.org/10.3390/molecules26010229
[102]
Shahcheraghi, S. H., Salemi, F., Small, S., et al. Resveratrol regulates inflammation and improves oxidative stress via Nrf2 signaling pathway: therapeutic and biotechnological prospects. Phytotherapy Research, 2023 , 37: 1590–1605. https://doi.org/10.1002/ptr.7754
[103]
Yu, H., Lin, L., Zhang, Z., et al. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduction and Targeted Therapy, 2020 , 5: 209. https://doi.org/10.1038/s41392-020-00312-6
[104]
Sarubbo, F., Esteban, S., Miralles, A., et al. Effects of resveratrol and other polyphenols on Sirt1: relevance to brain function during aging. Current Neuropharmacology, 2018 , 16: 126–136. https://doi.org/10.2174/1570159X15666170703113212
[105]

Chang, H. C., Guarente, L. SIRT1 and other sirtuins in metabolism. Trends in Endocrinology & Metabolism, 2014, 25: 138–145. https://doi.org/10.1016/j.tem.2013.12.001

[106]
Yang, Y., Liu, Y., Wang, Y., et al. Regulation of SIRT1 and its roles in inflammation. Frontiers in Immunology, 2022 , 13: 831168. https://doi.org/10.3389/fimmu.2022.831168
[107]

Kim, H. J., Braun, H. J., Dragoo, J. L. The effect of resveratrol on normal and osteoarthritic chondrocyte metabolism. Bone & Joint Research, 2014, 3: 51–59. https://doi.org/10.1302/2046-3758.33.2000226

[108]

Singh, V., Ubaid, S. Role of silent information regulator 1 (SIRT1) in regulating oxidative stress and inflammation. Inflammation, 2020, 43: 1589–1598. https://doi.org/10.1007/s10753-020-01242-9

[109]
Diaz-Gerevini, G. T., Repossi, G., Dain, A., et al. Beneficial action of resveratrol: How and why? Nutrition, 2016 , 32: 174–178. https://doi.org/10.1016/j.nut.2015.08.017
[110]
Hori, Y. S., Kuno, A., Hosoda, R., et al. Regulation of FOXOs and p53 by SIRT1 modulators under oxidative stress. PLoS One, 2013 , 8: e73875. https://doi.org/10.1371/journal.pone.0073875
[111]
Wang, B., Wu, L., Chen, J., et al. Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets. Signal Transduction and Targeted Therapy, 2021 , 6: 94. https://doi.org/10.1038/s41392-020-00443-w
[112]

Yarla, N. S., Bishayee, A., Sethi, G., et al. Targeting arachidonic acid pathway by natural products for cancer prevention and therapy. Seminars in Cancer Biology, 2016, 40/41: 48–81. https://doi.org/10.1016/j.semcancer.2016.02.001

[113]
Cianciulli, A., Calvello, R., Cavallo, P., et al. Modulation of NF-κB activation by resveratrol in LPS treated human intestinal cells results in downregulation of PGE2 production and COX-2 expression. Toxicology in Vitro, 2012 , 26: 1122–1128. https://doi.org/10.1016/j.tiv.2012.06.015
[114]
Xin, M., Wu, H., Du, Y., et al. Synthesis and biological evaluation of resveratrol amide derivatives as selective COX-2 inhibitors. Chemico-biological Interactions, 2023 , 380: 110522. https://doi.org/10.1016/j.cbi.2023.110522
[115]
Guo, Y. J., Pan, W. W., Liu, S. B., et al. ERK/MAPK signalling pathway and tumorigenesis. Experimental and Therapeutic Medicine, 2020 , 19: 1997–2007. https://doi.org/10.3892/etm.2020.8454
[116]

Fang, J. Y., Richardson, B. C. The MAPK signalling pathways and colorectal cancer. The Lancet. Oncology, 2005, 6: 322–327. https://doi.org/10.1016/S1470-2045(05)70168-6

[117]
Behl, T., Rana, T., Alotaibi, G. H., et al. Polyphenols inhibiting MAPK signalling pathway mediated oxidative stress and inflammation in depression. Biomedicine & pharmacotherapy, 2022 , 146: 112545. https://doi.org/10.1016/j.biopha.2021.112545
[118]

He, F., Antonucci, L., Karin, M. NRF2 as a regulator of cell metabolism and inflammation in cancer. Carcinogenesis, 2020, 41: 405–416. https://doi.org/10.1093/carcin/bgaa039

[119]
Ahmed, S. M., Luo, L., Namani, A., et al. Nrf2 signaling pathway: pivotal roles in inflammation. Biochimica et Biophysica Acta, 2017 , 1863: 585–597. https://doi.org/10.1016/j.bbadis.2016.11.005
[120]
Saha, S., Buttari, B., Panieri, E., et al. An overview of Nrf2 signaling pathway and its role in inflammation. Molecules, 2020 , 25: 5474. https://doi.org/10.3390/molecules25225474
[121]

Harris, I. S., DeNicola, G. M. The complex interplay between antioxidants and ROS in cancer. Trends in Cell Biology, 2020, 30: 440–451. https://doi.org/10.1016/j.tcb.2020.03.002

[122]

Medzhitov, R. Origin and physiological roles of inflammation. Nature, 2008, 454: 428–435. https://doi.org/10.1038/nature07201

[123]

Medzhitov, R. The spectrum of inflammatory responses. Science, 2021, 374: 1070–1075. https://doi.org/10.1126/science.abi5200

[124]

Toniolo, L., Concato, M., Giacomello, E. Resveratrol, a multitasking molecule that improves skeletal muscle health. Nutrients, 2023, 15: 3413. https://doi.org/10.3390/nu15153413

[125]
Liang, C., Xing, H., Wang, C., et al. Resveratrol protection against IL-1β-induced chondrocyte damage via the SIRT1/FOXO1 signaling pathway. Journal of Orthopaedic Surgery and Research, 2022 , 17: 406. https://doi.org/10.1186/s13018-022-03306-y
[126]
Yi, H., Zhang, W., Cui, Z. M., et al. Resveratrol alleviates the interleukin-1β-induced chondrocytes injury through the NF-κB signaling pathway. Journal of Orthopaedic Surgery and Research, 2020 , 15: 424. https://doi.org/10.1186/s13018-020-01944-8
[127]

Wang, X., Chen, L., Peng, W. Protective effects of resveratrol on osteoporosis via activation of the SIRT1-NF-κB signaling pathway in rats. Experimental and Therapeutic Medicine, 2017, 14: 5032–5038. https://doi.org/10.3892/etm.2017.5147

[128]
Zhang, Y., Liu, M. W., He, Y., et al. Protective effect of resveratrol on estrogen deficiency-induced osteoporosis though attenuating NADPH oxidase 4/nuclear factor kappa B pathway by increasing miR-92b-3p expression. International Journal of Immunopathology and Pharmacology, 2020 , 34: 2058738420941762. https://doi.org/10.1177/2058738420941762
[129]
Lin, T. C., Lin, J. N., Yang, I. H., et al. The combination of resveratrol and Bletilla striata polysaccharide decreases inflammatory markers of early osteoarthritis knee and the preliminary results on LPS-induced OA rats. Bioengineering & Translational Medicine, 2023 , 8: e10431. https://doi.org/10.1002/btm2.10431
[130]
Liu, F. C., Hung, L. F., Wu, W. L., et al. Chondroprotective effects and mechanisms of resveratrol in advanced glycation end products-stimulated chondrocytes. Arthritis research & Therapy, 2010 , 12: R167. https://doi.org/10.1186/ar3127
[131]
Mehta, S., Young, C. C., Warren, M. R., et al. Resveratrol and curcumin attenuate ex vivo sugar-induced cartilage glycation, stiffening, senescence, and degeneration. Cartilage, 2021 , 13: 1214S-1228S. https://doi.org/10.1177/1947603520988768
[132]
Shu, M., Cheng, W., Jia, X., et al. AGEs promote atherosclerosis by increasing LDL transcytosis across endothelial cells via RAGE/NF-κB/Caveolin-1 pathway. Molecular Medicine, 2023 , 29: 113. https://doi.org/10.1186/s10020-023-00715-5
[133]
Mohammad, R. M., Muqbil, I., Lowe, L., et al. Broad targeting of resistance to apoptosis in cancer. Seminars in Cancer Biology, 2015 , 35: S78–103. https://doi.org/10.1016/j.semcancer.2015.03.001
[134]

Tower, J. Programmed cell death in aging. Ageing Research Reviews, 2015, 23: 90–100. https://doi.org/10.1016/j.arr.2015.04.002

[135]
Nguyen, T. T., Wei, S., Nguyen, T. H., et al. Mitochondria-associated programmed cell death as a therapeutic target for age-related disease. Experimental & Molecular Medicine, 2023 , 55: 1595–1619. https://doi.org/10.1038/s12276-023-01046-5
[136]

Zorov, D. B., Juhaszova, M., Sollott, S. J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiological Reviews, 2014, 94: 909–950. https://doi.org/10.1152/physrev.00026.2013

[137]
Riegger, J., Schoppa, A., Ruths, L., et al. Oxidative stress as a key modulator of cell fate decision in osteoarthritis and osteoporosis: a narrative review. Cellular & Molecular Biology Letters, 2023 , 28: 76. https://doi.org/10.1186/s11658-023-00489-y
[138]
Li, C. W., Yu, K., Shyh-Chang, N., et al. Pathogenesis of sarcopenia and the relationship with fat mass: descriptive review. Journal of Cachexia, Sarcopenia and Muscle, 2022 , 13: 781–794. https://doi.org/10.1002/jcsm.12901
[139]
Xiang, Q., Zhao, Y., Lin, J., et al. The Nrf2 antioxidant defense system in intervertebral disc degeneration: molecular insights. Experimental & Molecular Medicine, 2022 , 54: 1067–1075. https://doi.org/10.1038/s12276-022-00829-6
[140]
Barber, T. M., Kabisch, S., Randeva, H. S., et al. Implications of resveratrol in obesity and insulin resistance: a state-of-the-art review. Nutrients, 2022 , 14: 2870. https://doi.org/10.3390/nu14142870
[141]

Bortoluzzi, A., Furini, F., Scirè, C. A. Osteoarthritis and its management-epidemiology, nutritional aspects and environmental factors. Autoimmunity Reviews, 2018, 17: 1097–1104. https://doi.org/10.1016/j.autrev.2018.06.002

[142]

Lee, K. Association of osteosarcopenic obesity and its components: osteoporosis, sarcopenia and obesity with insulin resistance. Journal of Bone and Mineral Metabolism, 2020, 38: 695–701. https://doi.org/10.1007/s00774-020-01104-2

[143]

Herzig, S., Shaw, R. J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nature Reviews. Molecular Cell Biology, 2018, 19: 121–135. https://doi.org/10.1038/nrm.2017.95

[144]
Wang, J., Gao, J. S., Chen, J. W., et al. Effect of resveratrol on cartilage protection and apoptosis inhibition in experimental osteoarthritis of rabbit. Rheumatology International, 2012 , 32: 1541–1548. https://doi.org/10.1007/s00296-010-1720-y
[145]
Jin, H., Liang, Q., Chen, T., et al. Resveratrol protects chondrocytes from apoptosis via altering the ultrastructural and biomechanical properties: an AFM study. PLoS One, 2014 , 9: e91611. https://doi.org/10.1371/journal.pone.0091611
[146]
Yuce, P., Hosgor, H., Rencber, S. F., et al. Effects of intra-articular resveratrol injections on cartilage destruction and synovial inflammation in experimental temporomandibular joint osteoarthritis. Journal of Oral and Maxillofacial Surgery, 2021 , 79: 344. https://doi.org/10.1016/j.joms.2020.09.015
[147]
Zhao, J., Zhou, G., Yang, J., et al. Effects of resveratrol in an animal model of osteoporosis: a meta-analysis of preclinical evidence. Frontiers in Nutrition, 2023 , 10: 1234756. https://doi.org/10.3389/fnut.2023.1234756
[148]
Lin, F., Chen, J., Chen, M., et al. Protective effect and possible mechanisms of resveratrol in animal models of osteoporosis: a preclinical systematic review and meta-analysis. Phytotherapy Research, 2023 , 37: 5223–5242. https://doi.org/10.1002/ptr.7954
[149]
Jiang, Y., Luo, W., Wang, B., et al. Resveratrol promotes osteogenesis via activating SIRT1/FoxO1 pathway in osteoporosis mice. Life Sciences, 2020 , 246: 117422. https://doi.org/10.1016/j.lfs.2020.117422
[150]
Zhang, J., Li, R., Man, K., et al. Enhancing osteogenic potential of hDPSCs by resveratrol through reducing oxidative stress via the Sirt1/Nrf2 pathway. Pharmaceutical Biology, 2022 , 60: 501–508. https://doi.org/10.1080/13880209.2022.2037664
[151]
Yang, X., Jiang, T., Wang, Y., et al. The role and mechanism of SIRT1 in resveratrol-regulated osteoblast autophagy in osteoporosis rats. Scientific Reports, 2019 , 9: 18424. https://doi.org/10.1038/s41598-019-44766-3
[152]

Malaguarnera, L. Influence of resveratrol on the immune response. Nutrients, 2019, 11: 946. https://doi.org/10.3390/nu11050946

[153]
Thapa, R., Moglad, E., Afzal, M., et al. The role of sirtuin 1 in ageing and neurodegenerative disease: a molecular perspective. Ageing Research Reviews, 2024 , 102: 102545. https://doi.org/10.1016/j.arr.2024.102545
[154]
Huang, C. C., Lee, M. C., Ho, C. S., et al. Protective and recovery effects of resveratrol supplementation on exercise performance and muscle damage following acute plyometric exercise. Nutrients, 2021 , 13: 3217. https://doi.org/10.3390/nu13093217
[155]

Wan, M. L. Y., Co, V. A., El-Nezami, H. Dietary polyphenol impact on gut health and microbiota. Critical Reviews in Food Science and Nutrition, 2021, 61: 690–711. https://doi.org/10.1080/10408398.2020.1744512

[156]

Schwingshackl, L., Morze, J., Hoffmann, G. Mediterranean diet and health status: active ingredients and pharmacological mechanisms. British Journal of Pharmacology, 2020, 177: 1241–1257. https://doi.org/10.1111/bph.14778

[157]
Lin, X., Zhao, J., Ge, S., et al. Dietary polyphenol intake and risk of hypertension: an 18-y nationwide cohort study in China. The American Journal of Clinical Nutrition, 2023 , 118: 264–272. https://doi.org/10.1016/j.ajcnut.2023.05.001
[158]
Rosato, V., Temple, N. J., La Vecchia, C., et al. Mediterranean diet and cardiovascular disease: a systematic review and meta-analysis of observational studies. European Journal of Nutrition, 2019 , 58: 173–191. https://doi.org/10.1007/s00394-017-1582-0
[159]
Becerra-Tomás, N., Blanco Mejía, S., Viguiliouk, E., et al. Mediterranean diet, cardiovascular disease and mortality in diabetes: a systematic review and meta-analysis of prospective cohort studies and randomized clinical trials. Critical Reviews in Food Science and Nutrition, 2020 , 60: 1207–1227. https://doi.org/10.1080/10408398.2019.1565281
[160]
Huang, L., Tao, Y., Chen, H., et al. Mediterranean-Dietary approaches to stop hypertension intervention for neurodegenerative delay (MIND) diet and cognitive function and its decline: a prospective study and meta-analysis of cohort studies. The American Journal of Clinical Nutrition, 2023 , 118: 174–182. https://doi.org/10.1016/j.ajcnut.2023.04.025
[161]
Harper, S. A., Bassler, J. R., Peramsetty, S., et al. Resveratrol and exercise combined to treat functional limitations in late life: a pilot randomized controlled trial. Experimental Gerontology, 2021 , 143: 111111. https://doi.org/10.1016/j.exger.2020.111111
[162]
Ornstrup, M. J., Harsløf, T., Kjær, T. N., et al. Resveratrol increases bone mineral density and bone alkaline phosphatase in obese men: a randomized placebo-controlled trial. The Journal of Clinical Endocrinology and Metabolism, 2014 , 99: 4720–4729. https://doi.org/10.1210/jc.2014-2799
[163]

Marouf, B. H. Effect of resveratrol on serum levels of type II collagen and aggrecan in patients with knee osteoarthritis: a pilot clinical study. BioMed Research International, 2021, 2021: 3668568. https://doi.org/10.1155/2021/3668568

[164]
Hussain, S. A., Marouf, B. H., Ali, Z. S., et al. Efficacy and safety of co-administration of resveratrol with meloxicam in patients with knee osteoarthritis: a pilot interventional study. Clinical Interventions in Aging, 2018 , 13: 1621–1630. https://doi.org/10.2147/CIA.S172758
[165]
Corbi, G., Nobile, V., Conti, V., et al. Equol and resveratrol improve bone turnover biomarkers in postmenopausal women: a clinical trial. International Journal of Molecular Sciences, 2023 , 24: 12063. https://doi.org/10.3390/ijms241512063
[166]
Nguyen, C., Coudeyre, E., Boutron, I., et al. Oral resveratrol in adults with knee osteoarthritis: a randomized placebo-controlled trial (ARTHROL). PLoS Medicine, 2024 , 21: e1004440. https://doi.org/10.1371/journal.pmed.1004440
[167]

Vesely, O., Baldovska, S., Kolesarova, A. Enhancing bioavailability of nutraceutically used resveratrol and other stilbenoids. Nutrients, 2021, 13: 3095. https://doi.org/10.3390/nu13093095

[168]
Cheng, C. K., Luo, J. Y., Lau, C. W., et al. Pharmacological basis and new insights of resveratrol action in the cardiovascular system. British Journal of Pharmacology, 2020 , 177: 1258–1277. https://doi.org/10.1111/bph.14801
[169]
Rubinstein, A. J., Garcia Liñares, G., Boeris, V., et al. An innovative bio-vehicle for resveratrol and tocopherol based on quinoa 11S globulin-nanocomplex design and characterization. Pharmaceutics, 2024 , 16: 1118. https://doi.org/10.3390/pharmaceutics16091118
[170]
Zhu, H., Fan, J., Yang, C., et al. DNA nanocarriers for delivery of sgRNA/Cas9 ribonucleoprotein. Nano Biomedicine and Engineering, 2024 , 16: 331–344. https://doi.org/10.26599/NBE.2024.9290096
[171]

Du Preez, H. N., Halma, M. Graphene-based nanomaterials: uses, environmental fate, and human health hazards. Nano Biomedicine and Engineering, 2024, 16: 219–231. https://doi.org/10.26599/NBE.2024.9290059

[172]
Borsani, E., Bonazza, V., Buffoli, B., et al. Beneficial effects of concentrated growth factors and resveratrol on human osteoblasts in vitro treated with bisphosphonates. BioMed Research International, 2018 , 2018: 4597321. https://doi.org/10.1155/2018/4597321
[173]

Wei, Y., Jia, J., Jin, X., et al. Resveratrol ameliorates inflammatory damage and protects against osteoarthritis in a rat model of osteoarthritis. Molecular medicine reports, 2018, 17: 1493–1498. https://doi.org/10.3892/mmr.2017.8036

[174]

Feng, Y. L., Jiang, X. T., Ma, F. F., et al. Resveratrol prevents osteoporosis by upregulating FoxO1 transcriptional activity. International journal of molecular medicine, 2018, 41: 202–212. https://doi.org/10.3892/ijmm.2017.3208

[175]

Lee, Y. J., Ahn, J. C., & Oh, C. H. Oxyresveratrol attenuates bone resorption by inhibiting the mitogen-activated protein kinase pathway in ovariectomized rats. Nutrition & metabolism, 2024, 21: 7. https://doi.org/10.1186/s12986-024-00781-4

[176]

Xuan, Y., Wang, J., Zhang, X., et al. Resveratrol Attenuates High Glucose-Induced Osteoblast Dysfunction via AKT/GSK3β/FYN-Mediated NRF2 Activation. Frontiers in pharmacology, 2022, 13: 862618. https://doi.org/10.3389/fphar.2022.862618

[177]

Shabani, M., Sadeghi, A., Hosseini, H., et al. Resveratrol alleviates obesity-induced skeletal muscle inflammation via decreasing M1 macrophage polarization and increasing the regulatory T cell population. Scientific reports, 2020, 10: 3791. https://doi.org/10.1038/s41598-020-60185-1

[178]

Shabani, M., Hosseini, H., Tajik, M. H., et al. Resveratrol relieves HFD-induced insulin resistance in skeletal muscle tissue through antioxidant capacity enhancement and the Nrf2-Keap1 signaling pathway. Molecular biology reports, 2024, 51: 516. https://doi.org/10.1007/s11033-024-09434-4

[179]

Hosoda, R., Nakashima, R., Yano, M., et al. Resveratrol, a SIRT1 activator, attenuates aging-associated alterations in skeletal muscle and heart in mice. Journal of pharmacological sciences, 2023, 152: 112–122. https://doi.org/10.1016/j.jphs.2023.04.001

[180]

Negro, M., Perna, S., Spadaccini, D., et al. Effects of 12 Weeks of Essential Amino Acids (EAA)-Based Multi-Ingredient Nutritional Supplementation on Muscle Mass, Muscle Strength, Muscle Power and Fatigue in Healthy Elderly Subjects: A Randomized Controlled Double-Blind Study. The journal of nutrition, health & aging, 2019, 23: 414–424. https://doi.org/10.1007/s12603-019-1163-4

Food & Medicine Homology
Cite this article:
Zhang X, Zhou H-F, Chen J-Y, et al. Resveratrol in degenerative musculoskeletal diseases: a homology of medicine and food perspective. Food & Medicine Homology, 2025, https://doi.org/10.26599/FMH.2026.9420093
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return