Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
This study describes the preparation of poly(methyl methacrylate) (PMMA) composites reinforced with various loadings (0 wt.%, 1.2 wt.%, 2.4 wt.%, and 3.6 wt.%) of indium oxide (In2O3) using solution casting. Fourier-transformation infrared spectroscopy was used to analyze the structural characteristics of the nanocomposite and confirm the physical interactions between In2O3 nanoparticles (NPs) and the PMMA matrix. Field emission scanning electron microscopy was used to examine the nanocomposite surface and showed that the In2O3 NPs were distributed and homogenous through the PMMA matrix. An increase in the ratio of In2O3 NPs in the PMMA changed the optical characteristics with an increase in the absorbance, absorption coefficient, refractive index, extinction coefficient, and real and imaginary dielectric constants and a decrease in the transmittance and indirect energy gap. The absorption coefficient was < 104 cm−1, confirming the indirect electron transition. The antibacterial effect of PMMA/In2O3 films were examined against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli and demonstrated an increase in inhibition zone diameter with an increase in In2O3 NP content. Thus, the PMMA/In2O3 nanocomposite exhibited antibacterial activity.
R. Moriche, M. Sánchez, A. Jiménez-Suárez, et al. Electrically conductive functionalized-GNP/epoxy based composites: From nanocomposite to multiscale glass fibre composite material. Composites Part B:Engineering, 2016, 98: 49−55. https://doi.org/10.1016/j.compositesb.2016.04.081
S. Doagou-Rad, A. Islam, T.D. Merca. An application-oriented roadmap to select polymeric nanocomposites for advanced applications: A review. Polymer Composites, 2020, 41(4): 1153−1189. https://doi.org/10.1002/pc.25461
S.S. Chiad, K.H. Abass, T.H. Mubarak, et al. Fabrication and study the structure, optical and dispersion parameters. Journal of Global Pharma Technology, 2019, 11(4): 369−375.
E.J. Tang, G.X. Cheng, X.L. Ma. Preparation of nano-ZnO/PMMA composite particles via grafting of the copolymer onto the surface of zinc oxide nanoparticles. Powder Technology, 2006, 161(3): 209−214. https://doi.org/10.1016/j.powtec.2005.10.007
D. Ali Sabur, A. Hashim, A. Hadi, et al. Enhancement of optical properties in In2O3-doped PVA/PEG nanostructured films for optoelectronic applications. Revue Des Composites et Des Matériaux Avancés, 2023, 33(6): 411−417. https://doi.org/10.18280/rcma.330608
N. Hayder, A. Hashim, M. Ali Habeeb, et al. Analysis of dielectric properties of PVA/PEG/In2O3 nanostructures for electronics devices. Revue Des Composites et Des Matériaux Avancés, 2022, 32(5): 261−264. https://doi.org/10.18280/rcma.320507
R.E. Smith, V.M. Badner, D.E. Morse, et al. Maternal risk indicators for childhood caries in an inner city population. Community Dentistry and Oral Epidemiology, 2002, 30(3): 176−181. https://doi.org/10.1034/j.1600-0528.2002.300303.x
M.M. Bagheri-Mohagheghi, N. Shahtahmasebi, E. Mozafari, et al. Effect of the synthesis route on the structural properties and shape of the indium oxide (In2O3) nano-particles. Physica E:Low-Dimensional Systems and Nanostructures, 2009, 41(10): 1757−1762. https://doi.org/10.1016/j.physe.2009.06.009
Z.A. Husain, A.A. Majeed, R.T. Rasheed, et al. Antibacterial activity of In2O3 nanopowders prepared by hydrothermal method. Materials Today:Proceedings, 2021, 42: 1816−1821. https://doi.org/10.1016/j.matpr.2020.12.189
G.D. Liu. Synthesis, characterization of In2O3 nanocrystals and their photoluminescence property. International Journal of Electrochemical Science, 2011, 6(6): 2162−2170. https://doi.org/10.1016/s1452-3981(23)18174-0
A. Kolmakov, D.O. Klenov, Y. Lilach, et al. Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Letters, 2005, 5(4): 667−673. https://doi.org/10.1021/nl050082v
K.M. Varier, M. Gudeppu, A. Chinnasamy, et al. Nanoparticles: antimicrobial applications and its prospects. In: Environmental Chemistry for a Sustainable World. Cham:Springer International Publishing, 2019 321−355. https://doi.org/10.1007/978-3-030-04477-0_12
H.H. Li, Q.S. Chen, J.W. Zhao, et al. Enhancing the antimicrobial activity of natural extraction using the synthetic ultrasmall metal nanoparticles. Scientific Reports, 2015, 5: 11033. https://doi.org/10.1038/srep11033
I. Armentano, C.R. Arciola, E. Fortunati, et al. The interaction of bacteria with engineered nanostructured polymeric materials: A review. The Scientific World Journal, 2014, 2014: 410423. https://doi.org/10.1155/2014/410423
A.A. Mohammed, M. Ali Habeeb. Modification and development of the structural, optical and antibacterial characteristics of PMMA/Si3N4/TaC nanostructures. Silicon, 2023, 15(12): 5163−5174. https://doi.org/10.1007/s12633-023-02426-2
A.M. Kadim, K.H. Abass, K, Abdali, et al. Effect of loading corn starch nanoparticles on the morphological, optical, and dielectric behaviors of PVA/PMMA/PAAm polymer blend for optoelectronic and antibacterial applications. Nano Biomedicine and Engineering, 2024, 16(1): 119−127. https://doi.org/10.26599/NBE.2024.9290049
P. Phukan, D. Saikia. Optical and structural investigation of CdSe quantum dots dispersed in PVA matrix and photovoltaic applications. International Journal of Photoenergy, 2013, 2013: 728280. https://doi.org/10.1155/2013/728280
Q.M. Luo, Y.Y. Shan, X. Zuo, et al. Anisotropic tough poly(vinyl alcohol)/graphene oxide nanocomposite hydrogels for potential biomedical applications. RSC Advances, 2018, 8(24): 13284−13291. https://doi.org/10.1039/c8ra00340h
M.K. Mohammed, G. Al-Dahash, A. Al-Nafiey. Fabrication and characterization of the PMMA/G/Ag nanocomposite by pulsed laser ablation (PLAL). Nano Biomedicine and Engineering, 2022, 14(1): 15−22. https://doi.org/10.5101/nbe.v14i1.p15-22
A.A. Khadayeir, K.H. Abass, S.S. Chiad, et al. Study the influence of antimony trioxide (Sb2O3) on optical properties of (PVA-PVP) composites. Journal of Engineering and Applied Sciences, 2018, 13(22): 9689−9692.
H.T. Salloom, A.S. Jasim, T.K. Hamad. Synthesis and optical characterization of Ag/PVA nanocomposites films. Journal of Al-Nahrain University Science, 2017, 20(4): 56−63. https://doi.org/10.22401/jnus.20.4.10
S.S. Mousavi, B. Sajad, M.H. Majlesara. Fast response ZnO/PVA nanocomposite-based photodiodes modified by graphene quantum dots. Materials &Design, 2019, 162: 249−255. https://doi.org/10.1016/j.matdes.2018.11.037
H.M. Zidan, E.M. Abdelrazek, A.M. Abdelghany, et al. Characterization and some physical studies of PVA/PVP filled with MWCNTs. Journal of Materials Research and Technology, 2019, 8(1): 904−913. https://doi.org/10.1016/j.jmrt.2018.04.023
H.M. Zidan, M. Abu-Elnader. Structural and optical properties of pure PMMA and metal chloride-doped PMMA films. Physica B:Condensed Matter, 2005, 355(1-4): 308−317. https://doi.org/10.1016/j.physb.2004.11.023
A. Rahma, M.M. Munir, Khairurrijal, et al. Intermolecular interactions and the release pattern of electrospun curcumin-polyvinyl(pyrrolidone) fiber. Biological and Pharmaceutical Bulletin, 2016, 39(2): 163−173. https://doi.org/10.1248/bpb.b15-00391
L.K. Mireles, M.R. Wu, N. Saadeh, et al. Physicochemical characterization of polyvinyl pyrrolidone: A tale of two polyvinyl pyrrolidones. ACS Omega, 2020, 5(47): 30461−30467. https://doi.org/10.1021/acsomega.0c04010
T.S. Soliman, S.A. Vshivkov, S.I. Elkalashy. Structural, thermal, and linear optical properties of SiO2 nanoparticles dispersed in polyvinyl alcohol nanocomposite films. Polymer Composites, 2020, 41(8): 3340−3350. https://doi.org/10.1002/pc.25623
J. Fal, K. Bulanda, J. Traciak, et al. Electrical and optical properties of silicon oxide lignin polylactide (SiO2-L-PLA). Molecules, 2020, 25(6): 1354. https://doi.org/10.3390/molecules25061354
M.A. Habeeb. Enhancement of structural and mechanical properties for (PVA-PAAm) by adding titanium nanoparticles. Australian Journal of Basic and Applied Sciences, 2014, 8(17): 1−9.
A. Paydayesh, A.A. Azar, A.J. Arani. Investigation the effect of graphene on the morphology, mechanical and thermal properties of PLA/PMMA blends. Ciência e Natura, 2015, 37: 15.
S.S. Nemah, Z.A. Hasan. Influence of silver nanoparticles on optical properties for (PS-PMMA) blend. Journal of Global Pharma Technology, 2019, 11(7): 325−330.
M.R. Mas Haris, S. Kathiresan, S. Mohan. FT-IR and FT-Raman spectra and normal coordinate analysis of poly methyl methacrylate. Der Pharma Chemica, 2010, 2(4): 316−323.
M.O. Bensaid, L. Ghalouci, S. Hiadsi, et al. Molecular mechanics investigation of some acrylic polymers using SPASIBA force field. Vibrational Spectroscopy, 2014, 74: 20−32. https://doi.org/10.1016/j.vibspec.2014.07.001
S. Ramesh, K.H. Leen, K. Kumutha, et al. FTIR studies of PVC/PMMA blend based polymer electrolytes. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2007, 66(4-5): 1237−1242. https://doi.org/10.1016/j.saa.2006.06.012
A.P. Indolia, M.S. Gaur. Optical properties of solution grown PVDF-ZnO nanocomposite thin films. Journal of Polymer Research, 2012, 20(1): 43. https://doi.org/10.1007/s10965-012-0043-y
Y.T. Prabhu, K.V. Rao, B.S. Kumari, et al. Synthesis of Fe3O4 nanoparticles and its antibacterial application. International Nano Letters, 2015, 5(2): 85−92. https://doi.org/10.1007/s40089-015-0141-z
S.S. Behera, J.K. Patra, K. Pramanik, et al. Characterization and evaluation of antibacterial activities of chemically synthesized iron oxide nanoparticles. World Journal of Nano Science and Engineering, 2012, 2(4): 196−200. https://doi.org/10.4236/wjnse.2012.24026
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY) (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.