Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Food-derived polyphenols and their effects on type 2 diabetes are linked to the microbiota. Here, we expound on the mechanisms of food-derived polyphenols that affect the onset of type 2 diabetes, focusing on the roles played by gut microorganisms and the metabolites they produce. We also discuss the mechanism of food-derived polyphenols lower blood glucose through host signaling-mediated inflammatory responses. Food-derived polyphenols alleviate the development of type 2 diabetes by remodeling gut microbiome composition and reducing inflammatory responses. Food-derived polyphenols inhibit the activity of α-glucosidase, α-amylase, and dipeptidyl peptidase IV enzymes to reduce postprandial blood glucose levels. The nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) is considered a key regulator of food-derived polyphenols in alleviating the onset of type 2 diabetes. Inhibition of NF-κB activation can increase insulin sensitivity, reduce inflammation, and maintain glucose homeostasis. This investigation reveals that food-derived polyphenols can alleviate the onset of type 2 diabetes and offers adequate theoretical knowledge in support of their usage as such.
W. Wei, W. B. Jiang, T. S. Han, et al., The future of prevention and treatment of diabetes with nutrition in China, Cell Metab. 33(10) (2021) 1908–1910. https://doi.org/10.1016/j.cmet.2021.09.012.
I. I. Ismail, S. Kumar, S. Shukla, et al., Putative antidiabetic herbal food ingredients: nutra/functional properties, bioavailability, and effect on metabolic pathways, Trends Food Sci. Tech. 97 (2020) 317–340. https://doi.org/10.1016/j.jpgs.2020.01.017.
Q. Y. Lyu, H. T. Deng, S. X. Wang, et al., Dietary supplementation with casein/cyanidin-3-O-glucoside nanoparticles alters the gut microbiota in high-fat fed C57BL/6 mice, Food Chem. 412 (2023) 135494. https://doi.org/10.1016/j.foodchem.2023.135494.
C. Ning, Y. H Jiao, J. Q. Wang, et al., Recent advances in the managements of type 2 diabetes mellitus and natural hypoglycemic substances, Food Sci. Hum. Wellness 11(5) (2022) 1121–1133. https://doi.org/10.1016/j.fshw.2022.04.004.
P. Daliu, A. Santini, E. Novellino, From pharmaceuticals to nutraceuticals: bridging disease prevention and management, Expert Rev. Clin. Phar. 12(1) (2019) 1–7. https://doi.org/10.1080/17512433.2019.1552135.
L. P. Zhao, F. Zhang, X. Y. Ding, et al., Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes, Science 359 (2018) 1151–1156. https://doi.org/10.1126/science.aao5774.
G. C. Román, R. E. Jackson, R. Gadhia, et al., Mediterranean diet: the role of long-chain ω-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, cacao, and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease, Rev. Neurol-France. 175(10) (2019) 724–741. https://doi.org/10.1016/j.neurol.2019.08.005.
Z. B. Fan, W. Jia, A. Du, et al., Discovery of Se-containing flavone in Se-enriched green tea and the potential application value in the immune regulation, Food Chem. 394 (2022) 133468. https://doi.org/10.1016/j.foodchem.2022.133468.
M. G. Salvia, P. A. Quatromoni, Behavioral approaches to nutrition and eating patterns for managing type 2 diabetes: a review, Am. J. Med. 9 (2023) 100034. https://doi.org/10.1016/j.ajmo.2023.100034.
W. Li, H. H. Chen, B. Xu, et al., Research progress on classification, sources, and functions of dietary polyphenols for prevention and treatment of chronic diseases, J. Funct. Foods. 3(4) (2023) 289–305. https://doi.org/10.1016/j.jfutfo.2023.03.001.
G. Catalkaya, K. Venema, L. Lucini, et al., Interaction of dietary polyphenols and gut microbiota: microbial metabolism of polyphenols, influence on the gut microbiota, and implications on host health, Food Front. 1(2) (2020) 109–133. https://doi.org/10.1002/fft2.25.
U. Majeed, A. Shafi, H. Majeed, et al., Grape (Vitis vinifera L. ) phytochemicals and their biochemical protective mechanisms against leading pathologies, Food Chem. 405 (2023) 134762. https://doi.org/10.1016/j.foodchem.2022.134762.
M. J. Yao, H. Teng, Q. Y. Lv, et al., Anti-hyperglycemic effects of dihydromyricetin in streptozotocin-induced diabetic rats, Food Sci. Hum. Wellness 10(2) (2021) 155–162. https://doi.org/10.1016/j.fshw.2021.02.004.
W. Q. Xu, Y. J. Huang, W. T. Zhou, et al., Theasinensin A attenuated diabetic development by restoring glucose homeostasis, improving hepatic steatosis, and modulating gut microbiota in high-fat-diet/streptozotocin-induced diabetic mice, Food Sci. Hum. Wellness 12(6) (2023) 2073–2086. https://doi.org/10.1016/j.fshw.2023.03.026.
T. G. Wang, Z. Y. Zhao, G. X. Wang, et al., Age-related disparities in diabetes risk attributable to modifiable risk factor profiles in Chinese adults: a nationwide, population-based, cohort study, The Lancet Healthy Longevity 2(10) (2021) e618–e628. https://doi.org/10.1016/S2666-7568(21)00177-X.
H. Memon, F. Abdulla, T. Reljic, et al., Effects of combined treatment of probiotics and metformin in management of type 2 diabetes: a systematic review and meta-analysis, Diabetes Res. Clin. Pr. 202 (2023) 110806. https://doi.org/10.1016/j.diabres.2023.110806.
M. Y. Wang, J. Y. Li, T. Hu, et al., Metabolic fate of tea polyphenols and their crosstalk with gut microbiota, Food Sci. Hum. Wellness 11(3) (2022) 455–466. https://doi.org/10.1016/j.fshw.2021.12.003.
N. M. Koropatkin, E. A. Cameron, E. C. Martens, How glycan metabolism shapes the human gut microbiota, Nat. Rev. Microbiol. 10(5) (2012) 323–335. https://doi.org/10.1038/nrmicro2746.
J. H. Liu, Z. Y. He, N. Ma, et al., Beneficial effects of dietary polyphenols on high-fat diet-induced obesity linking with modulation of gut microbiota, J. Agr. Food Chem. 68(1) (2020) 33–47. https://doi.org/10.1021/acs.jafc.9b06817.
Z. X. Liu, M. H. Liu, J. Meng, et al., A review of the interaction between diet composition and gut microbiota and its impact on associated disease, J. Funct. Foods. 4(3) (2024) 221–232. https://doi.org/10.1016/j.jfutfo.2023.07.004.
H. N. Sanchez, J. B. Moroney, H. Gan, et al., B cell-intrinsic epigenetic modulation of antibody responses by dietary fiber-derived short-chain fatty acids, Nat. Commun. 11(1) (2020) 60. https://doi.org/10.1038/s41467-019-13603-6.
S. Lin, S. T. Wang, P. Wang, et al., Bile acids and their receptors in regulation of gut health and diseases, Prog. Lipid Res. 89 (2023) 101210. https://doi.org/10.1016/j.plipres.2022.101210.
S. Khan, G. Jena, Sodium butyrate reduces insulin-resistance, fat accumulation and dyslipidemia in type-2 diabetic rat: a comparative study with metformin, Chem-Biol. Interact. 254 (2016) 124–134. https://doi.org/10.1016/j.cbi.2016.06.007.
Y. S. Zhao, X. M. Tong, X. M. Wu, et al., Metabolomics reveal the regulatory effect of polysaccharides from fermented barley bran extract on lipid accumulation in HepG2 cells, Metabolites 13(2) (2023) 223. https://doi.org/10.3390/metabo13020223.
Y. J. Bai, Y. Zhou, X. Li, et al., Longan pulp polysaccharides regulate gut microbiota and metabolites to protect intestinal epithelial barrier, Food Chem. 422 (2023) 136225. https://doi.org/10.1016/j.foodchem.2023.136225.
L. Macia, J. Tan, A. T. Vieira, et al., Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome, Nat. Commun. 6(1) (2015) 6734. https://doi.org/10.1038/ncomms7734.
W. Q. Feng, Y. C. Wu, G. X. Chen, et al., Sodium butyrate attenuates diarrhea in weaned piglets and promotes tight junction protein expression in colon in a GPR109A-dependent manner, Cell Physiol. Biochem. 47(4) (2018) 1617–1629. https://doi.org/10.1159/000490981.
N. Singh, A. Gurav, S. Sivaprakasam, et al., Activation of Gpr109a, Receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis, Immunity 40(1) (2014) 128–139. https://doi.org/10.1016/j.immuni.2013.12.007.
D. Cheng, J. H. Xu, J. Y. Li, et al., Butyrate ameliorated-NLRC3 protects the intestinal barrier in a GPR43-dependent manner, Exp. Cell Res. 368(1) (2018) 101–110. https://doi.org/10.1016/j.yexcr.2018.04.018.
M. Aoyama, J. Kotani, M. Usami, Butyrate, and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways, Nutrition 26(6) (2010) 653–661. https://doi.org/10.1016/j.nut.2023.112118.
J. J. Xu, W. Sun, H. Li, et al., Xanthan gum oligosaccharides ameliorate glucose metabolism and related gut microbiota dysbiosis in type 2 diabetic mice, Food Biosci. 50 (2022) 102002. https://doi.org/10.1016/j.fbio.2022.102002.
V. Gowd, T. Bao, L. L. Wang, et al., Antioxidant and antidiabetic activity of blackberry after gastrointestinal digestion and human gut microbiota fermentation, Food Chem. 269 (2018) 618–627. https://doi.org/10.1016/j.foodchem.2018.07.020.
Z. M. Dou, C. Chen, Q. Huang, et al., In vitro digestion of the whole blackberry fruit: bioaccessibility, bioactive variation of active ingredients and impacts on human gut microbiota, Food Chem. 370 (2022) 131001. https://doi.org/10.1016/j.foodchem.2021.131001.
B. A. Neuschwander-Tetri, R. Loomba, A. J. Sanyal, et al., Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial, Lancet 385 (2015) 956–965. https://doi.org/10.1016/S0140-6736(14)61933-4.
T. Inagaki, M. Choi, A. Moschetta, et al., Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis, Cell Metab. 2(4) (2005) 217–225. https://doi.org/10.1016/j.cmet.2005.09.001.
L. L. Du, Q. Li, H. Yi, et al., Gut microbiota-derived metabolites as key actors in type 2 diabetes mellitus, Biomed. Pharmacother. 149 (2022) 112839. https://doi.org/10.1016/j.biopha.2022.112839.
M. Li, W. J. Zhou, Y. Q. Dang, et al., Berberine compounds improves hyperglycemia via microbiome mediated colonic TGR5-GLP pathway in db/db mice, Biomed. Pharmacother. 132 (2020) 110953. https://doi.org/10.1016/j.biopha.2020.110953.
C. Thomas, A. Gioiello, L. Noriega, et al., TGR5-mediated bile acid sensing controls glucose homeostasis, Cell Metab. 10(3) (2009) 167–177. https://doi.org/10.1016/j.cmet.2009.08.001.
D. P. Kumar, S. Rajagopal, S. Mahavadi, et al., Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic β cells, Biochem. Bioph. Res. Co. 427(3) (2012) 600–605. https://doi.org/10.1016/j.bbrc.2012.09.104.
W. W. Lv, J. Y. Song, R. Nowshin Raka, et al., Effects of food emulsifiers on high fat-diet-induced obesity, intestinal inflammation, changes in bile acid profile, and liver dysfunction, Food Res. Int. 173 (2023) 113302. https://doi.org/10.1016/j.foodres.2023.113302.
S. Lin, B. Stoll, J. Robinson, et al., Differential action of TGR5 agonists on GLP-2 secretion and promotion of intestinal adaptation in a piglet short bowel model, Am. J. Physiol-Gastr. L. 316(5) (2019) G641–G652. https://doi.org/10.1152/ajpgi.00360.2018.
S. C. Hui, Y. Liu, L. Huang, et al., Resveratrol enhances brown adipose tissue activity and white adipose tissue browning in part by regulating bile acid metabolism via gut microbiota remodeling, Int. J. Obesity. 44(8) (2020) 1678–1690. https://doi.org/10.1038/s41366-020-0566-y.
N. P. Gannon, J. K. Schnuck, R. A. Vaughan, BCAA Metabolism, and insulin sensitivity-dysregulated by metabolic status, Mol. Nutr. Food Res. 62(6) (2018) 1700756. https://doi.org/10.1002/mnfr.201700756.
M. Holeček, Why are branched-chain amino acids increased in starvation and diabetes, Nutrients 12 (2020). https://doi.org/10.3390/nu12103087.
P. J. White, R. W. McGarrah, M. A. Herman, et al., Insulin action, type 2 diabetes, and branched-chain amino acids: a two-way street, Mol. Metab. 52 (2021) 101261. https://doi.org/10.1016/j.molmet.2021.101261.
C. C. Metges, Contribution of microbial amino acids to amino acid homeostasis of the host, J. Nutr. 130(7) (2000) 1857S–1864S. https://doi.org/10.1093/jn/130.7.1857S.
L. A. David, C. F. Maurice, R. N. Carmody, et al., Diet rapidly and reproducibly alters the human gut microbiome, Nature 505(7484) (2014) 559–563. https://doi.org/10.1038/nature12820.
C. Shortt, O. Hasselwander, A. Meynier, et al., Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients, Eur. J. Nutr. 57(1) (2018) 25–49. https://doi.org/10.1007/s00394-017-1546-4.
B. S. Y. Choi, N. Daniel, V. P. Houde, et al., Feeding diversified protein sources exacerbates hepatic insulin resistance via increased gut microbial branched-chain fatty acids and mTORC1 signaling in obese mice, Nat. Commun. 12(1) (2021) 3377. https://doi.org/10.1038/s41467-021-23782-w.
A. Maykish, A. K. Sikalidis, Utilization of hydroxyl-methyl butyrate, leucine, glutamine, and arginine supplementation in nutritional management of sarcopenia-implications and clinical considerations for type 2 diabetes mellitus risk modulation, J. Pers. Med. 10(1) (2020) 19. https://doi.org/10.3390/jpm10010019.
J. Lee, A. Vijayakumar, P. J. White, et al., BCAA Supplementation in mice with diet-induced obesity alters the metabolome without impairing glucose homeostasis, Endocrinology 162(7) (2021) bqab62. https://doi.org/10.1210/endocr/bqab062.
H. H. Chen, Q. X. Nie, J. L. Hu, et al., Multiomics approach to explore the amelioration mechanisms of glucomannans on the metabolic disorder of type 2 diabetic rats, J. Agr. Food Chem. 69(8) (2021) 2632–2645. https://doi.org/10.1021/acs.jafc.0c07871.
R. J. O. Sjögren, D. Rizo-Roca, A. V. Chibalin, et al., Branched-chain amino acid metabolism is regulated by ERRα in primary human myotubes and is further impaired by glucose loading in type 2 diabetes, Diabetologia 64(9) (2021) 2077–2091. https://doi.org/10.1007/s00125-021-05481-9.
H. S. Zhao, F. Y. Zhang, D. Sun, et al., Branched-chain amino acids exacerbate obesity-related hepatic glucose and lipid metabolic disorders via attenuating Akt2 signaling, Diabetes 69(6) (2020) 1164–1177. https://doi.org/10.2337/db19-0920.
E. Wada, M. Kobayashi, D. Kohno, et al., Disordered branched chain amino acid catabolism in pancreatic islets is associated with postprandial hypersecretion of glucagon in diabetic mice, J. Nutr. Biochem. 97 (2021) 108811. https://doi.org/10.1016/j.jnutbio.2021.108811.
L. Zhang, Y. S. Yue, M. X. Shi, et al., Dietary Luffa cylindrica (L.) Roem promotes branched-chain amino acid catabolism in the circulation system via gut microbiota in diet-induced obese mice, Food Chem. 320 (2020) 126648. https://doi.org/10.1016/j.foodchem.2020.126648.
F. Di Lorenzo, K. A. Duda, R. Lanzetta, et al., A journey from structure to function of bacterial lipopolysaccharides, Chem. Rev. 122(20) (2022) 15767–15821. https://doi.org/10.1021/acs.chemrev.0c01321.
F. F. Anhê, N. G. Barra, J. F. Cavallari, et al., Metabolic endotoxemia is dictated by the type of lipopolysaccharide, Cell Rep. 36(11) (2021) 109691. https://doi.org/10.1016/j.celrep.2021.109691.
N. Li, Z. P. Cen, Z. D. Zhao, et al., BCAA dysmetabolism in the host and gut microbiome, a key player in the development of obesity and T2DM, Med. Microecol. 16 (2023) 100078. https://doi.org/10.1016/j.medmic.2023.100078.
F. Balkwill, K. A. Charles, A. Mantovani, Smoldering and polarized inflammation in the initiation and promotion of malignant disease, Cancer Cell 7(3) (2005) 211–217. https://doi.org/10.1016/j.ccr.2005.02.013.
Z. Mirsanei, N. Heidari, A. Hazrati, et al., Oleuropein reduces LPS-induced inflammation via stimulating M2 macrophage polarization, Biomed. Pharmacother. 163 (2023) 114857. https://doi.org/10.1016/j.biopha.2023.114857.
G. Toda, K. Soeda, Y. Okazaki, et al., Insulin- and lipopolysaccharide-mediated signaling in adipose tissue macrophages regulates postprandial glycemia through Akt-mTOR activation, Mol. Cell. 79(1) (2020) 43–53. https://doi.org/10.1016/j.molcel.2020.04.033.
D. De Paulo Farias, F. F. De Araújo, I. A. Neri-Numa, et al., Antidiabetic potential of dietary polyphenols: a mechanistic review, Food Res. Int. 145 (2021) 110383. https://doi.org/10.1016/j.foodres.2021.110383.
X. X. Li, Y. X. Bai, Z. Y. Jin, et al., Food-derived non-phenolic α-amylase, and α-glucosidase inhibitors for controlling starch digestion rate and guiding diabetes-friendly recipes, LWT-Food Sci. Technol. 153 (2022) 112455. https://doi.org/10.1016/j.lwt.2021.112455.
S. J. Li, W. M. Zhang, R. M. Wang, et al., Screening and identification of natural α-glucosidase and α-amylase inhibitors from partridge tea (Mallotus furetianus Muell-Arg) and in silico analysis, Food Chem. 388 (2022) 133004. https://doi.org/10.1016/j.foodchem.2022.133004.
R. Zhang, W. Jia, Systematic investigation on the multi-scale mechanisms of bitter peptide self-assembly for flavor modulation, Food Chem. 430 (2024) 137063. https://doi.org/10.1016/j.foodchem.2023.137063.
L. Shi, W. Jia, R. Zhang, et al., Adulteration of endogenous substances as a next challenge in dairy safety: high-throughput analysis of flavours in goat milk based on the molecular mechanism of flavouring components dynamic changes, Trends Food Sci. Tech. 142 (2023) 104229. https://doi.org/10.1016/j.jpgs.2023.104229.
G. Jagadeesan, K. Muniyandi, A. L. Manoharan, et al., Understanding the bioaccessibility, α-amylase and α-glucosidase enzyme inhibition kinetics of Allmania nodiflora (L.) R. Br. ex-wight polyphenols during in vitro simulated digestion, Food Chem. 372 (2022) 131294. https://doi.org/10.1016/j.foodchem.2021.131294.
H. H. Liu, C. Zheng, Z. L. Li, et al., Inhibitory mechanism of phenolic compounds in rapeseed oil on α-amylase and α-glucosidase: spectroscopy, molecular docking, and molecular dynamic simulation, Spectrochim. Acta A 289 (2023) 122251. https://doi.org/10.1016/j.saa.2022.122251.
C. P. Silva, G. R. Sampaio, R. A. M. S. Freitas, et al., Polyphenols from guaraná after in vitro digestion: evaluation of bioacessibility and inhibition of activity of carbohydrate-hydrolyzing enzymes, Food Chem. 267 (2018) 405–409. https://doi.org/10.1016/j.foodchem.2017.08.078.
N. Sánchez-Otero, F. J. Rodríguez-Berrocal, M. P. de la Cadena, et al., Evaluation of pleural effusion sCD26 and DPP-IV as diagnostic biomarkers in lung disease, Sci. Rep. 4(1) (2014) 3999. https://doi.org/10.1038/srep03999.
P. K. Huang, S. R. Lin, C. H. Chang, et al., Natural phenolic compounds potentiate hypoglycemia via inhibition of dipeptidyl peptidase IV, Sci. Rep. 9(1) (2019) 15585. https://doi.org/10.1038/s41598-019-52088-7.
M. K. Leong, R. Syu, Y. Ding, et al., Prediction of N-methyl-D-aspartate receptor GluN1-ligand binding affinity by a Novel SVM-Pose/SVM-score combinatorial ensemble docking scheme, Sci. Rep. 7(1) (2017) 40053. https://doi.org/10.1038/srep40053.
N. González-Abuín, N. Martínez-Micaelo, M. Blay, et al., Grape seed-derived procyanidins decrease dipeptidyl-peptidase 4 activity and expression, J. Agr. Food Chem. 60(36) (2012) 9055–9061. https://doi.org/10.1021/jf3010349.
Z. H. Luo, T. Li, Q. Q. Gao, et al., Impact of licochalcone A on the progression of diabetic nephropathy in type 2 diabetes mellitus of C57BL/6 mice, Food Funct. 12(21) (2021) 10676–10689. https://doi.org/10.1039/D1FO01630J.
C. Q. Li, J. H. Shi, J. Mu, et al., Licochalcone A derivatives as selective dipeptidyl peptidase 4 inhibitors with anti-inflammatory effects, J. Nat. Prod. 86(7) (2023) 1824–1831. https://doi.org/10.1021/acs.jnatprod.3c00355.
X. Gong, X. Li, Y. Xia, et al., Effects of phytochemicals from plant-based functional foods on hyperlipidemia and their underpinning mechanisms, Trends Food Sci. Tech. 103 (2020) 304–320. https://doi.org/10.1016/j.jpgs.2020.07.026.
Z. G. Gao, D. Hwang, F. Bataille, et al., Serine phosphorylation of insulin receptor substrate 1 by inhibitor κB kinase complex, J. Biol. Chem. 277(50) (2002) 48115–48121. https://doi.org/10.1074/jbc.M209459200.
J. Chen, X. J. Meng, Aronia melanocarpa anthocyanin extracts improve hepatic structure and function in high-fat diet-/streptozotocin-induced T2DM mice, J. Agr. Food Chem. 70(37) (2022) 11531–11543. https://doi.org/10.1021/acs.jafc.2c03286.
J. H. Zhang, M. Chen, Y. Y. Zhai, et al., Retracted: HOTAIR regulates lipopolysaccharide-induced inflammatory response in hepatocytes, J. Cell Physiol. 235(5) (2020) 4247–4255. https://doi.org/10.1002/jcp.29301.
A. Ghorbani, R. Rashidi, R. Shafiee-Nick, Flavonoids for preserving pancreatic beta cell survival and function: a mechanistic review, Biomed. Pharmacother. 111 (2019) 947–957. https://doi.org/10.1016/j.biopha.2018.12.127.
W. Ding, H. Liu, Z. Q. Qin, et al., Dietary antioxidant anthocyanins mitigate type II diabetes through improving the disorder of glycometabolism and insulin resistance, J. Agr. Food Chem. 69(45) (2021) 13350–13363. https://doi.org/10.1021/acs.jafc.1c05630.
S. H. Mei, X. M. Chen, Investigation into the anti-inflammatory mechanism of coffee leaf extract in LPS-induced Caco-2/U937 co-culture model through cytokines and NMR-based untargeted metabolomics analyses, Food Chem. 404 (2023) 134592. https://doi.org/10.1016/j.foodchem.2022.134592.
X. X. Ren, Y. Sun, Q. F. Guo, et al., Ameliorating effect of the total flavonoids of Morus nigra L. on prediabetic mice based on regulation of inflammation and insulin sensitization, J. Agr. Food Chem. 70(39) (2022) 12484–12501. https://doi.org/10.1021/acs.jafc.2c04970.
M. W. Poulsen, R. V. Hedegaard, J. M. Andersen, et al., Advanced glycation endproducts in food and their effects on health, Food Chem. Toxicol. 60 (2013) 10–37. https://doi.org/10.1016/j.fct.2013.06.052.
C. Z. P. Nie, Y. Li, H. F. Qian, et al., Advanced glycation end products in food and their effects on intestinal tract, Crit. Rev. Food Sci. 62(11) (2022) 3103–3115. https://doi.org/10.1080/10408398.2020.1863904.
R. ZAMORA, F. J. HIDALGO, Coordinate contribution of lipid oxidation and Maillard reaction to the nonenzymatic food browning, Crit. Rev. Food Sci. 45(1) (2005) 49–59. https://doi.org/10.1080/10408690590900117.
M. E. Garay-Sevilla, A. Gomez-Ojeda, I. González I, et al., Contribution of RAGE axis activation to the association between metabolic syndrome and cancer, Mol. Cell Biochem. 476(3) (2021) 1555–1573. https://doi.org/10.1007/s11010-020-04022-z.
W. Z. Yu, M. R. Tao, Y. L. Zhao, et al., 4’-Methoxyresveratrol alleviated AGE-induced inflammation via RAGE-mediated NF-κB and NLRP3 inflammasome pathway, Molecules 23(6) (2018) 1447. https://doi.org/10.3390/molecules23061447.
C. H. Wu, C. M. Huang, C. H. Lin, et al., Advanced glycosylation end products induce NF-κB dependent iNOS expression in RAW 264.7 cells, Mol. Cell Endocrinol. 194(1) (2002) 9–17. https://doi.org/10.1016/S0303-7207(02)00212-5.
Q. H. Song, J. J. Liu, L. Y. Dong, et al., Novel advances in inhibiting advanced glycation end product formation using natural compounds, Biomed. Pharmacother. 140 (2021) 111750. https://doi.org/10.1016/j.biopha.2021.111750.
W. Jia, A. A. Guo, R. Zhang, et al., Mechanism of natural antioxidants regulating advanced glycosylation end products of Maillard reaction, Food Chem. 404 (2023) 134541. https://doi.org/10.1016/j.foodchem.2022.134541.
W. Li, R. E. Maloney, M. L. Circu, et al., Acute carbonyl stress induces occludin glycation and brain microvascular endothelial barrier dysfunction: role for glutathione-dependent metabolism of methylglyoxal, Free Radical Bio. Med. 54 (2013) 51–61. https://doi.org/10.1016/j.freeradbiomed.2012.10.552.
W. B. Zhao, P. J. Cai, N. Zhang, et al., Inhibitory effects of polyphenols from black chokeberry on advanced glycation end-products (AGEs) formation, Food Chem. 392 (2022) 133295. https://doi.org/10.1016/j.foodchem.2022.133295.
Q. Z. Zhang, Z. J. Huang, Y. Wang, et al., Chinese bayberry (Myrica rubra) phenolics mitigated protein glycoxidation and formation of advanced glycation end-products: a mechanistic investigation, Food Chem. 361 (2021) 130102. https://doi.org/10.1016/j.foodchem.2021.130102.
V. Gowd, L. H. Xie, C. D. Sun, et al., Phenolic profile of bayberry followed by simulated gastrointestinal digestion and gut microbiota fermentation and its antioxidant potential in HepG2 cells, J. Funct. Foods. 70 (2020) 103987. https://doi.org/10.1016/j.jff.2020.103987.
D. Li, Y. Yang, L. Sun, et al., Effect of young apple (Malus domestica Borkh. cv. Red Fuji) polyphenols on alleviating insulin resistance, Food Bio. 36 (2020) 100637. https://doi.org/10.1016/j.fbio.2020.100637.
J. U. Obaroakpo, L. Liu, S. Zhang, et al., In vitro modulation of glucagon-like peptide release by DPP-IV inhibitory polyphenol-polysaccharide conjugates of sprouted quinoa yoghurt, Food Chem. 324 (2020) 126857. https://doi.org/10.1016/j.foodchem.2020.126857.
G. R. Gandhi, S. Ignacimuthu, M. G. Paulraj, Solanum torvum Swartz. fruit containing phenolic compounds shows antidiabetic and antioxidant effects in streptozotocin induced diabetic rats, Food Chem. Toxicol. 49(11) (2011) 2725–2733. https://doi.org/10.1016/j.fct.2011.08.005.
H. Li, H. Park, H Ji, et al., Phenolic-enriched blueberry-leaf extract attenuates glucose homeostasis, pancreatic β-cell function, and insulin sensitivity in high-fat diet-induced diabetic mice, Nutr Res. 73 (2020) 83–96. https://doi.org/10.1016/j.nutres.2019.09.005.
R. H. Elsayed, E. M. Kamel, A. M. Mahmoud, et al., Rumex dentatus L. phenolics ameliorate hyperglycemia by modulating hepatic key enzymes of carbohydrate metabolism, oxidative stress and PPARγ in diabetic rats, Food Chem. Toxicol. 138 (2020) 111202. https://doi.org/10.1016/j.fct.2020.111202.
J. Abolghasemi, M. A. Farboodniay Jahromi, M. Hossein Sharifi, et al., Effects of Zataria oxymel on obesity, insulin resistance and lipid profile: a randomized, controlled, triple-blind trial, J. Integr. Med. 18(5) (2020) 401–408. https://doi.org/10.1016/j.joim.2020.06.003.
D. Granato, A. Mocan, J. S. Câmara, Is a higher ingestion of phenolic compounds the best dietary strategy? A scientific opinion on the deleterious effects of polyphenols in vivo, Trends Food Sci. Tech. 98 (2020) 162–166. https://doi.org/10.1016/j.jpgs.2020.01.010.
Ribnicky D M, Roopchand D E, Oren A, et al., Effects of a high fat meal matrix and protein complexation on the bioaccessibility of blueberry anthocyanins using the TNO gastrointestinal model (TIM-1), Food Chem. 142 (2014) 349–357. https://doi.org/10.1016/j.foodchem.2013.07.073.
T. Wu, J. J. Yin, G. H. Zhang, et al., Mulberry and cherry anthocyanin consumption prevents oxidative stress and inflammation in diet-induced obese mice, Mol. Nutr. Food Res. 60(3) (2016) 687–694. https://doi.org/10.1002/mnfr.201500734.
X. J. Wang, Z. T. Zhao, Improved encapsulation capacity of casein micelles with modified structure, J. Food Eng. 333 (2022) 111138. https://doi.org/10.1016/j.jfoodeng.2022.111138.
A. Samadder, D. Tarafdar, S. K. Abraham, et al., Nano-pelargonidin protects hyperglycemic-induced L6 cells against mitochondrial dysfunction, Planta Med. 83(5) (2017) 468–475. https://doi.org/10.1055/s-0043-100017.
J. Liu, Z. Q. Chen, J. Wang, et al., Encapsulation of curcumin nanoparticles with MMP9-responsive and thermos-sensitive hydrogel improves diabetic wound healing, ACS Appl. Mater. Interfaces. 10(19) (2018) 16315–16326. https://doi.org/10.1021/acsami.8b03868.
E. H. Gokce, S. Tuncay Tanrıverdi, I. Eroglu, et al., Wound healing effects of collagen-laminin dermal matrix impregnated with resveratrol loaded hyaluronic acid-DPPC microparticles in diabetic rats, Eur. J. Pharm. Biopharm. 119 (2017) 17–27. https://doi.org/10.1016/j.ejpb.2017.04.027.
D. Pham-Hua, L. E. Padgett, B. Xue, et al., Islet encapsulation with polyphenol coatings decreases pro-inflammatory chemokine synthesis and T cell trafficking, Biomaterials. 128 (2017) 19–32. https://doi.org/10.1016/j.biomaterials.2017.03.002.
L. M. Christman, L. L. Dean, J. C. Allen, et al., Peanut skin phenolic extract attenuates hyperglycemic responses in vivo and in vitro, PLoS ONE 14(3) (2019) e214591. https://doi.org/10.1371/journal.pone.0214591.
C. Zhao, G. P. Chen, H. Wang, et al., Bio-inspired intestinal scavenger from microfluidic electrospray for detoxifying lipopolysaccharide, Bioact. Mater. 6(6) (2021) 1653–1662. https://doi.org/10.1016/j.bioactmat.2020.11.017.
G. Matacchione, F. Gurău, S. Baldoni, et al., Pleiotropic effects of polyphenols on glucose and lipid metabolism: focus on clinical trials, Ageing Res. Rev. 61 (2020) 101074. https://doi.org/10.1016/j.arr.2020.101074.
Y. T. Wang, T. Ying, J. X. Li, et al., Hierarchical micro/nanofibrous scaffolds incorporated with curcumin and zinc ion eutectic metal organic frameworks for enhanced diabetic wound healing via anti-oxidant and anti-inflammatory activities, Chem. Eng. J. 402 (2020) 126273. https://doi.org/10.1016/j.cej.2020.126273.
M. S. Costamagna, L. G. Gómez-Mascaraque, I. C. Zampini, et al., Microencapsulated chañar phenolics: a potential ingredient for functional foods development, J. Funct. Foods 37 (2017) 523–530. https://doi.org/10.1016/j.jff.2017.08.018.
L. Chen, C. Gnanaraj, P. Arulselvan, et al., A review on advanced microencapsulation technology to enhance bioavailability of phenolic compounds: based on its activity in the treatment of type 2 diabetes, Trends Food Sci. Tech. 85 (2019) 149–162. https://doi.org/10.1016/j.jpgs.2018.11.026.
F. F. de Araújo, D. de Paulo Farias, I. A. Neri-Numa, et al., Polyphenols and their applications: an approach in food chemistry and innovation potential, Food Chem. 338 (2021) 127535. https://doi.org/10.1016/j.foodchem.2020.127535.
Food Science of Animal Products published by Tsinghua University Press. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).