Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Mining potential and valuable medical knowledge from massive medical data to support clinical decision-making has become an important research field. Personalized medicine recommendation is an important research direction in this field, aiming to recommend the most suitable medicines for each patient according to the health status of the patient. Personalized medicine recommendation can assist clinicians to make clinical decisions and avoid the occurrence of medical abnormalities, so it has been widely concerned by many researchers. Based on this, this paper makes a comprehensive review of personalized medicine recommendation. Specifically, we first make clear the definition of personalized medicine recommendation problem; then, starting from the key theories and technologies, the personalized medicine recommendation algorithms proposed in recent years are systematically classified (medicine recommendation based on multi-disease, medicine recommendation with combination pattern, medicine recommendation with additional knowledge, and medicine recommendation based on feedback) and in-depth analyzed; and this paper also introduces how to evaluate personalized medicine recommendation algorithms and some common evaluation indicators; finally, the challenges of personalized medicine recommendation problem are put forward, and the future research direction and development trends are prospected.
D. Tawadrous, S. Z. Shariff, R. B. Haynes, A. V. Iansavichus, A. K. Jain, and A. X. Garg, Use of clinical decision support systems for kidney-related drug prescribing: A systematic review, Am. J. Kidney Dis., vol. 58, no. 6, pp. 903–914, 2011.
C. Palleria, A. D. Paolo, C. Giofrè, C. Caglioti, G. Leuzzi, A. Siniscalchi, G. D. Sarro, and L. Gallelli, Pharmacokinetic drug-drug interaction and their implication in clinical management, J. Res. Med. Sci., vol. 18, no. 7, p. 601, 2013.
S. M. Chen, Y. H. Huang, and R. C. Chen, A recommendation system for anti-diabetic drugs selection based on fuzzy reasoning and ontology techniques, Int. J. Patt. Recogn. Artif. Intell., vol. 27, no. 4, p. 1359001, 2013.
H. Liu, G. Xie, J. Mei, W. Shen, W. Sun, and X. Li, An efficacy driven approach for medication recommendation in type 2 diabetes treatment using data mining techniques, Stud. Heath. Technol. Inform., vol. 192, p. 1071, 2013.
R. Su, Y. Huang, D. G. Zhang, G. Xiao, and L. Wei, SRDFM: Siamese response deep factorization machine to improve anti-cancer drug recommendation, Brief. Bioinform., vol. 23, no. 2, p. bbab534, 2022.
D. Chen, D. Jin, T. T. Goh, N. Li, and L. Wei, Context-awareness based personalized recommendation of anti-hypertension drugs, J. Med. Syst., vol. 40, no. 9, pp. 1–10, 2016.
M. Sajde, H. Malek, and M. Mohsenzadeh, RecoMed: A knowledge-aware recommender system for hypertension medications, Inform. Med. Unlocked, vol. 30, p. 100950, 2022.
L. Verboven, T. Calders, S. Callens, J. Black, G. Maartens, K. E. Dooley, S. Potgieter, R. M. Warren, K. Laukens, and A. V. Rie, A treatment recommender clinical decision support system for personalized medicine: Method development and proof-of-concept for drug resistant tuberculosis, BMC Med. Inform. Decis. Mak., vol. 22, no. 1, p. 56, 2022.
J. Shang, C. Xiao, T. Ma, H. Li, and J. Sun, GAMENet: Graph augmented memory networks for recommending medication combination, Proc. AAAI Conf. Artif. Intell., vol. 33, no. 1, pp. 1126–1133, 2019.
Y. Zhang, D. Zhang, M. M. Hassan, A. Alamri, and L. Peng, CADRE: Cloud-assisted drug recommendation service for online pharmacies, Mob. Netw. Appl., vol. 20, no. 3, pp. 348–355, 2015.
F. Gong, M. Wang, H. Wang, S. Wang, and M. Liu, SMR: Medical knowledge graph embedding for safe medicine recommendation, Big Data Res., vol. 23, p. 100174, 2021.
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).