PDF (17.5 MB)
Collect
Submit Manuscript
Article | Open Access

Triterpenoids from Cyclocarya paliurus: structure, biosynthesis, biological activities

Huiting XiZhongwei LiuWeixiang XuJiexue ZhaoYuanxing Wang()Jianhua Xie()
State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
Show Author Information

Abstract

Cyclocarya paliurus (Batalin) Iljinskaja, as a unique and rare monocotyledonous plant in Southern China, is a promising and economical Chinese herbal medicine and functional food. People have conducted a number of research on C. paliurus because of its rich triterpenoids. However, no comprehensive review has illustrated the composition and pharmacological activity of triterpenoids from C. paliurus. This review summarizes 177 triterpenoids from different parts of C. paliurus. The structures of compounds were elucidated, and their biosynthesis was inferred. The biological activities of compounds and triterpenoid-rich extracts, including anti-diabetes, antihyperlipidemia, anti-inflammatory, anticancer or cytotoxicity, antioxidation, etc., were discussed. C. paliurus can be an important and valuable supplement to the food market. This review provides a reference for the further research and application of C. paliurus triterpenoids in the fields of foods and pharmaceuticals.

References

[1]

Z.L. Chen, Y.Q. Jian, Q. Wu, et al., Cyclocarya paliurus (Batalin) Iljinskaja: botany, ethnopharmacology, phytochemistry and pharmacology, J. Ethnopharmacol. 285 (2022) 114912. https://doi.org/10.1016/j.jep.2021.114912.

[2]

L.M. Xie, M.Y. Shen, R. Huang, et al., Apoptosis of colon cancer CT-26 cells induced polysaccharide from Cyclocarya paliurus and its phosphorylated derivative via intrinsic mitochondrial passway, Food Sci. Hum. Wellness. 12(5) (2023) 1545-1556. https://doi.org/10.1016/j.fshw.2023.02.002.

[3]

Y. Yu, H.B. Zhu, M.Y. Shen, et al., Sulfated Cyclocarya paliurus polysaccharides exert immunomodulatory potential on macrophages via Toll-like receptor 4 mediated MAPK/NF-κB signaling pathways, Food Sci. Hum. Wellness. 13(1) (2024) 115-123. https://doi.org/10.26599/FSHW.2022.9250009.

[4]

Y. Liu, Q. Liang, D.B. Tang, et al., Development of suspension culture technology and hormone effects on anthocyanin biosynthesis for red Cyclocarya paliurus cells, Plant Cell, Tissue Organ. Cult. 149(1/2) (2022) 175-195. https://doi.org/10.1007/s11240-021-02215-y.

[5]

L.P. Zhu, S.Y. Fang, X.C. Lu, et al., Structurally diverse glycosides with α-glucosidase inhibitory properties from water extract of the leaves of Cyclocarya paliurus, Fitoterapia 167 (2023) 105473. https://doi.org/10.1016/j.fitote.2023.105473.

[6]

X.X. Zhang, Y.L. Ji, L.P. Zhu, et al., Arjunolic acid from Cyclocarya paliurus ameliorates diabetic retinopathy through AMPK/mTOR/HO-1 regulated autophagy pathway, J. Ethnopharmacol. 284 (2022) 114772. https://doi.org/10.1016/j.jep.2021.114772.

[7]

L. Liang, Y.C. Liu, Y.X. Liu, et al., Untargeted metabolomics analysis based on HS-SPME-GC-MS and UPLC-Q-TOF/MS reveals the contribution of stem to the flavor of Cyclocarya paliurus herbal extract, LWT-Food Sci. Technol. 167 (2022) 113819. https://doi.org/10.1016/j.lwt.2022.113819.

[8]

L. Zhang, Y. Liu, Z.J. Zhang, et al., Physiological response and molecular regulatory mechanism reveal a positive role of nitric oxide and hydrogen sulfide applications in salt tolerance of Cyclocarya paliurus, Front. Plant Sci. 14 (2023) 1162. https://doi.org/10.3389/fpls.2023.1211162.

[9]

X. Wang, L. Tang, W.X. Ping, et al., Progress in research on the alleviation of glucose metabolism disorders in type 2 diabetes using Cyclocarya paliurus, Nutrients 14(15) (2022) 3169. https://doi.org/10.3390/nu14153169.

[10]

X.R. Zheng, C.L. Liu, M.J. Zhang, et al., First report of leaf blight of Cyclocarya paliurus caused by Nigrospora sphaerica in China, Crop Prot. 140 (2021) 105453. https://doi.org/10.1016/j.cropro.2020.105453.

[11]

Y.M. Shao, T.T. Li, C.E. Wu, et al., A review on extraction and biological activities of triterpenoid from Cyclocarya paliurus, Food Rev. Int. 40(5) (2023) 1374-1394. https://doi.org/10.1080/87559129.2023.2213307.

[12]

X.H. Zheng, H.B. Xiao, J.N. Chen, et al., Metabolome and whole-transcriptome analyses reveal the molecular mechanisms underlying hypoglycemic nutrient metabolites biosynthesis in Cyclocarya paliurus leaves during different harvest stages, Front. Nutr. 9 (2022) 851569. https://doi.org/10.3389/fnut.2022.851569.

[13]

R. Gui, Y. K. Wang, J. P. Wu, et al., Cyclocarya paliurus leaves alleviate hyperuricemic nephropathy via modulation of purine metabolism, antiinflammation, and antifibrosis, J. Funct. Foods 103 (2023) 105485. https://doi.org/10.1016/j.jff.2023.105485.

[14]

H.Y. Lu, M.Y. Shen, Y. Chen, et al., Alleviative effects of natural plant polysaccharides against DSS-induced ulcerative colitis via inhibiting inflammation and modulating gut microbiota, Food Res. Int. 167 (2023) 112630. https://doi.org/10.1016/j.foodres.2023.112630.

[15]

Y.Y. Zhu, X.H. Li, C.Y. Da, et al., Effects of Cyclocarya paliurus (Batal.) extracts on oxidative stability and sensory quality in meat products (frankfurters), Foods 11(22) (2022) 3721. https://doi.org/10.3390/foods11223721.

[16]

W.C. Tu, R.H. Luo, E. Yuan, et al., Triterpene constituents from the fruits of Cyclocarya paliurus and their anti-HIV-1ⅢB activity, Nat. Prod. Res. 37(11) (2022) 1787-1796. https://doi.org/10.1080/14786419.2022.2120874.

[17]

L. Zhong, X.J. Peng, C.T. Wu, et al., Polysaccharides and flavonoids from Cyclocarya paliurus modulate gut microbiota and attenuate hepatic steatosis, hyperglycemia, and hyperlipidemia in nonalcoholic fatty liver disease rats with type 2 diabetes mellitus, Int. J. Diabetes. Dev. C. 43(2) (2022) 317-327. https://doi.org/10.1007/s13410-022-01080-5.

[18]

Y.P. Tong, X. Li, Z.P. Zhu, et al., Extraction and identification of antioxidant ingredients from Cyclocarya paliurus (Batal.) Iljinsk using UHPLC-Q-Orbitrap-MS/MS-based molecular networking, J. Chem. 2022 (2022) 1-14. https://doi.org/10.1155/2022/8260379.

[19]

W.Y. Wang, D.Y. Huang, Y.B. Yu, et al., A modular approach for the synthesis of natural and artificial terpenoids, Angew. Chem. Int. Ed. 62(37) (2023) e202307626. https://doi.org/10.1002/anie.202307626.

[20]

P. Darshani, S. Sen Sarma, A.K. Srivastava, et al., Anti-viral triterpenes: a review, Phytochem. Rev. 21(6) (2022) 1761-1842. https://doi.org/10.1007/s11101-022-09808-1.

[21]

R.K. Joshi, Bioactive usual and unusual triterpenoids derived from natural sources used in traditional medicine, Chem. Biodivers. 20(2) (2023) e202200853. https://doi.org/10.1002/cbdv.202200853.

[22]

M. Gleńsk, M.K. Dudek, A. Rybacka, et al., Triterpenoids from strawberry Fragaria × ananassa Duch. cultivar Senga Sengana leaves, Ind. Crops Prod. 169 (2021) 113668. https://doi.org/10.1016/j.indcrop.2021.113668.

[23]

J.H. Ma, D. Hu, L.L. Deng, et al., Pentacyclic triterpenoids from sabia discolor dunn and their α-glycosidase inhibitory activities, Molecules 27(7) (2022) 2161. https://doi.org/10.3390/molecules27072161.

[24]

J.J. Cui, Y.S. Han, B. Zhou, et al., Ursane and 24‐noroleanane‐type triterpenoids with anti‐HIV activity from the twigs and leaves of antirhea chinensis, Chem. Biodivers. 19(10) (2022) e202200716. https://doi.org/10.1002/cbdv.202200716.

[25]

P. Matos, M.T. Batista, A. Figueirinha, A review of the ethnomedicinal uses, chemistry, and pharmacological properties of the genus Acanthus (Acanthaceae), J. Ethnopharmacol. 293 (2022) 115271. https://doi.org/10.1016/j.jep.2022.115271.

[26]

N. Bhardwaj, A. Sharma, N. Tripathi, et al., New cycloartane triterpenoids from Dysoxylum malabaricum and their cytotoxic evaluation, Steroids 200 (2023) 109315. https://doi.org/10.1016/j.steroids.2023.109315.

[27]

J. C. Wei, H. H. Huang, N. F. Zhong, et al., Euphorfistrines A-G, cytotoxic and AChE inhibiting triterpenoids from the roots of Euphorbia fischeriana, Bioorg. Chem. 116 (2021) 105395. https://doi.org/10.1016/j.bioorg.2021.105395.

[28]

J. J. Zhao, Z.T. Wang, D.P. Xu, et al., Advances on Cyclocarya paliurus polyphenols: extraction, structures, bioactivities and future perspectives, Food Chem. 396 (2022) 133667. https://doi.org/10.1016/j.foodchem.2022.133667.

[29]

M.U. Kakar, M. Naveed, M. Saeed, et al., A review on structure, extraction, and biological activities of polysaccharides isolated from Cyclocarya paliurus (Batalin) Iljinskaja, Int. J. Biol. Macromol. 156 (2020) 420-429. https://doi.org/10.1016/j.ijbiomac.2020.04.022.

[30]

W.W. Peng, S.M. Zhao, C.J. Ji, et al., Cyclopalitins A B, nortriterpenoids from aerial parts of Cyclocarya paliurus, Phytochem. Lett. 31 (2019) 114-117. https://doi.org/10.1016/j.phytol.2019.03.017.

[31]

Z.L. Chen, Q. Wu, J. Wu, et al., Qingqianliusus A-N, 3,4-seco-dammarane triterpenoids from the leaves of Cyclocarya paliurus and their biological activities, Arabian J. Chem. 16(1) (2023) 104441. https://doi.org/10.1016/j.arabjc.2022.104441.

[32]

E.J. Kennelly, L.N. Cai, L.N. Long, et al., Novel highly sweet secodammarane glycosides from pterocarya paliurus, J. Agric. Food. Chem. 43 (1995) 2602-2607. https://doi.org/10.1021/jf00058a009.

[33]

R.G. Shu, C.R. Xu, L.N. Li, et al., Cyclocarioside Ⅱ, cyclocarioside Ⅲ: two secodamarane triterpenoid saponins from Cyclocarya paliurus, Planta Med. 61 (1995) 551-553. https://doi.org/10.1055/s-2006-959369.

[34]

H.H. Sun, J. Tan, W.Y. Lü, et al., Hypoglycemic triterpenoid glycosides from Cyclocarya paliurus (sweet tea tree), Bioorg. Chem. 95 (2020) 103493. https://doi.org/10.1016/j.bioorg.2019.103493.

[35]

H. Fuchino, T. Satoh, M. Yokochi, et al., Chemical and petroleum engineering chemical evaluation of Betula species in Japan. v. constituents of Betula ovalifolia, Chem. Pharm. Bull. 46(1) (1998) 169-170. https://doi.org/10.1248/cpb.46.169.

[36]

M.E. Wright., J. Byrd, C. He, et al., Synthesis of cyclocaric acid A and comparison to material from Cyclocarya paliurus, J. Nat. Prod. 77(11) (2014) 2566-2569. https://doi.org/10.1021/np500575q.

[37]

Z.F. Wu, F.C. Meng, L.J. Cao., et al, Triterpenoids from Cyclocarya paliurus and their inhibitory effect on the secretion of apoliprotein B48 in Caco-2 cells, Phytochemistry 142 (2017) 76-84. https://doi.org/10.1016/j.phytochem.2017.06.015.

[38]

W.W. Peng, Z.Y. Zhang, C.J. Ji, et al., Chemical constituents from the aerial part of Cyclocarya paliurus (Batal.) Iljinsk (Juglandaceae), Biochem. Syst. Ecol. 78 (2018) 110-112. https://doi.org/10.1016/j.bse.2018.04.012.

[39]

B.S. Cui, S. Li, Chemical constituents from leaves of Cyclocarya paliurus, Zhong Cao Yao 43 (2012) 2132-2136. https://doi.org/10.11926/jtsb.3820.

[40]

H.A. Noushahi, A.H. Khan, U.F. Noushahi, et al., Biosynthetic pathways of triterpenoids and strategies to improve their biosynthetic efficiency, Plant Growth Regul. 97(3) (2022) 439-454. https://doi.org/10.1007/s10725-022-00818-9.

[41]

X.T. Zhang, M.J. Zheng, A.M. Fu, et al., Natural sesquiterpenoids, diterpenoids, sesterterpenoids, and triterpenoids with intriguing structures from 2017 to 2022, Chin. J. Chem. 41(22) (2023) 3115-3132. https://doi.org/10.1002/cjoc.202300275.

[42]

L. Ruzicka The isoprene rule and the biogenesis of terpenic compounds, Experientia 9(10) (1953) 357-367. https://doi.org/10.1007/bf02167631.

[43]

A. Eschenmoser, L. Ruzicka, O. Jeger, et al., Eine stereochemische interpretation der biogenetischen isoprenregel bei den triterpenen, Helv. Chim. Acta 38(7) (1955) 1890-1904. https://doi.org/10.1002/hlca.19550380728.

[44]

R. Xu, G.C. Fazio, S. T. Matsuda, On the origins of triterpenoid skeletal diversity, Phytochemistry. 65(3) (2004) 261-291. https://doi.org/10.1016/j.phytochem.2003.11.014.

[45]

L.Y. Yang, Y.Y. Gu, J.Q. Zhou, et al., Whole-genome identification and analysis of multiple gene families reveal candidate genes for theasaponin biosynthesis in Camellia oleifera, Int. J. Mol. Sci. 23(12) (2022) 6393. https://doi.org/10.3390/ijms23126393.

[46]

J. J. Chen., Z. Zhang, Y. Wang, et al., Transcriptome analysis of Antrodia cinnamomea Mycelia from different wood substrates, Mycobiology 51(1) (2023) 49-59. https://doi.org/10.1080/12298093.2023.2175434.

[47]

H. Seki, K. Tamura, T. Muranaka, P450s and UGTs: key players in the structural diversity of triterpenoid saponins, Plant Cell Physiol. 56(8) (2015) 1463-1471. https://doi.org/10.1093/pcp/pcv062.

[48]

J.M. Augustin, V. Kuzina, S.B. Andersen, et al., Molecular activities, biosynthesis and evolution of triterpenoid saponins, Phytochemistry 72(6) (2011) 435-457. https://doi.org/10.1016/j.phytochem.2011.01.015.

[49]

J. Vincken, L. Heng, A. Groot, et al., Saponins, classification and occurrence in the plant kingdom, Phytochemistry 68(3) (2007) 275-297. https://doi.org/10.1016/j.phytochem.2006.10.008.

[50]

D.R. Phillips, J.M. Rasbery, B. Bartel, et al., Biosynthetic diversity in plant triterpene cyclization, Curr. Opin. Plant Biol. 9(3) (2006) 305-314. https://doi.org/10.1016/j.pbi.2006.03.004.

[51]

J. Ryu, J. Park, J. Eun, et al., A dammarane glycoside from Korean red ginseng, Phytochemistry 44 (1997) 931-933. https://doi.org/10.1016/S0031-9422(96)00661-9.

[52]

W. Ma, M. Mizutani, K.E. Malterud, et al., Saponins from the roots of Panax notoginseng, Phytochemistry 52 (1999) 1133-1139. https://doi.org/10.1016/S0031-9422(99)00364-7.

[53]

A. Chakravarty, T. Sarkar, K. Masuda, et al., Bacopaside Ⅰ and Ⅱ two pseudojujubogenin glycosides from Bacopa monniera, Phytochemistry 58 (2001) 553-556. https://doi.org/10.1016/S0031-9422(01)00275-8.

[54]

W. Aalbersber, Y. Sing, Dammarane triterpenoids from Dysoxylum richii, Phytochemistry 30 (1991) 921-926. https://doi.org/10.1016/0031-9422(91)85280-D.

[55]

A. Rouf, Y. Ozaki, M. Rashid, et al., Dammarane derivatives from the dried fruits of Forsythia suspensa, Phytochemistry 56 (2001) 815-818. https://doi.org/10.1016/S0031-9422(01)00028-0.

[56]

L.P. Zhu, H. M. Yang, X. Zheng, et al., Four new dammarane triterpenoid glycosides from the leaves of Cyclocarya paliurus and their SIRT1 activation activities, Fitoterapia 154 (2021) 105003. https://doi.org/10.1016/j.fitote.2021.105003.

[57]

Y. J. Chen, L. Na, J.P. Fan, et al., Seco-dammarane triterpenoids from the leaves of Cyclocarya paliurus, Phytochemistry 145 (2018) 85-92. https://doi.org/10.1016/j.phytochem.2017.10.013.

[58]

S. Lodeiro, Q. Xiong, W.K. Wilson, et al., An oxidosqualene cyclase makes numerous products by diverse mechanisms a challenge to prevailing concepts of triterpene biosynthesis, J. Am. Chem. Soc. 129 (2007) 11213-11222. https://doi.org/10.1021/ja073133u.

[59]

T. Biswas, U.N. Dwivedi, Plant triterpenoid saponins: biosynthesis, in vitro production, and pharmacological relevance, Protoplasma. 256(6) (2019) 1463-1486. https://doi.org/10.1007/s00709-019-01411-0.

[60]

W. Liu, Y. Wu, Y.L. Hu, et al., Effects of Cyclocarya paliurus aqueous and ethanol extracts on glucolipid metabolism and the underlying mechanisms: a meta-analysis and systematic review, Front. Nutr. 7 (2020) 605605. https://doi.org/10.3389/fnut.2020.605605.

[61]

Y.N. Chao, T.W. Gu, Z. Zhang, et al., The role of miRNAs carried by extracellular vesicles in type 2 diabetes and its complications, J. Diabetes. 15(10) (2023) 838-852. https://doi.org/10.1111/1753-0407.13456.

[62]

A. Ghasemi, S. Jeddi, Streptozotocin as a tool for induction of rat models of diabetes, Excli. J. 22 (2022) 274-294. https://doi.org/10.17179/excli2022-5720.

[63]

Q.Q. Wang, C.H. Jiang, S.Z. Fang, et al., Antihyperglycemic, antihyperlipidemic and antioxidant effects of ethanol and aqueous extracts of Cyclocarya paliurus leaves in type 2 diabetic rats, J. Ethnopharmacol. 150(3) (2013) 1119-1127. https://doi.org/10.1016/j.jep.2013.10.040.

[64]

L.C. Zhao, X. Wang, J.X. Li, et al., Effect of Cyclocarya paliurus on hypoglycemic effect in type 2 diabetic mice, Med. Sci. Monit. 25 (2019) 2976-2983. https://doi.org/10.12659/msm.913368.

[65]

N.F. Sangweni, P.V. Dludla, R.A. Mosa., et al., Lanosteryl triterpenes from Protorhus longifolia as a cardioprotective agent: a mini review, Heart Fail Rev. 24(1) (2018) 155-166. https://doi.org/10.1007/s10741-018-9733-9.

[66]

Y. Wang, X.J. Zheng, L.Y. Li, et al., Cyclocarya paliurus ethanol leaf extracts protect against diabetic cardiomyopathy in db/db mice via regulating PI3K/Akt/NF-κB signaling, Food Nutr. Res. 64 (2020) 4267. https://doi.org/10.29219/fnr.v64.4267.

[67]

J.Y. Kim, S.H. Lee, E.H. Song., et al., A critical role of STAT1 in streptozotocin-induced diabetic liver injury in mice: controlled by ATF3, Cell Signalling 21(12) (2009) 1758-1767. https://doi.org/10.1016/j.cellsig.2009.07.011.

[68]

C.H. Jiang, Y.T. Wang, Q.M. Jin, et al., Cyclocarya paliurus triterpenoids improve diabetes-induced hepatic inflammation via the Rho-kinase-dependent pathway, Front. Pharmacol. 10 (2019) 811. https://doi.org/10.3389/fphar.2019.00811.

[69]

J.J. Cao, R.D. Zheng, X.Y. Chang, et al., Cyclocarya paliurus triterpenoids suppress hepatic gluconeogenesis via AMPK-mediated cAMP/PKA/CREB pathway, Phytomedicine 102 (2022) 154175. https://doi.org/10.1016/j.phymed.2022.154175.

[70]

Y.X. Zhang, J. Hai, M. Cao, et al., Silibinin ameliorates steatosis and insulin resistance during non-alcoholic fatty liver disease development partly through targeting IRS-1/PI3K/Akt pathway, Int. Immunopharmacol. 17(3) (2013) 714-720. https://doi.org/10.1016/j.intimp.2013.08.019.

[71]

X, Zheng, M.G. Zhao, C.H. Jiang, et al., Triterpenic acids-enriched fraction from Cyclocarya paliurus attenuates insulin resistance and hepatic steatosis via PI3K/Akt/GSK3β pathway, Phytomedicine 66 (2020) 153130. https://doi.org/10.1016/j.phymed.2019.153130.

[72]

S.C. Pal, N. Méndez Sánchez, Insulin resistance and adipose tissue interactions as the cornerstone of metabolic (dysfunction) -associated fatty liver disease pathogenesis, World J. Gastroenterol. 29(25) (2023) 3999-4008. https://doi.org/10.3748/wjg.v29.i25.3999.

[73]

G. López Lluch, H. Yoshitomi, R. Tsuru, et al., Cyclocarya paliurus extract activates insulin signaling via Sirtuin1 in C2C12 myotubes and decreases blood glucose level in mice with impaired insulin secretion, PLoS One 12(8) (2017) e0183988. https://doi.org/10.1371/journal.pone.0183988.

[74]

K. Umanath, J.B. Lewis, Update on diabetic nephropathy: core curriculum 2018, Am. J. Kidney Dis. 71(6) (2018) 884-895. https://doi.org/10.1053/j.ajkd.2017.10.026.

[75]

X.X. Zhang, C.H. Jiang, Y. Liu, et al., Cyclocarya paliurus triterpenic acids fraction attenuates kidney injury via AMPK-mTOR-regulated autophagy pathway in diabetic rats, Phytomedicine 64 (2019) 153060. https://doi.org/10.1016/j.phymed.2019.153060.

[76]

R. Yang, S.S. Xu, X.X. Zhang, et al., Cyclocarya paliurus triterpenoids attenuate glomerular endothelial injury in the diabetic rats via ROCK pathway, J. Ethnopharmacol. 291 (2022) 115127. https://doi.org/10.1016/j.jep.2022.115127.

[77]

Z. J. Fang, S.N. Shen, J.M. Wang, et al., Triterpenoids from Cyclocarya paliurus that enhance glucose uptake in 3T3-L1 adipocytes, Molecules 24(1) (2019) 187. https://doi.org/10.3390/molecules24010187.

[78]

C.Q. Fang, Y. Teng, Y.T. Wang, et al., Arjunolic acid from Cyclocarya paliurus selectively inhibits glucagon secretion from α cells and ameliorates diabetes via ephrin-A1 and EphA4 interaction, J. Funct. Foods 99 (2022) 105323. https://doi.org/10.1016/j.jff.2022.105323.

[79]

C.L. Zhang, M.Z. Xu, C.H. He, et al., Discovery of 1'-(1-phenylcyclopropane-carbonyl)-3H-spiro[isobenzofuran-1,3'-pyrrolidin]-3-one as a novel steroid mimetic scaffold for the potent and tissue-specific inhibition of 11β-HSD1 using a scaffold-hopping approach, Bioorganic Med. Chem. Lett. 69 (2022) 128782. https://doi.org/10.1016/j.bmcl.2022.128782.

[80]

H. Yan, X. Li, W. Ni, et al., Phytochemicals from the leaves of Cyclocarya paliurus and their 11β‐HSD1 enzyme inhibitory effects, Chem. Biodivers. 18(1) (2020) e2000772. https://doi.org/10.1002/cbdv.202000772.

[81]

Y. Liu, X.X. Zhang, S.S. Xu, et al., New triterpenoids from the Cyclocarya paliurus (Batalin) Iljinskaja and their anti-fibrotic activity, Phytochemistry 204 (2022) 113434. https://doi.org/10.1016/j.phytochem.2022.113434.

[82]

X.X. Zhang, Y. Liu, S.S. Xu, et al., Asiatic acid from Cyclocarya paliurus regulates the autophagy-lysosome system via directly inhibiting TGF-β type Ⅰ receptor and ameliorates diabetic nephropathy fibrosis, Food Funct. 13(10) (2022) 5536-5546. https://doi.org/10.1039/d1fo02445k.

[83]

K.N. Zhu, C.H. Jiang, Y.S. Tian., et al., Two triterpeniods from Cyclocarya paliurus (Batal) Iljinsk (Juglandaceae) promote glucose uptake in 3T3-L1 adipocytes: the relationship to AMPK activation, Phytomedicine 22(9) (2015) 837-846. https://doi.org/10.1016/j.phymed.2015.05.058.

[84]

S. Zhou, Z.Y. Li, H.Z. Song, et al., Recent advances in tea seeds (Camellia Sinensis (L.) O. Kuntze): active ingredients, health effects, and potential applications, Trends Food Sci. Technol. 141 (2023) 104192. https://doi.org/10.1016/j.tifs.2023.104192.

[85]

T.Y. Wu, N. Tien, C.L. Lin, et al., Influence of antipsychotic medications on hyperlipidemia risk in patients with schizophrenia: evidence from a population-based cohort study and in vitro hepatic lipid homeostasis gene expression, Front. Med. 10 (2023) 7977. https://doi.org/10.3389/fmed.2023.1137977.

[86]

V. H. Jeremy, S. Duval, L. Russell V, et al., Association of cardiovascular disease risk factors with socio-demographics and health beliefs among a community-based sample of african americans in minnesota, Mayo Clinic Proceedings 97(1) (2022) 46-56. https://doi.org/10.1016/j.mayocp.2021.08.027.

[87]

A. Gugliucci, Triglyceride-rich lipoprotein metabolism: key regulators of their flux, J. Clin. Med. 12(13) (2023) 4399. https://doi.org/10.3390/jcm12134399.

[88]

N. Mena Vázquez, R. Redond Rodríguez, J. Rioja, et al., Postprandial hyperlipidemia: association with inflammation and subclinical atherosclerosis in patients with rheumatoid arthritis, Biomedicines 10(1) (2022) 133. https://doi.org/10.3390/biomedicines10010133.

[89]

Z.F. Wu, T.H. Gao, R.L. Zhong, et al., Antihyperlipidaemic effect of triterpenic acid-enriched fraction from Cyclocarya paliurus leaves in hyperlipidaemic rats, Pharm. Biol. 55(1) (2017) 712-721. https://doi.org/10.1080/13880209.2016.1267231.

[90]

Y.L. Ma, C.H. Jiang, N. Yao, et al., Antihyperlipidemic effect of Cyclocarya paliurus (Batal.) Iljinskaja extract and inhibition of apolipoprotein B48 overproduction in hyperlipidemic mice, J. Ethnopharmacol. 166 (2015) 286-296. https://doi.org/10.1016/j.jep.2015.03.030.

[91]

C. H. Jiang, Q.Q. Wang, Y. J. Wei, et al., Cholesterol-lowering effects and potential mechanisms of different polar extracts from Cyclocarya paliurus leave in hyperlipidemic mice, J. Ethnopharmacol. 176 (2015) 17-26. https://doi.org/10.1016/j.jep.2015.10.006.

[92]

X.M. Yao, Z. Lin, C.H. Jiang, et al., Cyclocarya paliurus prevents high fat diet induced hyperlipidemia and obesity in Sprague-Dawley rats, Can. J. Physiol. Pharmacol. 93 (2015) 677-686. https://doi.org/10.1139/cjpp-2014-0477.

[93]

H. Tilg, A.R. Moschen, Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis, Hepatology 52(5) (2010) 1836-1846. https://doi.org/10.1002/hep.24001.

[94]

C. Postic, J. Girard, The role of the lipogenic pathway in the development of hepatic steatosis, Diabetes Metab. 34 (2008) 643-648. https://doi.org/10.1016/S1262-3636(08)74599-3.

[95]

Z. Lin, Z. F. Wu, C.H. Jiang, et al., The chloroform extract of Cyclocarya paliurus attenuates high-fat diet induced non-alcoholic hepatic steatosis in Sprague Dawley rats, Phytomedicine 23(12) (2016) 1475-1483. https://doi.org/10.1016/j.phymed.2016.08.003.

[96]

M.G. Zhao, X.P. Sheng, Y.P. Huang, et al., Triterpenic acids-enriched fraction from Cyclocarya paliurus attenuates non-alcoholic fatty liver disease via improving oxidative stress and mitochondrial dysfunction, Biomed. Pharmacother. 104 (2018) 229-239. https://doi.org/10.1016/j.biopha.2018.03.170.

[97]

X. Zheng, X.G. Zhang, Y. Liu, et al., Arjunolic acid from Cyclocarya paliurus ameliorates nonalcoholic fatty liver disease in mice via activating Sirt1/AMPK, triggering autophagy and improving gut barrier function, J. Funct. Foods 86 (2021) 104686. https://doi.org/10.1016/j.jff.2021.104686.

[98]

L. Xiong, K.H. Ouyang, Y. Jiang, et al., Chemical composition of Cyclocarya paliurus polysaccharide and inflammatory effects in lipopolysaccharide-stimulated RAW264.7 macrophage, Int. J. Biol. Macromol. 107 (2018) 1898-1907. https://doi.org/10.1016/j.ijbiomac.2017.10.055.

[99]

W. Liu, S.P. Deng, D.X. Zhou, et al., 3,4-Seco-dammarane triterpenoid saponins with anti-inflammatory activity isolated from the leaves of Cyclocarya paliurus, J. Agric. Food Chem. 68(7) (2020) 2041-2053. https://doi.org/10.1021/acs.jafc.9b06898.

[100]

A.K. So, F. Martinon, Inflammation in gout: mechanisms and therapeutic targets, Nat. Rev. Rheumatol. 13(11) (2017) 639-647. https://doi.org/10.1038/nrrheum.2017.155.

[101]

D.X. Lou, X.G. Zhang, C.H. Jiang, et al., 3β,23-Dihydroxy-12-ene-28-ursolic acid isolated from Cyclocarya paliurus alleviates NLRP3 inflammasome-mediated gout via PI3K-AKT-mTOR-dependent autophagy, Evid. -Based Compl. Alt. 2022 (2022) 1-15. https://doi.org/10.1155/2022/5541232.

[102]

Y. Han, C. Yuan, X. Zhou, et al., Anti-inflammatory activity of three triterpene from Hippophae rhamnoides L. in lipopolysaccharide-stimulated RAW264.7 cells, Int. J. Mol. Sci. 22(21) (2021) 12009. https://doi.org/10.3390/ijms222112009.

[103]

M.M. Zhou, S.Y. Quek, X.L. Shang, et al., Geographical variations of triterpenoid contents in Cyclocarya paliurus leaves and their inhibitory effects on HeLa cells, Ind. Crops Prod. 162 (2021) 113314. https://doi.org/10.1016/j.indcrop.2021.113314.

[104]

H. H. Sun, W.Y. Lü, J. Tan, et al., Cytotoxic triterpenoid glycosides from leaves of Cyclocarya paliurus, Nat. Prod. Res. 35(21) (2020) 4018-4024. https://doi.org/10.1080/14786419.2020.1756801.

[105]

T. Landete Castillejos, A. Rossetti, A.J. Garcia, et al., From a general anti-cancer treatment to antioxidant or deer osteoporosis: the consequences of antler as the fastest-growing tissue, Anim. Prod. Sci. SI (2022) AN22176. https://doi.org/10.1071/an22176.

[106]

H.M. Yang, Z.Q. Yin, M.G. Zhao, et al., Pentacyclic triterpenoids from Cyclocarya paliurus and their antioxidant activities in FFA-induced HepG2 steatosis cells, Phytochemistry 151 (2018) 119-127. https://doi.org/10.1016/j.phytochem.2018.03.010.

[107]

Y.R. Wang, B.S. Cui, S.W. Han, et al., New dammarane triterpenoid saponins from the leaves of Cyclocarya paliurus, J. Asian Nat. Prod. Res. 20(11) (2018) 1019-1027. https://doi.org/10.1080/10286020.2018.1457653.

[108]

Y. H. Chen, X. Zhang, M. Zhang, et al., A transcriptome analysis of the ameliorate effect of Cyclocarya paliurus triterpenoids on ethanol stress in Saccharomyces cerevisiae, World J. Microbiol. Biotechnol. 34(12)(2018) 182. https://doi.org/10.1007/s11274-018-2561-1.

[109]

Z. C. Shi, X.Q. Huang, Y. N. Zhao, et al., Construction of a novel ursolic acid-based supramolecular gel for efficient removal of iodine from solution, Environ. Res. 235 (2023) 116617. https://doi.org/10.1016/j.envres.2023.116617.

[110]

W.H. Chu, P. Wang, Z. Ma, et al., Lupeol-loaded chitosan-Ag+ nanoparticle/sericin hydrogel accelerates wound healing and effectively inhibits bacterial infection, Int. J. Biol. Macromol. 243 (2023) 125310. https://doi.org/10.1016/j.ijbiomac.2023.125310.

[111]

Y.Q. Liu, K.K. Liu, X.L. Wang, et al., Co-assembling nanoparticles of asiatic acid and caffeic acid phenethyl ester: characterization, stability and bioactivity in vitro, Food Chem. 402 (2023) 134409. https://doi.org/10.1016/j.foodchem.2022.134409.

[112]

C.H. Yuan, W.W. Fan, T.F. Zhou, et al., Ligand-free high loading capacity ursolic acid self-carried nanovesicles enable hepatocyte targeting via absorbing apolipoproteins, Int. J. Pharm. 638 (2023) 122931. https://doi.org/10.1016/j.ijpharm.2023.122931.

[113]

S.N. Gao, M.Y. Yang, Z.S. Luo, et al., Soy protein/chitosan-based microsphere as stable biocompatible vehicles of oleanolic acid: an emerging alternative enabling the quality maintenance of minimally processed produce, Food Hydrocoll. 124 (2022) 107325. https://doi.org/10.1016/j.foodhyd.2021.107325.

[114]

R.L. Liu, L.P. Zhang, S.Y. Xiao, et al., Ursolic acid, the main component of blueberry cuticular wax, inhibits Botrytis cinerea growth by damaging cell membrane integrity, Food Chem. 415 (2023) 135753. https://doi.org/10.1016/j.foodchem.2023.135753.

[115]

Y.G. Liu, H.P. Xia, S.Y. Guo, et al., Effect and mechanism of edible oil co-digestion on the bioaccessibility and bioavailability of ursolic acid, Food Chem. 423 (2023) 136220. https://doi.org/10.1016/j.foodchem.2023.136220.

[116]

R.G. Shu, C.R. Xu, L.N. Li, Studies on the sweet principles from the leaves of Cyclocarya paliurus (Batal.) Iljinsk, Acta Pharmacol. Sin. 30(10) (1995) 757-761. https://doi.org/10.16438/j.0513-4870.1995.10.008.

[117]

H. Yamada, M. Nishizawa, Syntheses of sweet tasting diterpene glycosides, baiyunoside and analogs, Tetrahedron 48(15) (1992) 3021-3044. https://doi.org/10.1016/S0040-4020(01)92246-X.

[118]
World Health Organization, WHO advises not to use non-sugar sweeteners for weight control in newly released guideline, 2023, availsble from https://www.who.int/news/item/15-05-2023-who-advises-not-to-use-non-sugar-sweeteners-for-weight-control-in-newly-released-guideline.
[119]

M. Fernández Navarro, J. Peragón, F. J. Esteban, et al., Maslinic acid as a feed additive to stimulate growth and hepatic protein-turnover rates in rainbow trout (Onchorhynchus mykiss), Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 144(2) (2006) 130-140. https://doi.org/10.1016/j.cbpc.2006.07.006.

[120]

B.S. Cui, S. Li, New triterpenoid saponins from the leaves of Cyclocarya paliurus, Chin. Chem. Lett. 26(5) (2015) 585-589. https://doi.org/10.1016/j.cclet.2014.11.033.

[121]

Z.Y. Jiang, X.M. Zhang, J. Zhou, et al., Two new triterpenoid glycosides from Cyclocarya paliurus, J. Asian Nat. Prod. Res. 8(1/2) (2006) 93-98. https://doi.org/10.1080/10286020500480217.

[122]

Y. Liu, M.Q. Zhang, X.L. Li, et al., Study on chemical constituents of Cyclocarya paliurus, J. Asian Nat. Prod. Res. 16(2) (2013) 206-209. https://doi.org/10.1080/10286020.2013.825254.

[123]

D.J. Yang, Z.C. Zhong, Z.M. Xie, Studies on the sweet principles from the leaves of Cyclocarya paliurus (Batal.) Iljinskaya, Acta Pharmacol. Sin. 27(11) (1992) 841-844. https://doi.org/10.16438/j.0513-4870.1992.11.008.

[124]

H.H. Sun, H. Zhu, J.P. Wu, et al., Two new triterpenoid glycosides from leaves of Cyclocarya paliurus, Nat. Prod. Res. 36(20) (2021) 5277-5282. https://doi.org/10.1080/14786419.2021.1931182.

[125]

X.L. Zhou, S.B. Li, M.Q. Yan, et al., Bioactive dammarane triterpenoid saponins from the leaves of Cyclocarya paliurus, Phytochemistry 183 (2021) 112618. https://doi.org/10.1016/j.phytochem.2020.112618.

[126]

C.G. Li, S.P. Deng, W. Liu, et al., α-Glucosidase inhibitory and anti-inflammatory activities of dammarane triterpenoids from the leaves of Cyclocarya paliurus, Bioorg. Chem. 111 (2021) 104847. https://doi.org/10.1016/j.bioorg.2021.104847.

[127]

S. Li, B.S. Cui, Q. Liu, et al., New triterpenoids from the leaves of Cyclocarya paliurus, Planta Med. 78(3) (2012) 290-296. https://doi.org/10.1055/s-0031-1280403.

[128]

Y. Liu, G.T. Zheng, X.X. Zhang, et al., Two new triterpenoids from the leaves of Cyclocarya paliurus (Batalin) Iljinskaja, Nat. Prod. Res. 36(15) (2021) 3938-3944. https://doi.org/10.1080/14786419.2021.1900845.

[129]

T.Y. Xuan, J. Tan, H.H. Sun, et al., Cyclocarioside O-Q, three novel seco-dammarane triterpenoid glycosides from the leaves of Cyclocarya paliurus, Nat. Prod. Res. 35(1) (2019) 167-173. https://doi.org/10.1080/14786419.2019.1616722.

[130]

T. Li, X.C. Shangguan, Z.P. Yin, et al., The separation and identification of triterpeniods from leaves of Cyclocarya paliurus, Acta Agriculturae Universitatis Jiangxiensis 35(5) (2013) 1048-1054. https://doi.org/10.13836/j.jjau.2013184.

[131]

T. Fouri, F.A. Snycker,. Pentacyclic triterpene with anti-inflammatory and analgesic activity from the roots of commiphora merkeri, J. Nat. Prod. 52(5) (1989) 1129-1131. https://doi.org/10.1021/np50065a034.

[132]

J. Li, Y.Y. Lu, X.J. Su, et al., A Norsesquiterpene lactone and a benzoic acid derivative from the leaves of Cyclocarya paliurus and their glucosidase and glycogen phosphorylase inhibiting activities, Planta Med. 74(3) (2008) 287-289. https://doi.org/10.1055/s-2008-1034309.

[133]

F. Fullas, M. Wani, M. Wall, et al., Triterpenes from the combined leaf and stem of Lithospermum caroliniense, Phytochemistry 43(6) (1996) 1303-1305. https://doi.org/10.1016/S0031-9422(96)00422-0.

[134]

R.J. Zhong, R.G. Shu, X.L. Ni, et al., Studies on the chemical structure of cyclocaric acid A, Acta Pharmacol. Sin. 31(5) (1996) 398-400. https://doi.org/10.16438/j.0513-4870.1996.05.014.

[135]

R.G. Shu, Y.F. Liu, J. Chen, et al., Studies on the triterpenoids of Cyclocarya paliurus (Batal.) Iljinsk, J. Chinese Med. Mat. 28(7) (2005) 558-559. https://doi.org/10.13863/j.issn1001-4454.2005.07.013.

[136]

R.J. Zhong, L.N. Li, Y.H. Gao, et al., Pentacyclic triterpenoids from rounduingfruit Cyclocarya (Cyclocarya paliarus), Zhong Cao Yao 27(7) (1996) 387-389. https://doi.org/10.3321/j.issn:0253-2670.1996.07.001.

[137]

J.C. Shu, J.Q. Liu, G.X. Chou., et al., Two new triterpenoids from Psidium guajava, Chin. Chem. Lett. 23(7) (2012) 827-830. https://doi.org/10.1016/j.cclet.2012.05.018.

[138]

C.H. Jiang, N. Yao, Q.Q. Wang, et al., Cyclocarya paliurus extract modulates adipokine expression and improves insulin sensitivity by inhibition of inflammation in mice, J. Ethnopharmacol. 153(2) (2014) 344-351. https://doi.org/10.1016/j.jep.2014.02.003.

[139]

Y.J. Li, G.Z. Wan, F.C. Xu, et al., Screening and identification of α-glucosidase inhibitors from Cyclocarya paliurus leaves by ultrafiltration coupled with liquid chromatography-mass spectrometry and molecular docking, J. Chromatogr. A 1675 (2022) 463160. https://doi.org/10.1016/j.chroma.2022.463160.

[140]

M.M. Zhou, P. Chen, Y. Lin, et al., A comprehensive assessment of bioactive metabolites, antioxidant and antiproliferative activities of Cyclocarya paliurus (Batal.) Iljinskaja leaves, Forests 10(8) (2019) 625. https://doi.org/10.3390/f10080625.

Food Science and Human Wellness
Article number: 9250127
Cite this article:
Xi H, Liu Z, Xu W, et al. Triterpenoids from Cyclocarya paliurus: structure, biosynthesis, biological activities. Food Science and Human Wellness, 2025, 14(6): 9250127. https://doi.org/10.26599/FSHW.2024.9250127
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return