Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A3BO7-type (A = rare earth (RE), B = Nb or Ta) oxides have been studied as protective coating materials because of their low thermal conductivity; however, their hardness, toughness, and stiffness are insufficient, particularly for members with webeirte-type structures. In this work, we have synthesized two high-entropy oxides (HEOs) of weberite-type RE niobates/tantalates (RE3Nb/TaO7), i.e., (Nd1/7Sm1/7Eu1/7Gd1/7Dy1/7Ho1/7Er1/7)3NbO7 (7HEOs-Nb) and (Nd1/7Sm1/7Eu1/7Gd1/7Dy1/7Ho1/7Er1/7)3(Nb1/2Ta1/2)O7 (7HEOs-NbTa), to overcome the mechanical deficiencies. The short- and long-range ordered arrangements of RE cations in the A-site and Nb/Ta cations in the B-site were identified by the X-ray diffraction (XRD), scanning electron microscopy equipped with energy-dispersive spectrometry (EDS), and transmission electron microscopy. The enhancements in hardness (H = 9.4 GPa) and fracture toughness (KIC = 2.0 MPa·m1/2) were realized by grain refinement, solid solution strengthening, and high stiffness (K). The exceptional phase stability at 25−1500 ℃, amorphous thermal conductivity (k = 1.5−1.7 W·m−1·K−1 at 25−900 ℃), and high thermal expansion coefficients (TEC > 11.0×10−6 K−1 at 1500 ℃) further supported their potential application as protective coating materials.
2177
Views
429
Downloads
18
Crossref
15
Web of Science
17
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.