Publications
Sort:
Open Access Review Article Issue
Beneficial effects of food-derived polyphenols on type 2 diabetes: mechanistic insights based on gut microbiota alterations and anti-inflammatory responses
Food Science of Animal Products 2023, 1 (4): 9240043
Published: 20 February 2024
Abstract PDF (1.2 MB) Collect
Downloads:138

Food-derived polyphenols and their effects on type 2 diabetes are linked to the microbiota. Here, we expound on the mechanisms of food-derived polyphenols that affect the onset of type 2 diabetes, focusing on the roles played by gut microorganisms and the metabolites they produce. We also discuss the mechanism of food-derived polyphenols lower blood glucose through host signaling-mediated inflammatory responses. Food-derived polyphenols alleviate the development of type 2 diabetes by remodeling gut microbiome composition and reducing inflammatory responses. Food-derived polyphenols inhibit the activity of α-glucosidase, α-amylase, and dipeptidyl peptidase IV enzymes to reduce postprandial blood glucose levels. The nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) is considered a key regulator of food-derived polyphenols in alleviating the onset of type 2 diabetes. Inhibition of NF-κB activation can increase insulin sensitivity, reduce inflammation, and maintain glucose homeostasis. This investigation reveals that food-derived polyphenols can alleviate the onset of type 2 diabetes and offers adequate theoretical knowledge in support of their usage as such.

Total 1