AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (10.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Dioscin from Polygonatum sibiricum induces apoptosis and autophagy in Ishikawa human endometrial cancer cell and in vivo

Xiaoli Lia,b,cRunhui Maa,bZhijing NiaWei WangaKiran Thakura,bJianguo Zhanga,b( )Zhaojun Weia,b( )
School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
School of Public Health, Anhui University of Science and Technology, Huainan 232001, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Highlights

• Dioscin promoted human endometrial carcinoma apoptosis and autophagy in Ishikawa cells.

• The analysis of miRNA omics showed marked enrichment in PI3K/AKT and p53 signaling pathways.

• Dioscin induced autophagy and apoptosis through inhibition of PI3K/Akt/mTOR signaling pathway.

• The dioscin-regulated p53 pathway was mainly involved in affecting autophagy.

• Inhibition of Ishikawa cell autophagy promoted dioscin-induced apoptosis.

Graphical Abstract

Abstract

With an aim to comprehend the precise regulatory mechanism of dioscin against endometrial carcinoma (EC), we firstly extracted the components from Polygonatum sibiricum followed by identification and structural characterization. The anti-EC activity of dioscin was initially determined based on the inhibition of Ishikawa cell proliferation and tumor growth. The high-throughput sequencing data indicated that dioscin not only promoted apoptosis, including decrease of poly ADP-ribose polymerase (PARP) and B-cell lymphoma-2 (Bcl-2) and increase of c-PARP and Bcl-2-associcated agonist of cell death (Bad), but also induced autophagy, including increase of autophagic lysosomes and LC3Ⅱ/LC3Ⅰ ratio. Mechanistic exploration suggested that dioscin induced autophagy and apoptosis through inhibition of PI3K/AKT/mTOR signaling pathway. Besides, the dioscin-regulated p53 pathway was mainly involved in autophagy induction. Furthermore, inhibition of Ishikawa cell autophagy was linked to dioscin-induced apoptosis. Our data suggest the immense potential of dioscin for the development of functional food for EC and related medical application.

Electronic Supplementary Material

Download File(s)
fshw-13-5-2601_ESM.docx (2.5 MB)

References

[1]

J. Lortet-Tieulent, J. Ferlay, F. Bray, et al., International patterns and trends in endometrial cancer incidence, 1978−2013, J. Natl. Cancer Inst. 110 (2018) 354-361. https://doi.org/10.1093/jnci/djx214.

[2]

R.L. Siegel, K.D. Miller, H.E. Fuchs, et al., Cancer statistics, 2021, CA-Cancer J. Clin. 71 (2021) 7-33. https://doi.org/10.3322/caac.21654.

[3]

S.J. Henley, E.M. Ward, S. Scott, et al., Annual report to the nation on the status of cancer, part Ⅰ: national cancer statistics, Cancer 126 (2020) 2225-2249. https://doi.org/10.1002/cncr.32802.

[4]

H. Sung, R.L. Siegel, P.S. Rosenberg, et al., Emerging cancer trends among young adults in the USA: analysis of a population-based cancer registry, Lancet Public Health 4 (2019) e137-e147. https://doi.org/10.1016/S2468-2667(18)30267-6.

[5]

E.J. Crosbie, S.J. Kitson, J.N. McAlpine, et al., Endometrial cancer, Lancet 399 (2022) 1412-1428. https://doi.org/10.1016/S0140-6736(22)00323-3.

[6]

S. Wang, G. Li, X. Zhang, et al., Structural characterization and antioxidant activity of Polygonatum sibiricum polysaccharides, Carbohydr. Polym. 291 (2022) 119524. https://doi.org/10.1016/j.carbpol.2022.119524.

[7]

Y. Xie, Z. Jiang, R. Yang, et al., Polysaccharide-rich extract from Polygonatum sibiricum protects hematopoiesis in bone marrow suppressed by triple negative breast cancer, Biomed. Pharmacother. 137 (2021) 111338. https://doi.org/10.1016/j.biopha.2021.111338.

[8]

L.X. Li, X. Feng, M.T. Tao, et al., Benefits of neutral polysaccharide from rhizomes of Polygonatum sibiricum to intestinal function of aged mice, Front. Nutr. 9 (2022) 992102. https://doi.org/10.3389/fnut.2022.992102.

[9]

Y. He, L. Huang, P. Jiang, et al., Immunological regulation of the active fraction from Polygonatum sibiricum F. Delaroche based on improvement of intestinal microflora and activation of RAW264.7 cells, J. Ethnopharmacol. 293 (2022) 115240. https://doi.org/10.1016/j.jep.2022.115240.

[10]

K. Maharajan, Q. Xia, X. Duan, et al., Therapeutic importance of Zishen Yutai Pill on the female reproductive health: a review, J. Ethnopharmacol. 281 (2021) 114523. https://doi.org/10.1016/j.jep.2021.114523.

[11]

S.N.S. Lamardi, S. Ghambariyan, M.R.S. Ardekani, et al., Major phytosteroid from Polygonatum orientale Desf. Rhizome, J. Pharm. Health Sci. 5 (2017) 43-49.

[12]

A. Tariq, S. Mussarat, M. Adnan, et al. Review on ethnomedicinal, phytochemical and pharmacological evidence of Himalayan anticancer plants, J. Ethnopharmacol. 164 (2015) 96-119. https://doi.org/10.1016/j.jep.2015.02.003.

[13]

D.P. Xu, C.Y. Hu, Y. Zhang, Two new steroidal saponins from the rhizome of Polygonatum sibiricum, J. Asian Nat. Prod. Res. 11 (2009) 1-6. https://doi.org/10.1080/10286020802513681.

[14]

Y.S. Zhang, Y.L. Ma, K. Thakur, et al., Molecular mechanism and inhibitory targets of dioscin in HepG2 cells, Food Chem. Toxicol. 120 (2018) 143-154. https://doi.org/10.1016/j.fct.2018.07.016.

[15]

P. Xi, Y. Niu, Y. Zhang, et al., The mechanism of dioscin preventing lung cancer based on network pharmacology and experimental validation, J. Ethnopharmacol. 292 (2022) 115138. https://doi.org/10.1016/j.jep.2022.115138.

[16]

S. Wu, F. Zhao, J. Zhao, et al., Dioscin improves postmenopausal osteoporosis through inducing bone formation and inhibiting apoptosis in ovariectomized rats, Biosci. Trends 13 (2019) 394-401. https://doi.org/10.5582/bst.2019.01186.

[17]

X.L. Li, R.H. Ma, Z.J. Ni, et al., Dioscin inhibits human endometrial carcinoma proliferation via G0/G1 cell cycle arrest and mitochondrial-dependent signaling pathway, Food Chem. Toxicol. 148 (2021) 111941. https://doi.org/10.1016/j.fct.2020.111941.

[18]

S.I. Nuñez-Olvera, D. Gallardo-Rincón, J. Puente-Rivera, et al., Autophagy machinery as a promising therapeutic target in endometrial cancer, Front. Oncol. 9 (2019) 1326. https://doi.org/10.3389/fonc.2019.01326.

[19]

Z. Zhang, K. Han, C. Wang, et al., Dioscin protects against Aβ1-42 oligomers-induced neurotoxicity via the function of SIRT3 and autophagy, Chem. Pharm. Bull. 68 (2020) 717-725. https://doi.org/10.1248/cpb.c20-00046.

[20]

M.J. Hsieh, T.L. Tsai, Y.S. Hsieh, et al., Dioscin-induced autophagy mitigates cell apoptosis through modulation of PI3K/Akt and ERK and JNK signaling pathways in human lung cancer cell lines, Arch. Toxicol. 87 (2013) 1927-1937. https://doi.org/10.1007/s00204-013-1047-z.

[21]

H. Li, B. Pang, B. Nie, et al., Dioscin promotes autophagy by regulating the AMPK-mTOR pathway in ulcerative colitis, Immunopharmacol. Immunotoxicol. 44 (2022) 238-246. https://doi.org/10.1080/08923973.2022.2037632.

[22]

S. Deng, M.K. Shanmugam, A.P. Kumar, et al., Targeting autophagy using natural compounds for cancer prevention and therapy, Cancer 125 (2019) 1228-1246. https://doi.org/10.1002/cncr.31978.

[23]

L. Zhou, S. Li, J. Sun, Ginkgolic acid induces apoptosis and autophagy of endometrial carcinoma cells via inhibiting PI3K/Akt/mTOR pathway in vivo and in vitro, Hum. Exp. Toxicol. 40 (2021) 2156-2164. https://doi.org/10.1177/09603271211023789.

[24]

F. Zhang, Y.Y. Zhang, R.H. Ma, et al., Multi-omics reveals the anticancer mechanism of asparagus saponin-asparanin A on endometrial cancer Ishikawa cells, Food Funct. 12 (2021) 614-632. https://doi.org/10.1039/d0fo02265a.

[25]

X. Ran, J. Yang, C. Liu, et al., MiR-218 inhibits HMGB1-mediated autophagy in endometrial carcinoma cells during chemotherapy, Int. J. Clin. Exp. Pathol. 8 (2016) 6617-6626.

[26]

Z. Zhuo, H. Yu, miR-205 inhibits cell growth by targeting AKT-mTOR signaling in progesterone-resistant endometrial cancer Ishikawa cells, Oncotarget 8 (2017) 28042-28051. https://doi.org/10.18632/oncotarget.15886.

[27]

J. Wang, X.X. Zhang, Z.J. Ni, et al., The anti-cancerous mechanism of licochalcone A on human hepatoma cell HepG2 based on the miRNA omics, Food Sci. Hum. Wellness 12 (2023) 1136-1148. https://doi.org/10.1016/j.fct.2021.112096.

[28]

F. Zhang, Y.Y. Zhang, Y.S. Sun, et al., Asparanin A from Asparagus officinalis L. induces G0/G1 cell cycle arrest and apoptosis in human endometrial carcinoma Ishikawa cells via mitochondrial and PI3K/AKT signaling pathways, J. Agric. Food Chem. 68 (2020) 213-224. https://doi.org/10.1021/acs.jafc.9b07103.

[29]

Z. Zhang, J. Wu, C. Teng, et al., Safranal treatment induces Sirt1 expression and inhibits endoplasmic reticulum stress in mouse chondrocytes and alleviates osteoarthritis progression in a mouse model, J. Agric. Food Chem. 70 (2020) 9748-9759. https://doi.org/10.1021/acs.jafc.2c01773.

[30]

X.L. Li, X.X. Zhang, R.H. Ma, et al., Integrated miRNA and mRNA omics reveal dioscin suppresses migration and invasion via MEK/ERK and JNK signaling pathways in human endometrial carcinoma in vivo and in vitro, J. Ethnopharmacol. 303 (2022) 116027. https://doi.org/10.1016/j.jep.2022.116027.

[31]

L. Zheng, L. Yin, L. Xu, et al., Protective effect of dioscin against thioacetamide-induced acute liver injury via FXR/AMPK signaling pathway in vivo, Biomed. Pharmacother. 97 (2018) 481-488. https://doi.org/10.1016/j.biopha.2017.10.153.

[32]

Q. Ding, W. Zhang, C. Cheng, et al., Dioscin inhibits the growth of human osteosarcoma by inducing G2/M-phase arrest, apoptosis, and GSDME-dependent cell death in vitro and in vivo, J. Cell Physiol. 235 (2020) 2911-2924. https://doi.org/10.1002/jcp.29197.

[33]

X. Zhao, L. Xu, L. Zheng, et al., Potent effects of dioscin against gastric cancer in vitro and in vivo, Phytomedicine 23 (2016) 274-282. https://doi.org/10.1016/j.phymed.2016.01.012.

[34]

J.Wang, C.Y. Wang, Integrated miRNA and mRNA omics reveal the anti-cancerous mechanism of licochalcone B on human hepatoma cell HepG2, Food Chem. Toxicol. 150 (2021) 112096. https://doi.org/10.1016/j.fct.2021.112096.

[35]

F. Zhang, Z.J. Ni, L. Ye, et al., Asparanin A inhibits cell migration and invasion in human endometrial cancer via Ras/ERK/MAPK pathway, Food Chem. Toxicol. 150 (2021) 112036. https://doi.org/10.1016/j.fct.2021.112036.

[36]

Q. Lin, S. Li, N. Jiang, et al., Inhibiting NLRP3 inflammasome attenuates apoptosis in contrast-induced acute kidney injury through the upregulation of HIF1A and BNIP3-mediated mitophagy, Autophagy 17 (2021) 2975-2990. https://doi.org/10.1080/15548627.2020.1848971.

[37]

Y.S. Sun, K. Thakur, F. Hu, et al., Icariside Ⅱ suppresses cervical cancer cell migration through JNK modulated matrix metalloproteinase-2/9 inhibition in vitro and in vivo, Biomed. Pharmacother. 125 (2020) 110013. https://doi.org/10.1016/j.biopha.2020.110013.

[38]

Y. Zhou, X. Zhou, X. Huang, et al., Lysosome-mediated cytotoxic autophagy contributes to tea polysaccharide-induced colon cancer cell death via mTOR-TFEB signaling, J. Agric. Food Chem. 69 (2021) 686-697. https://doi.org/10.1021/acs.jafc.0c07166.

[39]

S.S. Hussain, F. Zhang, Y.Y. Zhang, et al., Stevenleaf from Gynostemma pentaphyllum inhibits human hepatoma cell (HepG2) through cell cycle arrest and apoptotic induction, Food Sci. Hum. Wellness 9 (2020) 295-303. https://doi.org/10.1016/j.fshw.2020.04.011.

[40]

S. Man, W. Gao, Y. Zhang, et al., Characterization of steroidal saponins in saponin extract from Paris polyphylla by liquid chromatography tandem multi-stage mass spectrometry, Anal. Bioanal. Chem. 395 (2009) 495-505. https://doi.org/10.1007/s00216-009-2987-2.

[41]

X. Tao, L. Yin, L. Xu, et al., Dioscin: a diverse acting natural compound with therapeutic potential in metabolic diseases, cancer, inflammation and infections, Pharmacol. Res. 137 (2018) 259-269. https://doi.org/10.1016/j.phrs.2018.09.022.

[42]

W.O. Chae, G.D. Kim, Dioscin decreases breast cancer stem-like cell proliferation via cell cycle arrest by modulating p38 mitogen-activated protein kinase and AKT/mTOR signaling pathways, J. Cancer Prev. 26 (2021) 183-194. https://doi.org/10.15430/JCP.2021.26.3.183.

[43]

S.H. Chan, P.H. Liang, J.H. Guh, An integrated approach to elucidate signaling pathways of dioscin-induced apoptosis, energy metabolism and differentiation in acute myeloid leukemia, Naunyn Schmiedebergs Arch. Pharmacol. 391(2018) 587-602. https://doi.org/10.1007/s00210-018-1484-6.

[44]

Y.X. Liu, B.W. Xu, X.D. Niu, et al., Inhibition of Src/STAT3 signaling-mediated angiogenesis is involved in the anti-melanoma effects of dioscin, Pharmacol. Res. 175 (2022) 105983. https://doi.org/10.1016/j.phrs.2021.105983.

[45]

H. Teng, Y. Qian, X. Fan, et al., Nutritional properties of Europen eel (Anguilla anguilla) bone peptide-calcium and its apoptosis effect on Caco-2 cells, Food Sci. Hum. Wellness 11 (2022) 1482-1490. https://doi.org/10.1016/j.fshw.2022.06.005.

[46]

G. Majno, I. Joris, Apoptosis, oncosis, and necrosis. an overview of cell death, Am. J. Pathol. 146 (1995) 3-15.

[47]

J. Yuan, A. Najafov, B.F. Py, Roles of caspases in necrotic cell death, Cell 167 (2016) 1693-1704. https://doi.org/10.1016/j.cell.2016.11.047.

[48]

A. Ashkenazi, W.J. Fairbrother, J.D. Leverson, et al., From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors, Nat. Rev. Drug Discov. 16 (2017) 273-284. https://doi.org/10.1038/nrd.2016.253.

[49]

J. Xie, J. Liang, N. Chen, Autophagy-associated signal pathways of functional foods for chronic diseases, Food Sci. Hum. Wellness 8 (2019) 25-33. https://doi.org/10.1016/j.fshw.2019.03.002.

[50]

D. Denton, S. Kumar, Autophagy-dependent cell death, Cell Death Differ. 26 (2019) 605-616. https://doi.org/10.1038/s41418-018-0252-y.

[51]

R.H. Ma, Z.J. Ni, F. Zhang, et al., 6-Shogaol mediated ROS production and apoptosis via endoplasmic reticulum and mitochondrial pathways in human endometrial carcinoma Ishikawa cells, J. Funct. Foods 74 (2020) 104178. https://doi.org/10.1016/j.jff.2020.104178.

[52]

Y.C. Liang, Q. Zhong, R.H. Ma, et al., Apigenin, a natural flavonoid, promotes autophagy and ferroptosis in human endometrial carcinoma (EC) Ishikawa cells in vitro and in vivo, Food Sci. Hum. Wellness 12 (2023) 2242-2251. https://doi.org/10.1016/j.fshw.2023.03.044.

[53]

R. Mathew, C.M. Karp, B. Beaudoin, et al., Autophagy suppresses tumorigenesis through elimination of p62, Cell 137 (2009) 1062-1075. https://doi.org/10.1016/j.cell.2009.03.048.

[54]

C.H. Wu, H.Y. Chen, C.W. Wang, et al., Isoliquiritigenin induces apoptosis and autophagy and inhibits endometrial cancer growth in mice, Oncotarget 7 (2016) 73432-73447. https://doi.org/10.18632/oncotarget.12369.

[55]

Q. Li, Y. Yin, Y. Zheng, et al., Inhibition of autophagy promoted high glucose/ROS-mediated apoptosis in ADSCs, Stem Cell Res. Ther. 9 (2018) 289. https://doi.org/10.1186/s13287-018-1029-4.

[56]

S.Y. Kim, H.K. Yi, B.S. Yun, et al., The extract of the immature fruit of Poncirus trifoliata induces apoptosis in colorectal cancer cells via mitochondrial autophagy, Food Sci. Hum. Wellness 9 (2020) 237-244. https://doi.org/10.1016/j.fshw.2020.05.001.

[57]

H. Liu, L. Zhang, X. Zhang, et al., PI3K/AKT/mTOR pathway promotes progestin resistance in endometrial cancer cells by inhibition of autophagy, Onco Targets Ther. 10 (2017) 2865-2871. https://doi.org/10.2147/OTT.S95267.

[58]

D.R. Green, G. Kroemer, Cytoplasmic functions of the tumour suppressor p53, Nature 458 (2009) 1127-1130. https://doi.org/10.1038/nature07986.

[59]

M.T. Rosenfeldt, J. O’Prey, J.P. Morton, et al., p53 status determines the role of autophagy in pancreatic tumour development, Nature 504 (2013) 296-300. https://doi.org/10.1038/nature12865.

[60]

Y. Qian, C. Shi, C. Cheng, et al., Ginger polysaccharide UGP1 suppressed human colon cancer growth via p53, Bax/Bcl-2, caspase-3 pathways and immunomodulation, Food Sci. Hum. Wellness 12 (2023) 467-476. https://doi.org/10.1016/j.fshw.2022.07.048.

[61]

J.A. Pan, Y. Tang, J.Y. Yu, et al., miR-146a attenuates apoptosis and modulates autophagy by targeting TAF9b/P53 pathway in doxorubicininduced cardiotoxicity, Cell Death Dis. 10 (2019) 668. https://doi.org/10.1038/s41419-019-1901-x.

[62]

R. Johnson, S. Shabalala, J. Louw, et al., Aspalathin reverts doxorubicin-induced cardiotoxicity through increased autophagy and decreased expression of p53/mTOR/p62 signaling, Molecules 22 (2017) 1589. https://doi.org/10.3390/molecules22101589.

[63]

T. Yu, F. Guo, Y. Yu, et al., Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy, Cell 170 (2017) 548-563. https://doi.org/10.1016/j.cell.2017.07.008.

[64]

Y.C. Song, C.C. Kuo, C.T. Liu, et al., Combined effects of Tanshinone IIA and an autophagy inhibitor on the apoptosis of leukemia cells via p53, apoptosis-related proteins and oxidative stress pathways, Integr Cancer Ther. 21 (2022) 15347354221117776. https://doi.org/10.1177/15347354221117776.

Food Science and Human Wellness
Pages 2601-2616
Cite this article:
Li X, Ma R, Ni Z, et al. Dioscin from Polygonatum sibiricum induces apoptosis and autophagy in Ishikawa human endometrial cancer cell and in vivo. Food Science and Human Wellness, 2024, 13(5): 2601-2616. https://doi.org/10.26599/FSHW.2022.9250209

996

Views

128

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 01 January 2023
Revised: 15 January 2023
Accepted: 23 February 2023
Published: 10 October 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return