AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Beneficial effects of food-derived polyphenols on type 2 diabetes: mechanistic insights based on gut microbiota alterations and anti-inflammatory responses

Han Song1Wei Jia1,2( )
School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China
Show Author Information

Abstract

Food-derived polyphenols and their effects on type 2 diabetes are linked to the microbiota. Here, we expound on the mechanisms of food-derived polyphenols that affect the onset of type 2 diabetes, focusing on the roles played by gut microorganisms and the metabolites they produce. We also discuss the mechanism of food-derived polyphenols lower blood glucose through host signaling-mediated inflammatory responses. Food-derived polyphenols alleviate the development of type 2 diabetes by remodeling gut microbiome composition and reducing inflammatory responses. Food-derived polyphenols inhibit the activity of α-glucosidase, α-amylase, and dipeptidyl peptidase IV enzymes to reduce postprandial blood glucose levels. The nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) is considered a key regulator of food-derived polyphenols in alleviating the onset of type 2 diabetes. Inhibition of NF-κB activation can increase insulin sensitivity, reduce inflammation, and maintain glucose homeostasis. This investigation reveals that food-derived polyphenols can alleviate the onset of type 2 diabetes and offers adequate theoretical knowledge in support of their usage as such.

References

[1]

W. Wei, W. B. Jiang, T. S. Han, et al., The future of prevention and treatment of diabetes with nutrition in China, Cell Metab. 33(10) (2021) 1908–1910. https://doi.org/10.1016/j.cmet.2021.09.012.

[2]

I. I. Ismail, S. Kumar, S. Shukla, et al., Putative antidiabetic herbal food ingredients: nutra/functional properties, bioavailability, and effect on metabolic pathways, Trends Food Sci. Tech. 97 (2020) 317–340. https://doi.org/10.1016/j.jpgs.2020.01.017.

[3]

Q. Y. Lyu, H. T. Deng, S. X. Wang, et al., Dietary supplementation with casein/cyanidin-3-O-glucoside nanoparticles alters the gut microbiota in high-fat fed C57BL/6 mice, Food Chem. 412 (2023) 135494. https://doi.org/10.1016/j.foodchem.2023.135494.

[4]

C. Ning, Y. H Jiao, J. Q. Wang, et al., Recent advances in the managements of type 2 diabetes mellitus and natural hypoglycemic substances, Food Sci. Hum. Wellness 11(5) (2022) 1121–1133. https://doi.org/10.1016/j.fshw.2022.04.004.

[5]

P. Daliu, A. Santini, E. Novellino, From pharmaceuticals to nutraceuticals: bridging disease prevention and management, Expert Rev. Clin. Phar. 12(1) (2019) 1–7. https://doi.org/10.1080/17512433.2019.1552135.

[6]

L. P. Zhao, F. Zhang, X. Y. Ding, et al., Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes, Science 359 (2018) 1151–1156. https://doi.org/10.1126/science.aao5774.

[7]

G. C. Román, R. E. Jackson, R. Gadhia, et al., Mediterranean diet: the role of long-chain ω-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, cacao, and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease, Rev. Neurol-France. 175(10) (2019) 724–741. https://doi.org/10.1016/j.neurol.2019.08.005.

[8]

Z. B. Fan, W. Jia, A. Du, et al., Discovery of Se-containing flavone in Se-enriched green tea and the potential application value in the immune regulation, Food Chem. 394 (2022) 133468. https://doi.org/10.1016/j.foodchem.2022.133468.

[9]

M. G. Salvia, P. A. Quatromoni, Behavioral approaches to nutrition and eating patterns for managing type 2 diabetes: a review, Am. J. Med. 9 (2023) 100034. https://doi.org/10.1016/j.ajmo.2023.100034.

[10]

W. Li, H. H. Chen, B. Xu, et al., Research progress on classification, sources, and functions of dietary polyphenols for prevention and treatment of chronic diseases, J. Funct. Foods. 3(4) (2023) 289–305. https://doi.org/10.1016/j.jfutfo.2023.03.001.

[11]

G. Catalkaya, K. Venema, L. Lucini, et al., Interaction of dietary polyphenols and gut microbiota: microbial metabolism of polyphenols, influence on the gut microbiota, and implications on host health, Food Front. 1(2) (2020) 109–133. https://doi.org/10.1002/fft2.25.

[12]

U. Majeed, A. Shafi, H. Majeed, et al., Grape (Vitis vinifera L. ) phytochemicals and their biochemical protective mechanisms against leading pathologies, Food Chem. 405 (2023) 134762. https://doi.org/10.1016/j.foodchem.2022.134762.

[13]

M. J. Yao, H. Teng, Q. Y. Lv, et al., Anti-hyperglycemic effects of dihydromyricetin in streptozotocin-induced diabetic rats, Food Sci. Hum. Wellness 10(2) (2021) 155–162. https://doi.org/10.1016/j.fshw.2021.02.004.

[14]

W. Q. Xu, Y. J. Huang, W. T. Zhou, et al., Theasinensin A attenuated diabetic development by restoring glucose homeostasis, improving hepatic steatosis, and modulating gut microbiota in high-fat-diet/streptozotocin-induced diabetic mice, Food Sci. Hum. Wellness 12(6) (2023) 2073–2086. https://doi.org/10.1016/j.fshw.2023.03.026.

[15]

T. G. Wang, Z. Y. Zhao, G. X. Wang, et al., Age-related disparities in diabetes risk attributable to modifiable risk factor profiles in Chinese adults: a nationwide, population-based, cohort study, The Lancet Healthy Longevity 2(10) (2021) e618–e628. https://doi.org/10.1016/S2666-7568(21)00177-X.

[16]

H. Memon, F. Abdulla, T. Reljic, et al., Effects of combined treatment of probiotics and metformin in management of type 2 diabetes: a systematic review and meta-analysis, Diabetes Res. Clin. Pr. 202 (2023) 110806. https://doi.org/10.1016/j.diabres.2023.110806.

[17]

M. Y. Wang, J. Y. Li, T. Hu, et al., Metabolic fate of tea polyphenols and their crosstalk with gut microbiota, Food Sci. Hum. Wellness 11(3) (2022) 455–466. https://doi.org/10.1016/j.fshw.2021.12.003.

[18]

N. M. Koropatkin, E. A. Cameron, E. C. Martens, How glycan metabolism shapes the human gut microbiota, Nat. Rev. Microbiol. 10(5) (2012) 323–335. https://doi.org/10.1038/nrmicro2746.

[19]

J. H. Liu, Z. Y. He, N. Ma, et al., Beneficial effects of dietary polyphenols on high-fat diet-induced obesity linking with modulation of gut microbiota, J. Agr. Food Chem. 68(1) (2020) 33–47. https://doi.org/10.1021/acs.jafc.9b06817.

[20]

Z. X. Liu, M. H. Liu, J. Meng, et al., A review of the interaction between diet composition and gut microbiota and its impact on associated disease, J. Funct. Foods. 4(3) (2024) 221–232. https://doi.org/10.1016/j.jfutfo.2023.07.004.

[21]

H. N. Sanchez, J. B. Moroney, H. Gan, et al., B cell-intrinsic epigenetic modulation of antibody responses by dietary fiber-derived short-chain fatty acids, Nat. Commun. 11(1) (2020) 60. https://doi.org/10.1038/s41467-019-13603-6.

[22]

S. Lin, S. T. Wang, P. Wang, et al., Bile acids and their receptors in regulation of gut health and diseases, Prog. Lipid Res. 89 (2023) 101210. https://doi.org/10.1016/j.plipres.2022.101210.

[23]

S. Khan, G. Jena, Sodium butyrate reduces insulin-resistance, fat accumulation and dyslipidemia in type-2 diabetic rat: a comparative study with metformin, Chem-Biol. Interact. 254 (2016) 124–134. https://doi.org/10.1016/j.cbi.2016.06.007.

[24]

Y. S. Zhao, X. M. Tong, X. M. Wu, et al., Metabolomics reveal the regulatory effect of polysaccharides from fermented barley bran extract on lipid accumulation in HepG2 cells, Metabolites 13(2) (2023) 223. https://doi.org/10.3390/metabo13020223.

[25]

Y. J. Bai, Y. Zhou, X. Li, et al., Longan pulp polysaccharides regulate gut microbiota and metabolites to protect intestinal epithelial barrier, Food Chem. 422 (2023) 136225. https://doi.org/10.1016/j.foodchem.2023.136225.

[26]

L. Macia, J. Tan, A. T. Vieira, et al., Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome, Nat. Commun. 6(1) (2015) 6734. https://doi.org/10.1038/ncomms7734.

[27]

W. Q. Feng, Y. C. Wu, G. X. Chen, et al., Sodium butyrate attenuates diarrhea in weaned piglets and promotes tight junction protein expression in colon in a GPR109A-dependent manner, Cell Physiol. Biochem. 47(4) (2018) 1617–1629. https://doi.org/10.1159/000490981.

[28]

N. Singh, A. Gurav, S. Sivaprakasam, et al., Activation of Gpr109a, Receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis, Immunity 40(1) (2014) 128–139. https://doi.org/10.1016/j.immuni.2013.12.007.

[29]

D. Cheng, J. H. Xu, J. Y. Li, et al., Butyrate ameliorated-NLRC3 protects the intestinal barrier in a GPR43-dependent manner, Exp. Cell Res. 368(1) (2018) 101–110. https://doi.org/10.1016/j.yexcr.2018.04.018.

[30]

M. Aoyama, J. Kotani, M. Usami, Butyrate, and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways, Nutrition 26(6) (2010) 653–661. https://doi.org/10.1016/j.nut.2023.112118.

[31]

J. J. Xu, W. Sun, H. Li, et al., Xanthan gum oligosaccharides ameliorate glucose metabolism and related gut microbiota dysbiosis in type 2 diabetic mice, Food Biosci. 50 (2022) 102002. https://doi.org/10.1016/j.fbio.2022.102002.

[32]

V. Gowd, T. Bao, L. L. Wang, et al., Antioxidant and antidiabetic activity of blackberry after gastrointestinal digestion and human gut microbiota fermentation, Food Chem. 269 (2018) 618–627. https://doi.org/10.1016/j.foodchem.2018.07.020.

[33]

Z. M. Dou, C. Chen, Q. Huang, et al., In vitro digestion of the whole blackberry fruit: bioaccessibility, bioactive variation of active ingredients and impacts on human gut microbiota, Food Chem. 370 (2022) 131001. https://doi.org/10.1016/j.foodchem.2021.131001.

[34]

B. A. Neuschwander-Tetri, R. Loomba, A. J. Sanyal, et al., Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial, Lancet 385 (2015) 956–965. https://doi.org/10.1016/S0140-6736(14)61933-4.

[35]

T. Inagaki, M. Choi, A. Moschetta, et al., Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis, Cell Metab. 2(4) (2005) 217–225. https://doi.org/10.1016/j.cmet.2005.09.001.

[36]

L. L. Du, Q. Li, H. Yi, et al., Gut microbiota-derived metabolites as key actors in type 2 diabetes mellitus, Biomed. Pharmacother. 149 (2022) 112839. https://doi.org/10.1016/j.biopha.2022.112839.

[37]

M. Li, W. J. Zhou, Y. Q. Dang, et al., Berberine compounds improves hyperglycemia via microbiome mediated colonic TGR5-GLP pathway in db/db mice, Biomed. Pharmacother. 132 (2020) 110953. https://doi.org/10.1016/j.biopha.2020.110953.

[38]

C. Thomas, A. Gioiello, L. Noriega, et al., TGR5-mediated bile acid sensing controls glucose homeostasis, Cell Metab. 10(3) (2009) 167–177. https://doi.org/10.1016/j.cmet.2009.08.001.

[39]

D. P. Kumar, S. Rajagopal, S. Mahavadi, et al., Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic β cells, Biochem. Bioph. Res. Co. 427(3) (2012) 600–605. https://doi.org/10.1016/j.bbrc.2012.09.104.

[40]

W. W. Lv, J. Y. Song, R. Nowshin Raka, et al., Effects of food emulsifiers on high fat-diet-induced obesity, intestinal inflammation, changes in bile acid profile, and liver dysfunction, Food Res. Int. 173 (2023) 113302. https://doi.org/10.1016/j.foodres.2023.113302.

[41]

S. Lin, B. Stoll, J. Robinson, et al., Differential action of TGR5 agonists on GLP-2 secretion and promotion of intestinal adaptation in a piglet short bowel model, Am. J. Physiol-Gastr. L. 316(5) (2019) G641–G652. https://doi.org/10.1152/ajpgi.00360.2018.

[42]

S. C. Hui, Y. Liu, L. Huang, et al., Resveratrol enhances brown adipose tissue activity and white adipose tissue browning in part by regulating bile acid metabolism via gut microbiota remodeling, Int. J. Obesity. 44(8) (2020) 1678–1690. https://doi.org/10.1038/s41366-020-0566-y.

[43]

N. P. Gannon, J. K. Schnuck, R. A. Vaughan, BCAA Metabolism, and insulin sensitivity-dysregulated by metabolic status, Mol. Nutr. Food Res. 62(6) (2018) 1700756. https://doi.org/10.1002/mnfr.201700756.

[44]

M. Holeček, Why are branched-chain amino acids increased in starvation and diabetes, Nutrients 12 (2020). https://doi.org/10.3390/nu12103087.

[45]

P. J. White, R. W. McGarrah, M. A. Herman, et al., Insulin action, type 2 diabetes, and branched-chain amino acids: a two-way street, Mol. Metab. 52 (2021) 101261. https://doi.org/10.1016/j.molmet.2021.101261.

[46]

C. C. Metges, Contribution of microbial amino acids to amino acid homeostasis of the host, J. Nutr. 130(7) (2000) 1857S–1864S. https://doi.org/10.1093/jn/130.7.1857S.

[47]

L. A. David, C. F. Maurice, R. N. Carmody, et al., Diet rapidly and reproducibly alters the human gut microbiome, Nature 505(7484) (2014) 559–563. https://doi.org/10.1038/nature12820.

[48]

C. Shortt, O. Hasselwander, A. Meynier, et al., Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients, Eur. J. Nutr. 57(1) (2018) 25–49. https://doi.org/10.1007/s00394-017-1546-4.

[49]

B. S. Y. Choi, N. Daniel, V. P. Houde, et al., Feeding diversified protein sources exacerbates hepatic insulin resistance via increased gut microbial branched-chain fatty acids and mTORC1 signaling in obese mice, Nat. Commun. 12(1) (2021) 3377. https://doi.org/10.1038/s41467-021-23782-w.

[50]

A. Maykish, A. K. Sikalidis, Utilization of hydroxyl-methyl butyrate, leucine, glutamine, and arginine supplementation in nutritional management of sarcopenia-implications and clinical considerations for type 2 diabetes mellitus risk modulation, J. Pers. Med. 10(1) (2020) 19. https://doi.org/10.3390/jpm10010019.

[51]

J. Lee, A. Vijayakumar, P. J. White, et al., BCAA Supplementation in mice with diet-induced obesity alters the metabolome without impairing glucose homeostasis, Endocrinology 162(7) (2021) bqab62. https://doi.org/10.1210/endocr/bqab062.

[52]

H. H. Chen, Q. X. Nie, J. L. Hu, et al., Multiomics approach to explore the amelioration mechanisms of glucomannans on the metabolic disorder of type 2 diabetic rats, J. Agr. Food Chem. 69(8) (2021) 2632–2645. https://doi.org/10.1021/acs.jafc.0c07871.

[53]

R. J. O. Sjögren, D. Rizo-Roca, A. V. Chibalin, et al., Branched-chain amino acid metabolism is regulated by ERRα in primary human myotubes and is further impaired by glucose loading in type 2 diabetes, Diabetologia 64(9) (2021) 2077–2091. https://doi.org/10.1007/s00125-021-05481-9.

[54]

H. S. Zhao, F. Y. Zhang, D. Sun, et al., Branched-chain amino acids exacerbate obesity-related hepatic glucose and lipid metabolic disorders via attenuating Akt2 signaling, Diabetes 69(6) (2020) 1164–1177. https://doi.org/10.2337/db19-0920.

[55]

E. Wada, M. Kobayashi, D. Kohno, et al., Disordered branched chain amino acid catabolism in pancreatic islets is associated with postprandial hypersecretion of glucagon in diabetic mice, J. Nutr. Biochem. 97 (2021) 108811. https://doi.org/10.1016/j.jnutbio.2021.108811.

[56]

L. Zhang, Y. S. Yue, M. X. Shi, et al., Dietary Luffa cylindrica (L.) Roem promotes branched-chain amino acid catabolism in the circulation system via gut microbiota in diet-induced obese mice, Food Chem. 320 (2020) 126648. https://doi.org/10.1016/j.foodchem.2020.126648.

[57]

F. Di Lorenzo, K. A. Duda, R. Lanzetta, et al., A journey from structure to function of bacterial lipopolysaccharides, Chem. Rev. 122(20) (2022) 15767–15821. https://doi.org/10.1021/acs.chemrev.0c01321.

[58]

F. F. Anhê, N. G. Barra, J. F. Cavallari, et al., Metabolic endotoxemia is dictated by the type of lipopolysaccharide, Cell Rep. 36(11) (2021) 109691. https://doi.org/10.1016/j.celrep.2021.109691.

[59]

N. Li, Z. P. Cen, Z. D. Zhao, et al., BCAA dysmetabolism in the host and gut microbiome, a key player in the development of obesity and T2DM, Med. Microecol. 16 (2023) 100078. https://doi.org/10.1016/j.medmic.2023.100078.

[60]

F. Balkwill, K. A. Charles, A. Mantovani, Smoldering and polarized inflammation in the initiation and promotion of malignant disease, Cancer Cell 7(3) (2005) 211–217. https://doi.org/10.1016/j.ccr.2005.02.013.

[61]

Z. Mirsanei, N. Heidari, A. Hazrati, et al., Oleuropein reduces LPS-induced inflammation via stimulating M2 macrophage polarization, Biomed. Pharmacother. 163 (2023) 114857. https://doi.org/10.1016/j.biopha.2023.114857.

[62]

G. Toda, K. Soeda, Y. Okazaki, et al., Insulin- and lipopolysaccharide-mediated signaling in adipose tissue macrophages regulates postprandial glycemia through Akt-mTOR activation, Mol. Cell. 79(1) (2020) 43–53. https://doi.org/10.1016/j.molcel.2020.04.033.

[63]

D. De Paulo Farias, F. F. De Araújo, I. A. Neri-Numa, et al., Antidiabetic potential of dietary polyphenols: a mechanistic review, Food Res. Int. 145 (2021) 110383. https://doi.org/10.1016/j.foodres.2021.110383.

[64]

X. X. Li, Y. X. Bai, Z. Y. Jin, et al., Food-derived non-phenolic α-amylase, and α-glucosidase inhibitors for controlling starch digestion rate and guiding diabetes-friendly recipes, LWT-Food Sci. Technol. 153 (2022) 112455. https://doi.org/10.1016/j.lwt.2021.112455.

[65]

S. J. Li, W. M. Zhang, R. M. Wang, et al., Screening and identification of natural α-glucosidase and α-amylase inhibitors from partridge tea (Mallotus furetianus Muell-Arg) and in silico analysis, Food Chem. 388 (2022) 133004. https://doi.org/10.1016/j.foodchem.2022.133004.

[66]

R. Zhang, W. Jia, Systematic investigation on the multi-scale mechanisms of bitter peptide self-assembly for flavor modulation, Food Chem. 430 (2024) 137063. https://doi.org/10.1016/j.foodchem.2023.137063.

[67]

L. Shi, W. Jia, R. Zhang, et al., Adulteration of endogenous substances as a next challenge in dairy safety: high-throughput analysis of flavours in goat milk based on the molecular mechanism of flavouring components dynamic changes, Trends Food Sci. Tech. 142 (2023) 104229. https://doi.org/10.1016/j.jpgs.2023.104229.

[68]

G. Jagadeesan, K. Muniyandi, A. L. Manoharan, et al., Understanding the bioaccessibility, α-amylase and α-glucosidase enzyme inhibition kinetics of Allmania nodiflora (L.) R. Br. ex-wight polyphenols during in vitro simulated digestion, Food Chem. 372 (2022) 131294. https://doi.org/10.1016/j.foodchem.2021.131294.

[69]

H. H. Liu, C. Zheng, Z. L. Li, et al., Inhibitory mechanism of phenolic compounds in rapeseed oil on α-amylase and α-glucosidase: spectroscopy, molecular docking, and molecular dynamic simulation, Spectrochim. Acta A 289 (2023) 122251. https://doi.org/10.1016/j.saa.2022.122251.

[70]

C. P. Silva, G. R. Sampaio, R. A. M. S. Freitas, et al., Polyphenols from guaraná after in vitro digestion: evaluation of bioacessibility and inhibition of activity of carbohydrate-hydrolyzing enzymes, Food Chem. 267 (2018) 405–409. https://doi.org/10.1016/j.foodchem.2017.08.078.

[71]

N. Sánchez-Otero, F. J. Rodríguez-Berrocal, M. P. de la Cadena, et al., Evaluation of pleural effusion sCD26 and DPP-IV as diagnostic biomarkers in lung disease, Sci. Rep. 4(1) (2014) 3999. https://doi.org/10.1038/srep03999.

[72]

P. K. Huang, S. R. Lin, C. H. Chang, et al., Natural phenolic compounds potentiate hypoglycemia via inhibition of dipeptidyl peptidase IV, Sci. Rep. 9(1) (2019) 15585. https://doi.org/10.1038/s41598-019-52088-7.

[73]

M. K. Leong, R. Syu, Y. Ding, et al., Prediction of N-methyl-D-aspartate receptor GluN1-ligand binding affinity by a Novel SVM-Pose/SVM-score combinatorial ensemble docking scheme, Sci. Rep. 7(1) (2017) 40053. https://doi.org/10.1038/srep40053.

[74]

N. González-Abuín, N. Martínez-Micaelo, M. Blay, et al., Grape seed-derived procyanidins decrease dipeptidyl-peptidase 4 activity and expression, J. Agr. Food Chem. 60(36) (2012) 9055–9061. https://doi.org/10.1021/jf3010349.

[75]

Z. H. Luo, T. Li, Q. Q. Gao, et al., Impact of licochalcone A on the progression of diabetic nephropathy in type 2 diabetes mellitus of C57BL/6 mice, Food Funct. 12(21) (2021) 10676–10689. https://doi.org/10.1039/D1FO01630J.

[76]

C. Q. Li, J. H. Shi, J. Mu, et al., Licochalcone A derivatives as selective dipeptidyl peptidase 4 inhibitors with anti-inflammatory effects, J. Nat. Prod. 86(7) (2023) 1824–1831. https://doi.org/10.1021/acs.jnatprod.3c00355.

[77]

X. Gong, X. Li, Y. Xia, et al., Effects of phytochemicals from plant-based functional foods on hyperlipidemia and their underpinning mechanisms, Trends Food Sci. Tech. 103 (2020) 304–320. https://doi.org/10.1016/j.jpgs.2020.07.026.

[78]

Z. G. Gao, D. Hwang, F. Bataille, et al., Serine phosphorylation of insulin receptor substrate 1 by inhibitor κB kinase complex, J. Biol. Chem. 277(50) (2002) 48115–48121. https://doi.org/10.1074/jbc.M209459200.

[79]

J. Chen, X. J. Meng, Aronia melanocarpa anthocyanin extracts improve hepatic structure and function in high-fat diet-/streptozotocin-induced T2DM mice, J. Agr. Food Chem. 70(37) (2022) 11531–11543. https://doi.org/10.1021/acs.jafc.2c03286.

[80]

J. H. Zhang, M. Chen, Y. Y. Zhai, et al., Retracted: HOTAIR regulates lipopolysaccharide-induced inflammatory response in hepatocytes, J. Cell Physiol. 235(5) (2020) 4247–4255. https://doi.org/10.1002/jcp.29301.

[81]

A. Ghorbani, R. Rashidi, R. Shafiee-Nick, Flavonoids for preserving pancreatic beta cell survival and function: a mechanistic review, Biomed. Pharmacother. 111 (2019) 947–957. https://doi.org/10.1016/j.biopha.2018.12.127.

[82]

W. Ding, H. Liu, Z. Q. Qin, et al., Dietary antioxidant anthocyanins mitigate type II diabetes through improving the disorder of glycometabolism and insulin resistance, J. Agr. Food Chem. 69(45) (2021) 13350–13363. https://doi.org/10.1021/acs.jafc.1c05630.

[83]

S. H. Mei, X. M. Chen, Investigation into the anti-inflammatory mechanism of coffee leaf extract in LPS-induced Caco-2/U937 co-culture model through cytokines and NMR-based untargeted metabolomics analyses, Food Chem. 404 (2023) 134592. https://doi.org/10.1016/j.foodchem.2022.134592.

[84]

X. X. Ren, Y. Sun, Q. F. Guo, et al., Ameliorating effect of the total flavonoids of Morus nigra L. on prediabetic mice based on regulation of inflammation and insulin sensitization, J. Agr. Food Chem. 70(39) (2022) 12484–12501. https://doi.org/10.1021/acs.jafc.2c04970.

[85]

M. W. Poulsen, R. V. Hedegaard, J. M. Andersen, et al., Advanced glycation endproducts in food and their effects on health, Food Chem. Toxicol. 60 (2013) 10–37. https://doi.org/10.1016/j.fct.2013.06.052.

[86]

C. Z. P. Nie, Y. Li, H. F. Qian, et al., Advanced glycation end products in food and their effects on intestinal tract, Crit. Rev. Food Sci. 62(11) (2022) 3103–3115. https://doi.org/10.1080/10408398.2020.1863904.

[87]
Z. B. Fan, W. Jia, A. Du, et al. , Complex pectin metabolism by Lactobacillus and Streptococcus suggests an effective control approach for Maillard harmful products in brown fermented milk, FR 2022. https://doi.org/10.1016/j.fmre.2022.12.003.
[88]

R. ZAMORA, F. J. HIDALGO, Coordinate contribution of lipid oxidation and Maillard reaction to the nonenzymatic food browning, Crit. Rev. Food Sci. 45(1) (2005) 49–59. https://doi.org/10.1080/10408690590900117.

[89]

M. E. Garay-Sevilla, A. Gomez-Ojeda, I. González I, et al., Contribution of RAGE axis activation to the association between metabolic syndrome and cancer, Mol. Cell Biochem. 476(3) (2021) 1555–1573. https://doi.org/10.1007/s11010-020-04022-z.

[90]

W. Z. Yu, M. R. Tao, Y. L. Zhao, et al., 4’-Methoxyresveratrol alleviated AGE-induced inflammation via RAGE-mediated NF-κB and NLRP3 inflammasome pathway, Molecules 23(6) (2018) 1447. https://doi.org/10.3390/molecules23061447.

[91]

C. H. Wu, C. M. Huang, C. H. Lin, et al., Advanced glycosylation end products induce NF-κB dependent iNOS expression in RAW 264.7 cells, Mol. Cell Endocrinol. 194(1) (2002) 9–17. https://doi.org/10.1016/S0303-7207(02)00212-5.

[92]

Q. H. Song, J. J. Liu, L. Y. Dong, et al., Novel advances in inhibiting advanced glycation end product formation using natural compounds, Biomed. Pharmacother. 140 (2021) 111750. https://doi.org/10.1016/j.biopha.2021.111750.

[93]

W. Jia, A. A. Guo, R. Zhang, et al., Mechanism of natural antioxidants regulating advanced glycosylation end products of Maillard reaction, Food Chem. 404 (2023) 134541. https://doi.org/10.1016/j.foodchem.2022.134541.

[94]

W. Li, R. E. Maloney, M. L. Circu, et al., Acute carbonyl stress induces occludin glycation and brain microvascular endothelial barrier dysfunction: role for glutathione-dependent metabolism of methylglyoxal, Free Radical Bio. Med. 54 (2013) 51–61. https://doi.org/10.1016/j.freeradbiomed.2012.10.552.

[95]

W. B. Zhao, P. J. Cai, N. Zhang, et al., Inhibitory effects of polyphenols from black chokeberry on advanced glycation end-products (AGEs) formation, Food Chem. 392 (2022) 133295. https://doi.org/10.1016/j.foodchem.2022.133295.

[96]

Q. Z. Zhang, Z. J. Huang, Y. Wang, et al., Chinese bayberry (Myrica rubra) phenolics mitigated protein glycoxidation and formation of advanced glycation end-products: a mechanistic investigation, Food Chem. 361 (2021) 130102. https://doi.org/10.1016/j.foodchem.2021.130102.

[97]

V. Gowd, L. H. Xie, C. D. Sun, et al., Phenolic profile of bayberry followed by simulated gastrointestinal digestion and gut microbiota fermentation and its antioxidant potential in HepG2 cells, J. Funct. Foods. 70 (2020) 103987. https://doi.org/10.1016/j.jff.2020.103987.

[98]

D. Li, Y. Yang, L. Sun, et al., Effect of young apple (Malus domestica Borkh. cv. Red Fuji) polyphenols on alleviating insulin resistance, Food Bio. 36 (2020) 100637. https://doi.org/10.1016/j.fbio.2020.100637.

[99]

J. U. Obaroakpo, L. Liu, S. Zhang, et al., In vitro modulation of glucagon-like peptide release by DPP-IV inhibitory polyphenol-polysaccharide conjugates of sprouted quinoa yoghurt, Food Chem. 324 (2020) 126857. https://doi.org/10.1016/j.foodchem.2020.126857.

[100]

G. R. Gandhi, S. Ignacimuthu, M. G. Paulraj, Solanum torvum Swartz. fruit containing phenolic compounds shows antidiabetic and antioxidant effects in streptozotocin induced diabetic rats, Food Chem. Toxicol. 49(11) (2011) 2725–2733. https://doi.org/10.1016/j.fct.2011.08.005.

[101]

H. Li, H. Park, H Ji, et al., Phenolic-enriched blueberry-leaf extract attenuates glucose homeostasis, pancreatic β-cell function, and insulin sensitivity in high-fat diet-induced diabetic mice, Nutr Res. 73 (2020) 83–96. https://doi.org/10.1016/j.nutres.2019.09.005.

[102]

R. H. Elsayed, E. M. Kamel, A. M. Mahmoud, et al., Rumex dentatus L. phenolics ameliorate hyperglycemia by modulating hepatic key enzymes of carbohydrate metabolism, oxidative stress and PPARγ in diabetic rats, Food Chem. Toxicol. 138 (2020) 111202. https://doi.org/10.1016/j.fct.2020.111202.

[103]

J. Abolghasemi, M. A. Farboodniay Jahromi, M. Hossein Sharifi, et al., Effects of Zataria oxymel on obesity, insulin resistance and lipid profile: a randomized, controlled, triple-blind trial, J. Integr. Med. 18(5) (2020) 401–408. https://doi.org/10.1016/j.joim.2020.06.003.

[104]

D. Granato, A. Mocan, J. S. Câmara, Is a higher ingestion of phenolic compounds the best dietary strategy? A scientific opinion on the deleterious effects of polyphenols in vivo, Trends Food Sci. Tech. 98 (2020) 162–166. https://doi.org/10.1016/j.jpgs.2020.01.010.

[105]

Ribnicky D M, Roopchand D E, Oren A, et al., Effects of a high fat meal matrix and protein complexation on the bioaccessibility of blueberry anthocyanins using the TNO gastrointestinal model (TIM-1), Food Chem. 142 (2014) 349–357. https://doi.org/10.1016/j.foodchem.2013.07.073.

[106]

T. Wu, J. J. Yin, G. H. Zhang, et al., Mulberry and cherry anthocyanin consumption prevents oxidative stress and inflammation in diet-induced obese mice, Mol. Nutr. Food Res. 60(3) (2016) 687–694. https://doi.org/10.1002/mnfr.201500734.

[107]

X. J. Wang, Z. T. Zhao, Improved encapsulation capacity of casein micelles with modified structure, J. Food Eng. 333 (2022) 111138. https://doi.org/10.1016/j.jfoodeng.2022.111138.

[108]

A. Samadder, D. Tarafdar, S. K. Abraham, et al., Nano-pelargonidin protects hyperglycemic-induced L6 cells against mitochondrial dysfunction, Planta Med. 83(5) (2017) 468–475. https://doi.org/10.1055/s-0043-100017.

[109]

J. Liu, Z. Q. Chen, J. Wang, et al., Encapsulation of curcumin nanoparticles with MMP9-responsive and thermos-sensitive hydrogel improves diabetic wound healing, ACS Appl. Mater. Interfaces. 10(19) (2018) 16315–16326. https://doi.org/10.1021/acsami.8b03868.

[110]

E. H. Gokce, S. Tuncay Tanrıverdi, I. Eroglu, et al., Wound healing effects of collagen-laminin dermal matrix impregnated with resveratrol loaded hyaluronic acid-DPPC microparticles in diabetic rats, Eur. J. Pharm. Biopharm. 119 (2017) 17–27. https://doi.org/10.1016/j.ejpb.2017.04.027.

[111]

D. Pham-Hua, L. E. Padgett, B. Xue, et al., Islet encapsulation with polyphenol coatings decreases pro-inflammatory chemokine synthesis and T cell trafficking, Biomaterials. 128 (2017) 19–32. https://doi.org/10.1016/j.biomaterials.2017.03.002.

[112]

L. M. Christman, L. L. Dean, J. C. Allen, et al., Peanut skin phenolic extract attenuates hyperglycemic responses in vivo and in vitro, PLoS ONE 14(3) (2019) e214591. https://doi.org/10.1371/journal.pone.0214591.

[113]

C. Zhao, G. P. Chen, H. Wang, et al., Bio-inspired intestinal scavenger from microfluidic electrospray for detoxifying lipopolysaccharide, Bioact. Mater. 6(6) (2021) 1653–1662. https://doi.org/10.1016/j.bioactmat.2020.11.017.

[114]

G. Matacchione, F. Gurău, S. Baldoni, et al., Pleiotropic effects of polyphenols on glucose and lipid metabolism: focus on clinical trials, Ageing Res. Rev. 61 (2020) 101074. https://doi.org/10.1016/j.arr.2020.101074.

[115]

Y. T. Wang, T. Ying, J. X. Li, et al., Hierarchical micro/nanofibrous scaffolds incorporated with curcumin and zinc ion eutectic metal organic frameworks for enhanced diabetic wound healing via anti-oxidant and anti-inflammatory activities, Chem. Eng. J. 402 (2020) 126273. https://doi.org/10.1016/j.cej.2020.126273.

[116]

M. S. Costamagna, L. G. Gómez-Mascaraque, I. C. Zampini, et al., Microencapsulated chañar phenolics: a potential ingredient for functional foods development, J. Funct. Foods 37 (2017) 523–530. https://doi.org/10.1016/j.jff.2017.08.018.

[117]

L. Chen, C. Gnanaraj, P. Arulselvan, et al., A review on advanced microencapsulation technology to enhance bioavailability of phenolic compounds: based on its activity in the treatment of type 2 diabetes, Trends Food Sci. Tech. 85 (2019) 149–162. https://doi.org/10.1016/j.jpgs.2018.11.026.

[118]

F. F. de Araújo, D. de Paulo Farias, I. A. Neri-Numa, et al., Polyphenols and their applications: an approach in food chemistry and innovation potential, Food Chem. 338 (2021) 127535. https://doi.org/10.1016/j.foodchem.2020.127535.

Food Science of Animal Products
Article number: 9240043
Cite this article:
Song H, Jia W. Beneficial effects of food-derived polyphenols on type 2 diabetes: mechanistic insights based on gut microbiota alterations and anti-inflammatory responses. Food Science of Animal Products, 2023, 1(4): 9240043. https://doi.org/10.26599/FSAP.2023.9240043

1614

Views

138

Downloads

0

Crossref

Altmetrics

Received: 23 December 2023
Revised: 24 December 2023
Accepted: 29 December 2023
Published: 20 February 2024
© Beijing Academy of Food Sciences 2023.

Food Science of Animal Products published by Tsinghua University Press. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return