AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Recent advances in the study of epitopes, allergens and immunologic cross-reactivity of edible mango

Honglei Guo,Yanjun Cong( )
Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food and Health, Beijing Technology and Business University, Beijing 100048, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Abstract

Mango (Mangifera indica L.) is a tropical fruit that is widely consumed as both fresh fruits and processed products around the world. The high incidence of mango allergy, on the other hand, has sparked widespread concern. Therefore, a summary and analysis of the current status and issues in mango allergen research can guide in-depth study on the mechanism of mango allergy and reveal effective desensitization methods. We described the incidence of fruit allergy, as well as the mechanism and clinical symptoms of mango allergy, in this review. We also looked into the structural properties of mango allergens, the effect of processing methods on mango allergens, prediction methods for mango allergen epitopes, and the current state of research on mango cross-reactive allergens and preventive measures. Finally, the research directions and ideas for the future are proposed and discussed.

References

[1]

H. Miyazawa, W. Nishie, H. Hata, et al., A severe case of mango dermatitis, J. Eur. Acad. Dermatol. Venereol. 32 (2018) E160-E161. https://doi.org/10.1111/jdv.14656.

[2]

M. Yoo, B. Carius, Mango dermatitis after urushiol sensitization, Clin. Pract. Cases Emerg. Med. 3 (2019) 361-363. https://doi.org/10.5811/cpcem.2019.6.43196.

[3]

K. O’Hern, F. Zhang, K.A. Zug, et al., “Mango slice” dermatitis: pediatric allergic contact dermatitis to mango pulp and skin, Dermat. 33 (2022) E46-E47. https://doi.org/10.1097/DER.0000000000000696.

[4]

D. Pesque, E. Canal-Garcia, E. Rozas-Munoz, et al., Non-occupational protein contact dermatitis induced by mango fruit, Contact Dermat. 84 (2021) 458-460. https://doi.org/10.1111/cod.13758.

[5]

Y. Alipour-Tehrany, J. Coulombe, Mango allergic contact dermatitis, Contact Dermat. 85 (2021) 241-242. https://doi.org/10.1111/cod.13818.

[6]

N. Raison-Peyron, F. Aljaber, O.A. Al Ali, et al., Mango dermatitis: an unusual cause of eyelid dermatitis in France, Contact Dermat. 85 (2021) 599-600. https://doi.org/10.1111/cod.13922.

[7]

M. Messina, C. Venter, Recent surveys on food allergy prevalence, Nutri. Today 55 (2020) 22-29. https://doi.org/10.1097/nt.000000000000038.

[8]

S.H. Sicherer, H.A. Sampson, Food allergy: epidemiology, pathogenesis, diagnosis and treatment. J. Allergy Clin. Immunol. 133 (2014) 291-307. https://doi.org/10.1016/j.jaci.2013.11.020.

[9]

S.K. Vanga, J. Mohit, R. Vijaya, Significance of fruit and vegetable allergens: possibilities of its reduction through processing, Food Rev. Int. 34 (2018) 103-125. https://doi.org/10.1080/87559129.2016.1239208.

[10]

L. Zuidmeer, K. Goldhahn, R.J. Rona, et al., The prevalence of plant food allergies: a systematic review, J. Allergy Clin. Immunol. 121 (2008) 1210-1218. https://doi.org/10.1016/j.jaci.2008.02.019.

[11]

A. Urisu, M. Ebisawa, K. Ito, et al., Japanese guideline for food allergy, Allergol Int. 63 (2014) 399-419. https://doi.org/10.2332/allergolint.14-RAI-0770.

[12]

H. Wang, Z. Gao, Z. Yang, et al., Anaphylaxis and generalized urticaria from eating Chinese bayberry fruit, J. Zhejiang University Sci. B. 13 (2012) 851-854. https://doi.org/10.1631/jzus.B1200150.

[13]

W. Tsai, H. Yin, S. Chen, et al., Development of monoclonal antibody based sandwich ELISA for detecting major mango allergen Man i 1 in processed foods, J. Food Saf. 41 (2021) 12884. https://doi.org/10.1111/jfs.12884.

[14]
P. Jiang, Investigation and experimental study on allergenicity of mango fruit in Kunming, Kunming Medical College, 2008.
[15]

R. Wang, H. Zhang, Two hundred thousands results of allergen specific IgE detection, Chin. J. clin. Immunol. Allergy. 6 (2012) 18-23.

[16]

Y. Jia, H. Wu, J. Luo, et al., Allergen analysis of 4622 children with allergic diseases in Shaanxi Province, J. Sichuan University (Medical Edition) 52 (2021) 832-838. https://doi.org/10.12182/20210960508.

[17]

E.H. Tham, D. Leung, How different parts of the world provide new insights into food allergy, Allergy Asthma Immunol. Res. 10 (2018) 290-299. https://doi.org/10.4168/aair.2018.10.4.290.

[18]

V.L. Hegde, Y.P. Venkatesh, Anaphylaxis following ingestion of mango fruit, J. Investig. Allergol. Clin. Immunol. 17 (2007) 341-344.

[19]

R. Renner, C. Hipler, R. Treudler, et al., Identification of a 27 kD protein in patients with anaphylactic reactions to mango, J. Investigational Allergol. Clin. Immunol. 18 (2008) 476-481.

[20]

R. Silva, C. Lopes, E. Castro, et al., Anaphylaxis to mango fruit and cross-reactivity with Artemisia vulgaris pollen, J. Investigational Allergology Clinical Immunol. 19 (2009) 420-422.

[21]

R. Sareen, A. Shah, A. Shah, hypersensitivity to mango manifesting as asthma exacerbation, J. Bras. Pneumol. 37 (2011) 135-138. https://doi.org/10.1590/S1806-37132011000100020

[22]

A. Shah, K. Gera, Immediate hypersensitivity reaction with mango, Pneumonol. I Alergol. Polska. 82 (2014) 445-453. https://doi.org/10.5603/PiAP.2014.0058

[23]

J.M. Rubin, J. Shapiro, P. Muehlbauer, et al., Shock reaction following ingestion of mango, JAMA 193 (1965) 397-398. https://doi.org/10.1001/jama.1965.03090050073027.

[24]

R.W. Dang, D.B. Bell, Anaphylactic reaction to the ingestion of mango, Hawaii Med. J. 27 (1967) 149-150.

[25]

S. Weinstein, S. Bassiri-Tehrani, D.E. Cohen, Allergic contact dermatitis to mango flesh, Int. J. Dermatology. 43 (2004) 195-196. https://doi.org/10.1111/j.1365-4632.2004.01703.x.

[26]

K. Oka, F. Saito, T. Yasuhara, et al., A study of cross-reactions between mango contact allergens and urushiol, Contact Dermat. 51 (2004) 292-296. https://doi.org/10.1111/j.0105-1873.2004.00451.x.

[27]

V. Wiwanitkit, Mango dermatitis, Indian J. Dermatol. 53 (2008) 158. https://doi.org/10.4103/0019-5154.43215.

[28]

C.H. Thoo, S. Freeman, Hypersensitivity reaction to the ingestion of mango flesh, Australasian J. Dermatol. 49 (2008) 116-119. https://doi.org/10.1111/j.1440-0960.2008.00433.x.

[29]

D. Lee, J.K. Seo, H.J. Lee, et al., A case of allergic contact dermatitis, Korean J. Dermatol. 47 (2009) 612-614.

[30]

S. Anvari, J. Miller, C.Y. Yeh, et al., IgE-mediated food allergy, Clin. Rev. Allergy Immunol. 57 (2019) 244-260. https://doi.org/10.1007/s12016-018-8710-3.

[31]

H. Yan, Z. Wu, X. Tian, et al., Identification and expression analysis of mango allergen gene based on transcriptome sequencing, J. South. Agric. 52 (2021) 1771-1779.

[32]

A. Paschke, H. Kinder, K. Zunker, et al., Characterization of allergens in mango fruit and ripening dependence of the allergenic potency, Food Agric. Immunol. 13 (2001) 51-61. https://doi.org/10.1080/09540100051074220.

[33]
H. Cao, Establishment of mouse model of mango allergy and identification of Chitinase, Shenzhen University, Shenzhen, China, 2018.
[34]

W.C. Tsai, T.C. Wu, B.L. Chiang, et al., Cloning, expression, and purification of recombinant major mango allergen Man i 1 in Escherichia coli, Protein Expr. Purif. 130 (2017) 35-43. https://doi.org/10.1016/j.pep.2016.06.009.

[35]
H. Xie, Preliminary study on molecular identification of mango allergens, Zhejiang University, Hangzhou, China, 2020. https://doi.org/10.27461/d.cnki.gzjdx.2020.001136.
[36]

D.L. Goldman, X. Li, K. Tsirilakis, et al., Increased chitinase expression and fungal-specific antibodies in the bronchoalveolar lavage fluid of asthmatic children, Clin. Experimental Allergy 42 (2012) 523-530. https://doi.org/10.1111/j.1365-2222.2011.03886.x.

[37]

N. Ukleja-Sokolowska, E. Gawronska-Ukleja, K. Lis, et al., Anaphylactic reaction in patient allergic to mango, Allergy Asthma Clin. Immunol. 14 (2018) 1-7. https://doi.org/10.1186/s13223-018-0294-1.

[38]

H.Y. Zhang, J.J. Song, Z. Liu, et al., Cloning, expression and immunocharacterization of pan-allergen profilin in mango fruit (Mangifera indica L.), J. Oral Maxillofacial Surg. 73 (2015) 540-544. https://doi.org/10.1016/j.joms.2015.03.034.

[39]

J. Song, H. Zhang, Z. Liu, et al., Mango profilin: cloning, expression and cross-reactivity with birch pollen profilin Bet v 2, Mol. Biol. Rep. 35 (2008) 231-237. https://doi.org/10.1007/s11033-007-9075-5.

[40]

A. Paschke, H. Kinder, K. Zunker, et al., Characterization of cross-reacting allergens in mango fruit, Allergy 56 (2001) 237-242. https://doi.org/10.1034/j.1398-9995.2001.056003237.x.

[41]

E. Elvin, K. Heathcote, L.M. Teran, et al., Novel low-abundance allergens from mango via combinatorial peptide libraries treatment: a proteomics study, Food Chem. 269 (2018) 652-660. https://doi.org/10.1016/j.foodchem.2018.06.113.

[42]

E.C. Berghea, M. Craiu, S. Ali, et al., Contact allergy induced by mango(Mangifera indica): a relevant topic, Medicina-Lithuania. 57 (2021) 1240. https://doi.org/10.3390/medicina57111240.

[43]

M. Dube, K. Zunker, S. Neidhart, et al., Effect of technological processing on the allergenicity of mangoes (Mangifera indica L.), J. Agric. Food Chem. 52 (2004) 3938-3945. https://doi.org/10.1021/jf030792r.

[44]
K. Zunker, Allergen itatvon mango und litchi, University of Hamburg, Hamburg, Germany, 2001.
[45]

Y. Mou, Y. Zhang, H. Che, Preliminary identification and thermal stability evaluation of mango allergens, China Port Sci. Technol. 3 (2021) 82-89.

[46]

F. Liu, Y. Wang, R. Li, et al., Effects of high hydrostatic pressure and high temperature short time on antioxidant activity, antioxidant compounds and color of mango nectars, Innovative Food Sci. Emerging Technol. 21 (2013) 35-43. https://doi.org/10.1016/j.ifset.2013.09.015

[47]

C. Liu, K.S. Shridhar, Food allergen epitope mapping, J. Agric. Food Chem. 66 (2018) 7238-7248. https://doi.org/10.1021/acs.jafc.8b01967.

[48]

R.C. Aalberse, Structural biology of allergens, J. Allergy Clin. Immunol. 106 (2000) 228-238.

[49]

R.E. Hileman, A. Silvanovich, R.E. Goodman, et al., Bioinformatic methods for allergenicity assessment using a comprehensive allergen database, Int. Arch. Allergy Immunol. 128 (2002) 280-291. https://doi.org/10.1159/000063861.

[50]

R. Ayuso, S.B. Lehrer, G. Reese, Identification of continuous, allergenic regions of the major shrimp allergen Pen a 1 (tropomyosin), Int. Arch. Allergy Immunol. 127 (2002) 27-37. https://doi.org/10.1159/000048166.

[51]

J.H. Cheng, H.F. Wang, D.W. Sun, et al., An overview of tropomyosin as an important seafood allergen: structure, cross-reactivity, epitopes, allergenicity, and processing modifications, Compr. Rev. Food Sci. Food Saf. 21 (2021) 127-147. https://doi.org/10.1111/1541-4337.12889.

[52]

S.S. Negi, W. Braun, Cross-react: a new structural bioinformatics methods for predicting allergen cross-reactivity, Bioinform. 33 (2017) 1014-1020. https://doi.org/10.1093/bioinformatics/btw767.

[53]

F. Teng, L. Yu, J. Sun, et al., Homology modeling and prediction of B-cell and T-ce11 epitopes of the house dust mite allergen Der f 20, Mol. Med. Rep. 17 (2018) 1807-1812. https://doi.org/10.3892/mmr.2017.8066.

[54]
Immune Epitope Database (IEDB). http://www.iedb.org/ (accessed Sep 14, 2022).
[55]

Z. Fu, J. Lin, An overview of bioinformatics tools and resources in allergy, Methods Mol. Biol. 1592 (2017) 223-245. https://doi.org/10.1007/978-1-4939-6925-818.

[56]

J.A. Greenbaum, P.H. Andersen, M. Blythe, et al., Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools, J. Mol. Recognition. 20 (2007) 75-82. https://doi.org/10.1002/jmr.815.

[57]

M. Nielsen, O. Lund, C. Lundegaard, MHC class Ⅱ epitope predictive algorithms, Immunol. 130 (2010) 319-328. https://doi.org/10.1111/j.1365-2567.2010.03268.x.

[58]

C. Song, W. Chen, M. Yang, et al., Epitope mapping of a monoclonal antibody specific to bovine dry milk involvement of residues 66-76 of strand D in thermal denatured β-lactoglobulin, J. Biol. Chem. 280 (2005) 3574-3582. https://doi.org/10.1074/jbc.M407031200.

[59]

S.J. Maleki, S.S. Teuber, H. Cheng, et al., Computationally predicted IgE epitopes of walnut allergens contribute to cross-reactivity with peanuts, Allergy 66 (2011) 1522-1529. https://doi.org/10.1111/j.1398-9995.2011.02692.x.

[60]

J.M. Robotham, S.S. Teuber, K.H. Roux, Linear IgE epitope mapping of the English walnut (Juglans regia) major food allergen, Jug r 1, Allergy Clin. Immunol. 109 (2002) 143-149. https://doi.org/10.1067/mai.2002.120558.

[61]

J. Lin, L. Bardina, W.G. Shreffler, et al., Development of a novel peptide microarray for large-scale epitope mapping of food allergens, J. Allergy Clin. Immunol. 124 (2009) 315-322.

[62]

Q. Zhang, L.N. Willison, P. Tripathi, et al., Epitope mapping of a 95 kDa antigen in complex with antibody by solution-phase amide backbone hydrogen/deuterium exchange monitored by Fourier transform ion cyclotron resonance mass spectrometry, Anal. Chem. 83 (2011) 7129-7136. https://doi.org/10.1021/ac201501z.

[63]

J.M. Robotham, X. Li, L.N. Willison, et al., Characterization of a cashew allergen, 11S globulin (Ana o 2), conformational epitope, Mol. Immunol. 47 (2010) 1830-1838. https://doi.org/10.1016/j.molimm.2009.12.009.

[64]

L. Tordesillas, L.F. Pacios, A. Palacin, et al., Characterization of IgE epitopes of Cuc m 2, the major melon allergen, and their role in cross-reactivity with pollen profilins, Clin. Exp. Allergy. 40 (2010) 174-181. https://doi.org/10.1111/j.1365-2222.2009.03401.x.

[65]

L. Tordesillas, L.F. Pacios, A. Palacin, et al., Molecular basis of allergen cross-reactivity: non-specific lipid transfer proteins from wheat flour and peach fruit as models, Mol. Immunol. 47 (2009) 534-540. https://doi.org/10.1016/j.molimm.2009.07.028.

[66]

X. Li, L.N. Willison, L. Porter, et al., Mapping of a conformational epitope on the cashew allergen Ana o 2: a discontinuous large subunit epitope dependent upon homologous or heterologous small subunit association, Mol. Immunol. 47 (2010) 1808-1816. https://doi.org/10.1016/j.molimm.2010.01.018.

[67]

G. Mandalari, N.M. Rigby, C. Bisignano, et al., Effect of food matrix and processing on release of almond protein during simulated digestion, LWT-Food Sci. Technol. 59 (2014) 439-447. https://doi.org/10.1016/j.lwt.2014.05.005.

[68]

M.J. Alcocer, G.J. Murtagh, P.D. Wilson, et al., The major human structural IgE epitope of the Brazil nut allergen Ber e 1: a chimaeric and protein microarray approach, J. Mol. Biol. 343 (2004) 759-769. https://doi.org/10.1016/j.jmb.2004.08.065.

[69]

Q. Zhang, K.A. Noble, Y. Mao, et al., Rapid screening for potential epitopes reactive with a polycolonal antibody by solution-phase H/D exchange monitored by FT-ICR mass spectrometry, J. Am. Soc. Mass Spectrom. 24 (2013) 1016-1025. https://doi.org/10.1007/s13361-013-0644-7.

[70]

E. de Genst, K. Silence, K. Decanniere, et al., Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies, Proc. Natl. Acad. Sci. U.S.A. 103 (2006) 4586-4591. https://doi.org/10.1073/pnas.0505379103.

[71]

R.L. Stanfield, K. Dooley, P. Verdino, et al., Maturation of shark single-domain (IgNAR) antibodies: evidence for induced-fit binding, J. Mol. Biol. 367 (2007) 358-372. https://doi.org/10.1016/j.jmb.2006.12.045.

[72]

M. Niemi, S. Jylha, M.L. Laukkanen, et al., Molecular interactions between a recombinant IgE antibody and the bate-lactoglobulin allergen, Structure 15 (2007) 1413-1421. https://doi.org/10.1016/j.str.2007.09.012.

[73]

M. Bublin, M. Kostadinova, J.E. Fuchs, et al., Across-reactive human single-chain antibody for detection of major fish allergens, parvalbumins, and identification of a major IgE-binding epitope, PLoS One 10 (2015) e0142625. https://doi.org/10.1371/journal.pone.0142625.

[74]

R. Manish, Y. Araya, G.N. Konstantinou, et al., Peanut T-cell epitope discovery: Ara h 1, J. Allergy Clin. Immunol. 137 (2016) 1764-1771. https://doi.org/10.1016/j.jaci.2015.12.1327.

[75]

S.R. Prickett, A.L. Voskamp, A. Dacumos-Hill, et al., Ara h 2 peptides containing dominant CD4+ T-cell epitopes: candidates for a peanut allergy therapeutic, J. Allergy Clin. Immunol. 127 (2011) 608-615. https://doi.org/10.1016/j.jaci.2010.09.027.

[76]

V. Turcanu, S.J. Maleki, G. Lack, Characterization of lymphocyte responses to peanuts in normal children, peanut-allergic children, and allergic children who acquired tolerance to peanuts, J. Clin. Invest. 111 (2003) 1065-1072. https://doi.org/10.1172/JCI200316142.

[77]

J.H. DeLong, K.H. Simpson, E. Simpson, et al., Ara h 1-reactive T cells in individuals with peanut allergy, J. Allergy Clin. Immunol. 127 (2011) 1211-1218. https://doi.org/10.1016/j.jaci.2011.02.028.

[78]

H. Yan, X. Huang, Z. Ma, Progress in understanding hypersensitivity reaction after ingestion of mango fruits, Food Sci. 38 (2017) 305-309.

[79]

S. Zhang, Z. Liu, Z. Wu, et al., The sequence analysis of allergen chitinase and B cell epitope in mango fruit, J. Guizhou Norm. University (Natural Sciences) 36 (2018) 40-44. https://doi.org/10.16614/j.gznuj.zrb.2018.04.009.

[80]

K. Junehee, L.M. Yee, W. Han, Knowledge, attitudes, and behaviors about dining out with food allergies: a cross-sectional survey of restaurant customers in the United States, Food Control 107 (2020) 106776. https://doi.org/10.1016/j.foodcont.2019.106776.

[81]

S. Sirvent, B. Canto, F. Gomez, et al., Detailed characterization of Act d 12 and Act d 13 from kiwi seeds: implication in IgE cross reactivity with peanut and tree nuts, Allergy 69 (2014) 1481-1488. https://doi.org/10.1111/all.12486.

[82]

P. Song, R. Herman, S. Kumpatla, 1:1 FASTA update: using the power of E-values in FASTA to detect potential allergen cross-reactivity, Toxicol. Rep. 2 (2015) 1145-1148. https://doi.org/10.1016/j.toxrep.2015.08.005

[83]

R.A. Herman, P Song, Validation of bioinformatic approaches for predicting allergen cross reactivity, Food Chem. Toxicol. 132 (2019) 110656. https://doi.org/10.1016/j.fct.2019.110656.

[84]

G.S. Ladics, Assessment of the potential allergenicity of genetically-engineered food crops, J. Immunol. Toxicol. 16 (2019) 43-53. https://doi.org/10.1080/1547691X.2018.1533904.

[85]

R.C. Aalberse, Assessment of allergen cross-reactivity, Clin. Mol. Allergy. 5 (2007) 1-6. https://doi.org/10.1186/1476-7961-5-2.

[86]

J. Pekar, D. Ret, E. Untersmayr, Stability of allergens, Mol. Immunol. 100 (2018) 14-20. https://doi.org/10.1016/j.molimm.2018.03.017.

[87]

B. Wuthrich, T. Hofer, Food allergy: the celery-mugwort-spice syndrome. association with mango allergy, Dtsch. Med. Wochenschr. 109 (1984) 981-986. https://doi.org/10.1055/s-2008-1069310.

[88]

R. Sareen, A. Shah, Hypersensitivity manifestations to the fruit mango, Asia Pac. Allergy. 1 (2011) 43-49. https://doi.org/10.5415/apallergy.2011.1.1.43.

[89]

S. Duque, L. Fernandez-Pellon, F. Rodriguez, Mango allergy in a latex-sensitized patient, Allergy 54 (1999) 1004-1005. https://doi.org/10.1034/j.1398-9995.1999.00136.x.

[90]

E. Funes, J.M. Millan, J.A. Pagan, et al., Allergy to anarcadiaceae. identification of allergens, Alergol. Immunol. Clin. 14 (1999) 82-89. https://doi.org/10.1149/1.2200227.

[91]

H. Yan, Q. Ji, D. Chen, et al., A novel macromolecular extract screened from satsuma with pro-inflammatory effect, Food Funct. 5 (2014) 295-302. https://doi.org/10.1039/c3fo60411j.

[92]

S. Bastiaan-Ne, M. Reitsma, J. Cordewener, et al., IgE cross-reactivity of cashew nut allergens, Int. Archives Allergy Immunol. 178 (2019) 19-32. https://doi.org/10.1159/000493100.

[93]

M, Raulf, Current state of occupational latex allergy, Curr. Opin. Allergy Clin. Immunol. 20 (2020) 112-116. https://doi.org/10.1097/ACI.0000000000000611.

[94]

R. Nugraha, S.D. Kamath, E. Johnston, et al., Conservation analysis of B-cell allergen epitopes to predict clinical cross-reactivity between shellfish and inhalant invertebrate allergens, Front. Immunol. 10 (2019) 2676. https://doi.org/10.1016/j.jaci.2016.08.035.

[95]

C.C. Bo, C.H. Parker, L.S. Jackson, et al., A targeted LC-MS/MS method for the simultaneous detection and quantitation of egg, milk, and peanut allergens in sugar cookies, J. Aoac. Int. 101 (2018) 108-117. https://doi.org/10.5740/jaoacint.17-0400.

[96]

A. Sena-Torralba, Y. Pallas-Tamarit, S. Morais, et al., Recent advances and challenges in food-borne allergen detection, TrAC Trends Analytical Chem. 132 (2020) 116050. https://doi.org/10.1016/j.trac.2020.116050.

[97]

J. Xu, Y. Ye, J. Ji, et al., Advances on the rapid and multiplex detection methods of food allergens, Crit. Rev. Food Sci. Nutri. 62 (2022) 6887-6907. https://doi.org/10.1080/10408398.2021.1907736.

[98]

W. Tsai, H. Yin, Y. Lin, et al., A rapid lateral flow assay using immunomagnetic nanoparticles for detecting mango allergen residues in processed foods, J. Food Saf. 41 (2021) e12929. https://doi.org/10.1111/jfs.12929.

[99]

S.C. Sheu, P.C. Tsou, Y.Y. Lien, et al., Rapid and specific detection of mango (Mangifera indica) in processed food using an isothermal nucleic acid amplification assay, Eur. Food Res. Technol. 246 (2020) 759-766. https://doi.org/10.1007/s00217-020-03440-z

[100]

J.W. Tan, C. Valerio, E.H. Barnes, et al., A randomized trial of egg introduction from 4 months of age in infants at risk for egg allergy, J. Allergy Clin. Immunol. 139 (2017) 1621-1628. https://doi.org/10.1016/j.jaci.2016.08.035.

[101]

M.R. Perkin, A. Togias, J. Koplin, et al., Food allergy prevention: more than peanut, J. Allergy Clin. Immunol. 8 (2020) 1-13. https://doi.org/10.1016/j.jaip.2019.11.002.

Food Science and Human Wellness
Pages 1186-1194
Cite this article:
Guo H, Cong Y. Recent advances in the study of epitopes, allergens and immunologic cross-reactivity of edible mango. Food Science and Human Wellness, 2024, 13(3): 1186-1194. https://doi.org/10.26599/FSHW.2022.9250098

1103

Views

252

Downloads

2

Crossref

1

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 16 September 2022
Revised: 30 September 2022
Accepted: 05 November 2022
Published: 08 February 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return