AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Friction Article
PDF (7.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access | Online First

A novel hydroxyapatite modified MXene-based hydrogel coating on Ti6Al4V alloy with improved biotribological properties and corrosion resistance

Hao Cao1Chenchen Wang1( )Yanan Li1Yuan Wang1Chenxia Wang1Sheng Han1( )Xin Zhao2( )
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200041, China
Show Author Information

Graphical Abstract

Abstract

As a commonly used bone implant, the Ti6Al4V alloy is prone to wear in the human environment because of its corrosion resistance and poor wear resistance, resulting in aseptic loosening and even implantation failure. Here, inspired by mussel adhesion chemistry, a novel hydrogel coating based on hydroxyapatite-modified MXene (polyvinyl alcohol (PVA)/polyacrylic acid (PAA)/polydopamine (PDA)/hydroxyapatite (HA)-MXene) was created via a sol‒gel method involving cyclic freezing and thawing, as well as chemical self-assembly techniques, on the surface of a titanium alloy. The corrosion resistance and biotribological behaviors of the hydrogel coating on cortical bone were studied in simulated body fluid (SBF). The results demonstrated that the HA-MXene-based hydrogel coating exhibited outstanding biotribological and anti-corrosion properties. The novel HA-MXene-based hydrogel coatings can validly reduce the wear rate of cortical bone by 88.0% because of the lubrication film formed on the surface of hydrogel and the sliding and rolling friction mechanisms. Moreover, the enhanced anticorrosion properties of hydrogel coatings, which were optimal when the quantity of MXene reached 0.05 wt%, were attributed to the blocking effect of MXene-based hydrogel. This study provides an innovative idea of surface modification design for the application of titanium alloy implants in the field of orthopedics.

Electronic Supplementary Material

Download File(s)
F0956-ESM.pdf (336.7 KB)

References

[1]

Grigoriev S, Sotova C, Vereschaka A, Uglov V, Cherenda N. Modifying coatings for medical implants made of titanium alloys. Metals 13(4): 718 (2023)

[2]

Deng J, Pang S H, Wang C C, Ren T H. Biotribological properties of Ti–6Al–4V alloy treated with self-assembly multi-walled carbon nanotube coating. Surf Coat Tech 382: 125169 (2020)

[3]

Zhang T, Qin X Y, Gao Y, Kong D, Jiang Y H, Cui X, Guo M T, Chen J Y, Chang F F, Zhang M, et al. Functional chitosan gel coating enhances antimicrobial properties and osteogenesis of titanium alloy under persistent chronic inflammation. Front Bioeng Biotechnol 11: 1118487 (2023)

[4]

Wang C C, Tian P P, Cao H, Sun B, Yan J C, Xue Y, Lin H L, Ren T H, Han S, Zhao X. Enhanced biotribological and anticorrosion properties and bioactivity of Ti6Al4V alloys with laser texturing. ACS Omega 7(35): 31081–31097 (2022)

[5]

Celesti C, Gervasi T, Cicero N, Giofrè S V, Espro C, Piperopoulos E, Gabriele B, Mancuso R, Lo Vecchio G, Iannazzo D. Titanium surface modification for implantable medical devices with anti-bacterial adhesion properties. Materials 15(9): 3283 (2022)

[6]

Haase F, Siemers C, Rösler J. Two novel titanium alloys for medical applications: Thermo-mechanical treatment, mechanical properties, and fracture analysis. J Mater Res 37(16): 2589–2603 (2022)

[7]

Hulka I, Florido-Suarez N R, Mirza-Rosca J C, Saceleanu A. Ti–Ta dental alloys and a way to improve gingival aesthethic in contact with the implant. Mater Chem Phys 287: 126343 (2022)

[8]

Sun J, Huang Y K, Zhao H, Niu J J, Ling X W, Zhu C, Wang L, Yang H L, Yang Z L, Pan G Q, et al. Bio-clickable mussel-inspired peptides improve titanium-based material osseointegration synergistically with immunopolarization-regulation. Bioact Mater 9: 1–14 (2022)

[9]

Alberta L A, Vishnu J, Douest Y, Perrin K, Trunfio-Sfarghiu A M, Courtois N, Gebert A, Ter-Ovanessian B, Calin M. Tribocorrosion behavior of β-type Ti–Nb–Ga alloys in a physiological solution. Tribol Int 181: 108325 (2023)

[10]

Sharma A, Oh M C, Kim J T, Srivastava A K, Ahn B. Investigation of electrochemical corrosion behavior of additive manufactured Ti–6Al–4V alloy for medical implants in different electrolytes. J Alloys Compd 830: 154620 (2020)

[11]

Shi R, Hayashi K, Bang L T, Ishikawa K. Effects of surface roughening and calcite coating of titanium on cell growth and differentiation. J Biomater Appl 34(7): 917–927 (2020)

[12]

Asad M, Sana M. Potential of titanium based alloys in the biomedical sector and their surface modification techniques: A review. P I Mech Eng C—J Mec 237(23): 5503–5532 (2023)

[13]

Ahmadiyan S, Khalil-Allafi J, Etminanfar M R, Safavi M S, Hosseini M. Antibacterial activity and biocompatibility of Ag-coated Ti implants: Importance of surface modification parameters. T I Met Finish 100(2): 93–102 (2022)

[14]

Han X, Ma J X, Tian A X, Wang Y, Li Y, Dong B C, Tong X, Ma X L. Surface modification techniques of titanium and titanium alloys for biomedical orthopaedics applications: A review. Colloids Surf B: Biointerfaces 227: 113339 (2023)

[15]

Bai H Q, Zhong L S, Kang L, Liu J B, Zhuang W J, Lv Z L, Xu Y H. A review on wear-resistant coating with high hardness and high toughness on the surface of titanium alloy. J Alloys Compd 882: 160645 (2021).

[16]

Cao H, Tian P P, Deng J, Li Y N, Wang C C, Han S, Zhao X. Electrochemical deposition multi-walled carbon nanotube coatings on the surface of Ti6Al4V alloy for enhancing its biotribological properties. J Mech Behav Biomed Mater 142: 105825 (2023)

[17]

Grabarczyk J, Gaj J, Pazik B, Kaczorowski W, Januszewicz B. Tribocorrosion behavior of Ti6Al4V alloy after thermo-chemical treatment and DLC deposition for biomedical applications. Tribol Int 153(4): 106560 (2020)

[18]

Taheridoustabad I, Khosravi M, Yaghoubinezhad Y. Fabrication of GO/RGO/TiC/TiB2 nanocomposite coating on Ti–6Al–4V alloy using electrical discharge coating and exploring its tribological properties. Tribol Int 156: 106860 (2021)

[19]

Ouldyerou A, Merdji A, Aminallah L, Roy S, Mehboob H, Özcan M. Biomechanical performance of Ti–PEEK dental implants in bone: An in-silico analysis. J Mech Behav Biomed 134: 105422 (2022)

[20]

Wang C C, Zhang G Q, Li Z P, Zeng X Q, Xu Y, Zhao S C, Hu H X, Zhang Y D, Ren T H. Tribological behavior of Ti–6Al–4V against cortical bone in different biolubricants. J Mech Behav Biomed 90: 460–471 (2019)

[21]

Wang C C, Zhu K C, Gao Y C, Han S, Ju J, Ren T H, Zhao X. Multifunctional GO-based hydrogel coating on Ti–6Al–4V Alloy with enhanced bioactivity, anticorrosion and tribological properties against cortical bone. Tribol Int 184: 108423 (2023)

[22]

Sun X, Yang S D, Tong S, Guo S. Study on exosomes promoting the osteogenic differentiation of ADSCs in graphene porous titanium alloy scaffolds. Front Bioeng Biotechnol 10: 905511 (2022)

[23]

Xu D C, Harvey T, Martínez J, Begiristain E, Domínguez-Trujillo C, Sánchez-Abella L, Browne M, Cook R B. Mechanical and tribological characterisations of PEG-based hydrogel coatings on XLPE surfaces. Wear 522: 204699 (2023)

[24]

Wang W B, Dai J J, Huang Y F, Li X M, Yang J M, Zheng Y Q, Shi X N. Extracellular matrix mimicking dynamic interpenetrating network hydrogel for skin tissue engineering. Chem Eng J 457: 141362 (2023)

[25]

Zhu T X, Cheng Y, Cao C Y, Mao J J, Li L Q, Huang J Y, Gao S W, Dong X L, Chen Z, Lai Y K. A semi-interpenetrating network ionic hydrogel for strain sensing with high sensitivity, large strain range, and stable cycle performance. Chem Eng J 385: 123912 (2020)

[26]

Wang H Q, Li J C, Ding N, Zeng X H, Tang X, Sun Y, Lei T Z, Lin L. Eco-friendly polymer nanocomposite hydrogel enhanced by cellulose nanocrystal and graphitic-like carbon nitride nanosheet. Chem Eng J 386: 124021 (2020)

[27]

Wancura M, Nkansah A, Chwatko M, Robinson A, Fairley A, Cosgriff-Hernandez E. Interpenetrating network design of bioactive hydrogel coatings with enhanced damage resistance. J Mater Chem B 11(24): 5416–5428 (2023)

[28]

Chen K, Chen Q, Zong T, Liu S Y, Yang X H, Luo Y, Zhang D K. Effect of directional stretching on properties of PVA–HA–PAA composite hydrogel. J Bionic Eng 18(5): 1202–1214 (2021)

[29]

Horkay F, Basser P J. Hydrogel composite mimics biological tissues. Soft Matter 18(23): 4414–4426 (2022)

[30]

Liu T Q, Jiao C, Peng X, Chen Y N, Chen Y Y, He C C, Liu R G, Wang H L. Super-strong and tough poly(vinyl alcohol)/poly(acrylic acid) hydrogels reinforced by hydrogen bonding. J Mater Chem B 6(48): 8105–8114 (2018)

[31]

Branco A C, Oliveira A S, Monteiro I, Nolasco P, Silva D C, Figueiredo-Pina C G, Colaço R, Serro A P. PVA-based hydrogels loaded with diclofenac for cartilage replacement. Gels 8(3): 143 (2022)

[32]

Chen Q, Zhang X Y, Chen K, Wu X F, Zong T, Feng C N, Zhang D K. Anisotropic hydrogels with enhanced mechanical and tribological performance by magnetically oriented nanohybrids. Chem Eng J 430: 133036 (2022)

[33]

Zhu Q, Cui Y L S, Zhang Y Z, Cao Z J, Shi Y Z, Gu J A, Du Z G, Li B, Yang S B. Strategies for engineering the MXenes toward highly active catalysts. Mater Today Nano 13: 100104 (2021)

[34]

Miao X N, Li Z P, Liu S W, Wang J Q, Yang S R. MXenes in tribology: Current status and perspectives. Adv Powder Mater 2(2): 100092 (2023)

[35]

Li Y X, Huang S H, Wei C J, Zhou D, Li B, Mochalin V N, Wu C L. Friction between MXenes and other two-dimensional materials at the nanoscale. Carbon 196: 774–782 (2022)

[36]

Amin I, van der Brekel H, Nemani K, Batyrev E, de Vooys A, van der Weijde H, Anasori B, Shiju N R. Ti3C2T x MXene polymer composites for anticorrosion: An overview and perspective. ACS Appl Mater Inter 14: 43749–43758 (2022)

[37]

Grützmacher P G, Suarez S, Tolosa A, Gachot C, Song G C, Wang B, Presser V, Mücklich F, Anasori B, Rosenkranz A. Superior wear-resistance of Ti3C2T x multilayer coatings. ACS Nano 15(5): 8216–8224 (2021)

[38]

Li C C, Xu J, Xu Q J, Xue G M, Yu H K, Wang X T, Lu J Y, Cui G Z, Gu G X. Synthesis of Ti3C2 MXene@PANI composites for excellent anticorrosion performance of waterborne epoxy coating. Prog Org Coat 165: 106673 (2022)

[39]

Zhang J, Fu Y, Mo A. Multilayered titanium carbide MXene film for guided bone regeneration. Int J Nanomedicine 14: 10091–10103 (2019)

[40]

Han W W, Liu L, Yu B R, Zhu Q X. Electrodeposition of graphene oxide-hydroxyapatite composite coating on titanium substrate. Ceram Int 49(6): 9647–9656 (2023)

[41]

Chen X P, Cheng Y P, Wu H. Recent trends in bone defect repair and bone tissue regeneration of the two-dimensional material MXene. Ceram Int 49(12): 19578–19594 (2023)

[42]

Gorejová R, Oriňaková R, Králová Z O, Sopčák T, Šišoláková I, Schnitzer M, Kohan M, Hudák R. Electrochemical deposition of a hydroxyapatite layer onto the surface of porous additively manufactured Ti6Al4V scaffolds. Surf Coat Tech 455: 129207 (2023)

[43]

Wang C C, Zhang G Q, Li Z P, Xu Y, Zeng X Q, Zhao S C, Deng J, Hu H X, Zhang Y D, Ren T H. Microtribological properties of Ti–6Al–4V alloy treated with self-assembled dopamine and graphene oxide coatings. Tribol Int 137: 46–58 (2019)

[44]

Wang C C, Li Z P, Zhao H, Zhang G Q, Ren T H, Zhang Y D. Enhanced anticorrosion and antiwear properties of Ti–6Al–4V alloys with laser texture and graphene oxide coatings. Tribol Int 152: 106475 (2020)

[45]

Tian P P, Zhao X, Sun B, Cao H, Zhao Y Z, Yan J C, Xue Y, Lin H L, Han S, Ren T H, et al. Enhanced anticorrosion and tribological properties of Ti–6Al–4V alloys with Fe3O4/HA coatings. Surf Coat Tech 433: 128118 (2022)

[46]

Parajuli DC, Bajgai MP, Ko JA, Kang HK, Khil MS, Kim HY. Synchronized polymerization and fabrication of poly(acrylic acid) and nylon hybrid mats in electrospinning. ACS Appl Mater Inter 1(4): 750–757 (2009)

[47]

Wang Y J, Zhang X N, Song Y H, Zhao Y P, Chen L, Su F M, Li L B, Wu Z L, Zheng Q. Ultrastiff and tough supramolecular hydrogels with a dense and robust hydrogen bond network. Chem Mater 31(4): 1430–1440 (2019)

[48]

Li W X, Wang D, Yang W, Song Y. Compressive mechanical properties and microstructure of PVA–HA hydrogels for cartilage repair. RSC Adv 6(24): 20166–20172 (2016)

[49]

Patil S P, Parale V G, Park H H, Markert B. Molecular dynamics and experimental studies of nanoindentation on nanoporous silica aerogels. Mater Sci Eng A 742: 344–352 (2019)

[50]

Savchenko N L, Filippov A V, Tarasov S Y, Dmitriev A I, Shilko E V, Grigoriev A S. Acoustic emission characterization of sliding wear under condition of direct and inverse transformations in low-temperature degradation aged Y-TZP and Y-TZP–Al2O3. Friction 6(3): 323–340 (2018)

[51]

Awaja F, Guarino R, Tripathi M, Fedel M, Speranza G, Dalton A B, Pugno N M, Nogler M. Tuning the tribological performance of plasma-treated hybrid layers of PEEK–GO–DLC. Tribol Int 176: 107915 (2022)

[52]

Qin M, Yuan W F, Zhang X M, Cheng Y Z, Xu M J, Wei Y, Chen W Y, Huang D. Preparation of PAA/PAM/MXene/TA hydrogel with antioxidant, healable ability as strain sensor. Colloids Surf B: Biointerfaces 214: 112482 (2022)

[53]

Qin H, Zhao Y C, An Z Q, Cheng M Q, Wang Q, Cheng T, Wang Q J, Wang J X, Jiang Y, Zhang X, et al. Enhanced antibacterial properties, biocompatibility, and corrosion resistance of degradable Mg–Nd–Zn–Zr alloy. Biomaterials 53: 211–20 (2015)

[54]

Roselman I C, Tabor D. The friction and wear of individual carbon fibres. J Phys D: Appl Phys 10(8): 1181–1194 (1977)

[55]

Gong JP, Kurokawa T, Narita T, Kagata G, Osada Y, Nishimura G, Kinjo M. Synthesis of hydrogels with extremely low surface friction. J Am Chem Soc 123(23): 5582–5583 (2001)

[56]

Mu R J, Yang J W, Wang Y C, Wang Z J, Chen P J, Sheng H, Suo Z G. Polymer-filled macroporous hydrogel for low friction. Extreme Mech Lett 38: 100742 (2020)

[57]

Nečas D, Yarimitsu S, Rebenda D, Shinmori H, Vrbka M, Sawae Y, Murakami T, Křupka I. On the replacement of articular cartilage: The friction of PVA hydrogel layer in hip simulator test. Tribol Int 178: 108100 (2023)

[58]

Cao W H, Ding P, Ding Q, Liu C B, Yu W, Hu L T. Shear responsive gelation of aqueous polyacrylic acid- co-polyacrylamide: Molecular mechanism and tribological applications. ACS Appl Polym Mater 5(5): 3247–3255 (2023)

[59]

Tian P, Yu G M, Wei K X, Zhang Z X, Wang N. Effect of hydroxyl intercalation on tribological properties of MXene (Ti3C2T x ). Ceram Int 47(21): 30722–30728 (2021)

[60]

Wu P X, Zeng C, Guo J L, Liu G Q, Zhou F, Liu W M. Achieving near-infrared-light-mediated switchable friction regulation on MXene-based double network hydrogels. Friction 12(1): 39–51 (2024)

[61]

Chen K, Liu S Y, Wu X F, Wang F Y, Chen G Y, Yang X H, Xu L M, Qi J W, Luo Y, Zhang D K. Mussel-inspired construction of Ti6Al4V–hydrogel artificial cartilage material with high strength and low friction. Mater Lett 265: 127421 (2020)

[62]

Malhotra R, Han Y M, Nijhuis C A, Silikas N, Castro Neto A H, Rosa V. Graphene nanocoating provides superb long-lasting corrosion protection to titanium alloy. Dent Mater 37(10): 1553–1560 (2021)

[63]

Saveleva M, Vladescu A, Cotrut C, Van der Meeren L, Surmeneva M, Surmenev R, Parakhonskiy B, Skirtach A G. The effect of hybrid coatings based on hydrogel, biopolymer and inorganic components on the corrosion behavior of titanium bone implants. J Mater Chem B 7(43): 6778–6788 (2019)

[64]

Cai M, Yan H, Li Y T, Li W, Fan X Q, Zhu M H. Elucidating the electrochemical mechanism for enhanced corrosion of Ti3C2T x -coated mild steel. Surf Topogr: Metrol Prop 9(3): 035033 (2021)

[65]

Zhao H R, Ding J H, Zhou M, Yu H B. Air-stable titanium carbide MXene nanosheets for corrosion protection. ACS Appl Nano Mater 4(3): 3075–3086 (2021)

[66]

Mahmud S T, Hasan M M, Bain S, Rahman S T, Rhaman M, Hossain M M, Ordu M. Multilayer MXene heterostructures and nanohybrids for multifunctional applications: A review. ACS Materials Lett 4(6): 1174–1206 (2022)

[67]

He X L, Li S H, Shen R B, Ma Y Q, Zhang L, Sheng X X, Chen Y, Xie D L, Huang J T. A high-performance waterborne polymeric composite coating with long-term anti-corrosive property based on phosphorylation of chitosan-functionalized Ti3C2T x MXene. Adv Compos Hybrid Mater 5(3): 1699–1711 (2022)

Friction
Cite this article:
Cao H, Wang C, Li Y, et al. A novel hydroxyapatite modified MXene-based hydrogel coating on Ti6Al4V alloy with improved biotribological properties and corrosion resistance. Friction, 2024, https://doi.org/10.26599/FRICT.2025.9440956

445

Views

47

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 30 December 2023
Revised: 05 June 2024
Accepted: 27 June 2024
Published: 31 December 2024
© The Author(s) 2025.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, http://creativecommons.org/licenses/by/4.0/).

Return