AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (226.4 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline

Reconstruction of deep fluid chemical constituents for estimation of geothermal reservoir temperature using chemical geothermometers

Yan-guang LIUBing LIUChuan LUXi ZHUGui-ling WANG( )
Institute of Hydrogeology and Environmental Geology CAGS, Shijiazhuang 050061, China
Show Author Information

Abstract

This paper elaborates the chemical constituent change principles of deep geothermal fluid during the process of upward movement. It summarizes research methods of hydrochemistry, isotope and numerical modelling technique for the physiochemical processes such as decreasing temperature, shallow groundwater infusion, and degassing. The multi-component chemical geothermometry methods including gas geochemical method are discussed. High-temperature geothermal fields in China are mostly located in the southwest with frequent new tectonic movements, especially in Tibet high-temperature geothermal areas. Therefore the paper also focuses the status of high-temperature geothermal fluid research. At last, it’s pointed out in the paper that in the future we can start from typical high-temperature geothermal zones and geothermal fields to explore optimization of the multi-component geothermometry method and use it in the reconstruction and analogue of the formation mechanism and internal relevancy of regional geothermal systems.

References

 

AN Ke-shi, ZHANG Xi-gen, HE Shi-chun. 1980. Geochemical features of Yambajan geothermal field. Hydrogeology and Engineering Geology, (1): 14-18.

 

Armienta M A, Rodríguez R, et al. 2014. Groundwater quality and geothermal energy. The case of Cerro Prieto Geothermal Field, México. Renewable Energy, (63): 236-254.

 

Arnorsson S, Sigurdsson S, et al. 1982. The chemistry of geothermal waters in Iceland. Ⅰ. Calculation of aqueous speciation from 0 to 370 ℃. Geochimica Et Cosmochimica Acta, 46(9): 1513-1532.

 

Arnórsson S, Gunnlaugsson E, et al. 1983a. The chemistry of geothermal waters in Iceland. Ⅱ. Mineral equilibria and independent variables controlling water compositions. Geochimica Et Cosmochimica Acta, 47(3): 547-566.

 

Arnórsson S, Gunnlaugsson E, et al. 1983b. The chemistry of geothermal waters in Iceland. Ⅲ. Chemical geothermometry in geothermal investigations. Geochimica Et Cosmochimica Acta, 47(3): 567-577.

 

Arnórsson S, D’Amore F, Gerardo-Abaya J. 2000. Isotopic and chemical techniques in geothermal exploration, development and use. Vienna: International Atomic Energy Agency.

 

CAI Zu-huang, SHI Hui-xin, et al. 1985. Isotopic research of current activities of the Yambajan area at the piedmont fault of Nyenchen Tanglha mountains. Chinese Science Bulletin, 30(24): 1891-1893.

 

CHAI Rui, WANG Hao, et al. 2010. Application of multi-mineral balance method to estimation of geothermal temperature. Coal Science and Technology, 38(4): 100-103.

 

CHEN Chong-cheng, HUANG Zhen-guang. 1997. Research on systematic geothermometer: A Case Study. Journal of Fuzhou University (Natural Sciences), 25(4): 122-126.

 
DUAN Chen-yang. 2014. Research on the hydro-geochemical characteristics of geothermal water and its formation in Bujiemu River Valley, Yangyi. Beijing: China University of Geosciences.
 

DUO Ji. 2003. The basic characteristics of the Yangbajing Geothermal Field-A typical high temperature geothermal systems. Engineering Science, 5(1): 42-47.

 

FENG Jin-liang, ZHAO Zhen-hong, et al. 2014. Rare earth elements in sinters from the geothermal waters (hot springs) on the Tibetan Plateau, China. Journal of Volcanology and Geothermal Research, 287:1-11.

 

Fouillac C, Michard G. 1981. Sodium/lithium ratio in water applied to geothermometry of geothermal reservoirs. Geothermics, 10(1): 55-70.

 

Fournier R O, Rowe J J. 1966. Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells. American Journal of Science, 264(9): 685-697.

 

Fournier R O, Potter R W. 1982. Revised and expanded silica (quartz) geothermometer. Geothermal Resources Council Bulletin, 11(10): 3-12.

 

Fournier R O. 1977. Chemical geothermometers and mixing models for geothermal systems. Geothermics, 5(1-4): 41-50.

 

Fournier R O. 1979. A revised equation for the Na/K geothermometer. Geothermal Resources Council Transactions, (3): 221-224.

 

Fournier R O, Truesdell A H. 1973. An empirical Na-K-Ca geothermometer for natural waters. Geochimica Et Cosmochimica Acta, 37(5): 1255-1275.

 
Giggenbach W F. 1991. Chemical techniques in geothermal exploration. In: D’Amore F. (Coordinator). Application of Geothermal Reservoir Development. Rome: UNITAR/ UNDP Publications, 119.
 

Grassi S, Amadori M, et al. 2014. Identifying sources of B and As contamination in surface water and groundwater downstream of the Larderello geothermal-industrial area (Tuscany-Central Italy). Journal of Hydrology, 509(2): 66-82.

 

Hoke L, Lamb S, et al. 2000. Southern limit of mantle-derived geothermal helium emissions in Tibet: Implications for lithospheric structure. Earth and Planetary Science Letters, 180(3-4): 297-308.

 

HU Hong, ZHU Jia-ling, ZHAO Ji-chu. 2003. Na-K geothermometers study on springs in KUIRAU park, ROTORUA. Journal of Heilongjiang Institute of Science & Technology, 13(4): 45-49.

 

LI Jie-xiang, GUO Qing-hai, et al. 2015. Evaluation of temperature of parent geothermal fluid and its cooling processes during ascent to surface: A case study in Rehai Geothermal Field, Tengchong. Earth Science: Journal of China University of Geosciences, 40 (9):1576-1584.

 

LIAO Zhi-jie. 1982. Setting of the geothermal activities of Xizang (Tibet) and a discussion of associated heat source problems. Acta Scientiarum Naturalium Universitatis Pekinensis, (2): 70-78.

 

Lichtner P C, Karra S, et al. 2015. PFLOTRAN User’s Guide. Los Alamos National Laboratory Report.

 

LIU Ying-chao, LIU Kai, et al. 2015. Hydrochemical characteristics and isotopic analysis of geothermal water in Liangxiang geothermal field. South-to-North Water Transfers and water Science & Technology, 13(5): 963-967.

 

Lloyd R R. 1968. Oxygen isotopic behavior in the sulfate-water system. Journal of Geophysical Research, 73(18): 6099-6110.

 

Lyon G L, Hulston J R. 1984. Carbon and hydrogen isotopic compositions of New Zealand geothermal gases. Geochimica Et Cosmochimica Acta, 48(6): 1161-1171.

 

LV Yuan-yuan, ZHENG Mian-ping, et al. 2014. Geochemical processes and origin of boron isotopes in geothermal water in the Yunnan-Tibet geothermal zones. Science China: Earth Sciences, 44(9): 1968-1979.

 

Michard G, Roekens E. 1983. Modelling of the chemical composition of alkaline hot waters. Geothermics, 12(2-3): 161-169.

 

Michard G, Fouillac C, et al. 1981. Une méthode globale d’estimation des températures des réservoirs alimentant les sources thermales. Exemple du Massif Central Francais. Geochimica Et Cosmochimica Acta, 45(7): 1199-1207.

 

Palandri J L, Reed M H. 2001. Reconstruction of in situ composition of sedimentary formation waters. Geochimica Et Cosmochimica Acta, 65(11): 1741-1767.

 
Parkhurst D L, Appelo C A J. 1999. User’s guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one- dimensional transport, and inverse geochemical calculations. Denver: USGS.
 

PANG Zhong-he, WANG Ji-yang, FAN Zhi-cheng. 1990. Calculating the temperature of geothermal reservoirs in Zhangzhou geothermal areas using SiO2 mixed models. Chinese Science Bulletin (1): 57-59.

 

PANG Zhong-he. 1996. Whole-system geochemical modeling and the study of water-rock interaction. Earth Science Frontiers (China University of Geosciences, Beijing), 3(3-4): 119-123.

 

PANG Zhong-he, Mark Reed. 1998. Theoretical chemical thermometry on geothermal waters: Problems and methods. Geochimica Et Cosmochimica Acta, 62(6): 1083-1091.

 

PANG Zhong-he, YANG Feng-tian, LUO Lu. 2013. Research on the reservation temperature of geothermal field: Research methods of solid earth sciences. Beijing: Science Press.

 

Reed M H. 1982. Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases and an aqueous phase. Geochimica Et Cosmochimica Acta, 46(4): 513-528.

 

Reed M H, Spycher N F. 1984. Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution. Geochimica Et Cosmochimica Acta, 48(7): 1479-1492.

 

Peiffer L, Wanner C, et al. 2014. Optimized multicomponent vs. classical geothermometry: Insights from modeling studies at the Dixie Valley geothermal area. Geothermics, 51: 154-169.

 
Powell T, Cumming W. 2010. Spreadsheets for geothermal water and gas geochemistry. Stanford: Proceedings Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University.
 

Sanliyuksel D, Baba A. 2011. Hydrogeochemical and isotopic composition of a low-temperature geothermal source in northwest Turkey: Case study of Kirkgecit geothermal area. Environmental Earth Sciences, 62(3): 529-540.

 
Sandia National Laboratories. 2007. Qualification of thermodynamic data for geochemical modeling of mineral–water interactions in dilute systems (data0.ymp.R5). Report ANL-WIS-GS-000003 REV 01. Nevada: Sandia National Laboratories.
 

Shinichi Miyazaki, Zeng Yi, et al. 2005. One of the analysis of the development program of geothermal resources in Yambajan, Tibet-exploring well drillings (CJZK3001), proceedings of the national academic seminar on sustainable development of geothermal industries. Beijing: Chemical Industry Press, 106-112.

 
SHEN Li-cheng. 2007. Deep-seated geological effect of degassing in Southwestern China and carbon circulation. Chongqing: Southwest University.
 

SHEN Li-cheng, WU Kun-yu, et al. 2011. Carbon dioxide degassing flux from two geothermal fields in Tibet, China. Chinese Science Bulletin, 56(26): 2198-2208.

 

Spycher N, Peiffer L, et al. 2014. Integrated multicomponent solute geothermometry. Geothermics, 51(7):113-123.

 

SUN Hong-li, MA Feng, et al. 2015. Geochemical characteristics and geothermometer application in high temperature geothermal field in Tibet. Geological Science and Technology Information, 34(3):171-177.

 

TAN Hong-bing, ZHANG Wen-jie, et al. 2012. Isotope and geochemical study for geothermal assessment of the Xining basin of the northeastern Tibetan Plateau. Geothermics, 42: 47-55.

 

TONG Wei, ZHANG Zhi-fei, et al. 1978. Himalayan thermal zones. Journal of Peking University: Natural Sciences (1): 81-93, 162.

 

TONG Wei, ZHANG Ming-tao, et al. 1981. Tibet geothermal power. Beijing: Science Press.

 
Wolery T J, Jove-Colon C F. 2004. Qualification of thermodynamic data for geochemical modeling of mineral-water interactions in dilute systems. Office of Scientific & Technical Information Technical Reports.
 

Verma S P, Pandarinath K, et al. 2008. SolGeo: A new computer program for solute geothermometers and its application to Mexican geothermal fields. Geothermics, 37: 597-621.

 

Wanner C, Peiffer L, et al. 2014. Reactive transport modeling of the Dixie Valley geothermal area: Insights on flow and geothermometry. Geothermics, 51:130-141.

 
Wanner C, Peiffer L, 2013. Assessing thermo-hydrodynamic–chemical processes at the Dixie Valley geothermal area: A reactive transport modeling approach. Proceedings 38th Workshop on Geothermal Reservoir Engineering, Stanford University. Report SGP-TR-198.
 

XU Tian-fu, Nicolas Spycher, et al. 2011. TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under nonisothermal multiphase flow conditions. Computers & Geosciences, 37: 763-774.

 

WEI Ke-qin, LIN Rui-fen, et al. 1983. Hydrogen and oxygen stable isotopic composition and tritium content of waters from Yangbajain geothermal area, Xizang, China. Geochemica, (4): 338-346

 

XU Wan-cai. 1992. Application of the saturation index method to the study of geothermal geochemistry. Journal of Xi’an College of Geology, 14(3):66-70.

 

YAO Zu-jin, CHEN Zong-yu. 1995. Research on water-rock interactions of low-temperature geothermal systems. New Energy, 17(4): 9-14.

 

Yokoyama T, Nakai S, 1999. Helium and carbon isotopic compositions of hot spring gases in the Tibetan Plateau. Journal of Volcanology and Geothermal Research, 88(1): 99-107.

 

YU Jin-sheng, ZHANG Hong-bin, et al. 1980. Oxygen isotopic composition of meteoric water in the eastern part of Xizang. Geochemica, (2): 113-121.

 

ZHAO Ping, JIN Ji, et al. 1998a. Chemical composition of thermal water in the Yangbajing geothermal field, Tibet. Scientia Geologica Sinica, 33(1): 61-72.

 

ZHAO Ping, DUO Ji, et al. 1998b. Geochemical features of gases in Tibet Yambajan geothermal field. Chinese Science Bulletin, 43(07): 691-696.

 

ZHAO Ping, Mack Kennedy, et al. 2001, Noble gases constraints on the origin and evolution of geothermal fluids from the Yangbajain geothermal field, Tibet. Acta Petrologica Sinica, 17(3): 497-503.

 

ZHAO Ping, XIE E-jun, et al. 2002. Geochemical characteristics of geothermal gases and their geological implications in Tibet. Acta Petrologica Sinica, 18(4): 539-550.

 

ZHAO Qing-sheng. 1988. The application of geothermometers in the exploration of hydrothermal Resources in western Sichuan. Journal of Chengdu University of Science and Technology, (37): 44-50.

 

ZHANG Meng, LIN Wen-jing, et al. 2014. Hydrogeochemical characteristics and genetic model of Gulu high-temperature geothermal system in Tibet, China. Journal of Chengdu University of Technology (Science & Technology Edition), 41(3): 382-392.

 

ZHANG Zhan-shi, SUN Zhan-xue, et al. 2004. Applications of fixed-AI modified log (Q/K) graph in hot spring system. Earth Science-Journal of China University of Geosciences, 29(3): 352-356.

 

ZHENG Xi-lai, GUO Jian-qing. 1996. Studies of mixing and its application in geothermal systems. Journal of Xi’an College of Geology, 18(4): 53-57.

 

ZHU Li-xin. 1989. Essential methods of geothermal explorations-current research on microelements with geo-chemical techniques, techniques of geological exploration abroad. Foreign Geoexploration Technology, (1): 9-11.

 

ZHU Mei-xiang, XU Yong. 1989. Hydrothermal alterations in the Yangbajain geothermal field, Tibet. Scientia Geologica Sinica, (2): 162-175.

Journal of Groundwater Science and Engineering
Pages 173-181
Cite this article:
LIU Y-g, LIU B, LU C, et al. Reconstruction of deep fluid chemical constituents for estimation of geothermal reservoir temperature using chemical geothermometers. Journal of Groundwater Science and Engineering, 2017, 5(2): 173-181. https://doi.org/10.26599/JGSE.2017.9280017

440

Views

7

Downloads

6

Crossref

0

Web of Science

0

Scopus

Altmetrics

Published: 28 June 2017
© 2017 Journal of Groundwater Science and Engineering Editorial Office
Return