Sort:
Open Access Issue
Dioscin from Polygonatum sibiricum induces apoptosis and autophagy in Ishikawa human endometrial cancer cell and in vivo
Food Science and Human Wellness 2024, 13(5): 2601-2616
Published: 10 October 2024
Abstract PDF (10.3 MB) Collect
Downloads:128

With an aim to comprehend the precise regulatory mechanism of dioscin against endometrial carcinoma (EC), we firstly extracted the components from Polygonatum sibiricum followed by identification and structural characterization. The anti-EC activity of dioscin was initially determined based on the inhibition of Ishikawa cell proliferation and tumor growth. The high-throughput sequencing data indicated that dioscin not only promoted apoptosis, including decrease of poly ADP-ribose polymerase (PARP) and B-cell lymphoma-2 (Bcl-2) and increase of c-PARP and Bcl-2-associcated agonist of cell death (Bad), but also induced autophagy, including increase of autophagic lysosomes and LC3Ⅱ/LC3Ⅰ ratio. Mechanistic exploration suggested that dioscin induced autophagy and apoptosis through inhibition of PI3K/AKT/mTOR signaling pathway. Besides, the dioscin-regulated p53 pathway was mainly involved in autophagy induction. Furthermore, inhibition of Ishikawa cell autophagy was linked to dioscin-induced apoptosis. Our data suggest the immense potential of dioscin for the development of functional food for EC and related medical application.

Open Access Research Article Issue
The anti-cancerous mechanism of licochalcone A on human hepatoma cell HepG2 based on the miRNA omics
Food Science and Human Wellness 2023, 12(4): 1136-1148
Published: 18 November 2022
Abstract PDF (4.5 MB) Collect
Downloads:43

To explore the function of licochalcone A as an anticancer phytochemical on HepG2 cells and investigate its potential mechanisms, we analyzed the microRNAs (miRNAs) expression profile of HepG2 cells in response to licochalcone A (70 μmol/L) in vitro. 102 dysregulated miRNAs were detected, and SP1 was expected as the transcription factor that regulates the functions of most screened miRNAs. A sum of 431 targets, the overlap of predicted mRNAs from TargetScan, miRDB, and miRtarbase were detected as the targets for these dysregulated miRNAs. FoxO signaling pathway was the hub pathway for the targets. A protein-protein interaction network was structured on the STRING platform to discover the hub genes. Among them, PIK3R1, CDC42, ESR1, SMAD4, SUMO1, KRAS, AGO1, etc. were screened out. Afterwards, the miRNA-target networks were established to screen key dysregulated miRNAs. Two key miRNAs (hsa-miR-133b and hsa-miR-145-5p) were filtered. Finally, the miRNA-target-transcription factor networks were constructed for these key miRNAs. The networks for these key miRNAs included three and two transcription factors, respectively. These identified miRNAs, transcription factors, targets, and regulatory networks may offer hints to understand the molecular mechanism of licochalcone A as a natural anticarcinogen.

Total 2