AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access | Online First

The Structural and Optical Properties of Polyvinyl Pyrrolidone-doped with Zinc Selenide

Qunoot Mohammed HadiMusaab Khudhur Mohammed( )Sarab J. MusaBashaer A. AbdulkhudherLeal Abdullah HamzaZahraa Abbas Talib
Department of Physics, College of Education for Pure Sciences, University of Babylon, Babylon, Iraq
Show Author Information

Graphical Abstract

Abstract

This study describes a method for solution casting of polyvinyl pyrrolidone (PVP) reinforced with 0 wt.%, 1 wt.%, 3 wt.%, and 5 wt.% zinc selenide (ZnSe). After production, scanning electron microscopy (SEM) was used to examine the nanocomposite surfaces, and thus confirmed the constant dispersion of ZnSe nanoparticles (NPs) within PVP. Subsequent Fourier transformation infrared spectroscopy (FTIR) analysis showed that the ZnSe NPs and PVP matrix interacted physically. Analysis of the optical properties of PVP–ZnSe nanocomposites showed that increased ZnSe NPs concentration in the PVP solution increased absorbance and decreased transmittance. Further integration of ZnSe NPs at a concentration of 6 wt.% within the PVP–ZnSe nanocomposite resulted in a decrease in the energy gap. Specifically, we observed a decrease in the energy gap from 4 to 3.1 eV for the allowed indirect transition and from 3.94 to 2.9 eV for the forbidden indirect transition. Overall, the weight percentage of ZnSe NPs demonstrates a direct relationship with their absorption factor, extinction factor, index of refraction, real and imaginary components of dielectric constants, and optical conductivity. These results indicate that PVP–ZnSe nanocomposites possess exceptional optical capabilities, and may be suitable for use in photodetector applications, especially as ultraviolet (UV) detectors.

References

[1]

P.K. Varshney, S. Gupta. Natural polymer-based electrolytes for electrochemical devices: A review. Ionics, 2011, 17(6): 479−483. https://doi.org/10.1007/s11581-011-0563-1

[2]

M.R. Atta, Q.A. Alsulami, G.M. Asnag, et al. Enhanced optical, morphological, dielectric, and conductivity properties of gold nanoparticles doped with PVA/CMC blend as an application in organoelectronic devices. Journal of Materials Science:Materials in Electronics, 2021, 32(8): 10443−10457. https://doi.org/10.1007/s10854-021-05701-3

[3]

M.A. Morsi, A. Rajeh, A.A. Al-Muntaser. Reinforcement of the optical, thermal and electrical properties of PEO based on MWCNTs/Au hybrid fillers: Nanodielectric materials for organoelectronic devices. Composites Part B:Engineering, 2019, 173: 106957. https://doi.org/10.1016/j.compositesb.2019.106957

[4]

J. Cha, J. Kim, S. Ryu, et al. Comparison to mechanical properties of epoxy nanocomposites reinforced by functionalized carbon nanotubes and graphene nanoplatelets. Composites Part B:Engineering, 2019, 162: 283−288. https://doi.org/10.1016/j.compositesb.2018.11.011

[5]

S. Choudhary. Characterization of amorphous silica nanofiller effect on the structural, morphological, optical, thermal, dielectric and electrical properties of PVA–PVP blend based polymer nanocomposites for their flexible nanodielectric applications. Journal of Materials Science:Materials in Electronics, 2018, 29(12): 10517−10534. https://doi.org/10.1007/s10854-018-9116-y

[6]

M.K. Mohammed, A. Al-Nafiey, G. Al-Dahash. Manufacturing graphene and graphene-based nanocomposite for piezoelectric pressure sensor application: A review. Nano Biomedicine and Engineering, 2021, 13(1): 27−35. https://doi.org/10.5101/nbe.v13i1.p27-35

[7]

M.K. Mohammed, E.H. Abdullah, D. Hassan, et al. Effect of titanium nitrate nanoparticles on optical properties of PVA/PEG blend for optoelectronics detectors. Revue des Composites et des Matériaux Avancés, 2022, 32(6): 305−309. https://doi.org/10.18280/rcma.320606

[8]

H. Ahmed, A. Hashim. Fabrication of PVA/NiO/SiC nanocomposites and studying their dielectric properties for antibacterial applications. Egyptian Journal of Chemistry, 2020, 63(3): 805−811.

[9]

K.J. Kadhim, I.R. Agool, A. Hashim. Synthesis of (PVA-PEG-PVP-TiO2) nanocomposites for antibacterial application. Materials Focus, 2016, 5(5): 436−439. https://doi.org/10.1166/mat.2016.1371

[10]

E.H. Hadi, D.A. Sabur, S.S. Chiad, et al. Physical properties of nanostructured Li-doped ZrO2 thin films. Journal of Green Engineering, 2020, 10(10): 8390−8400.

[11]

M.D. Sakhil. Influence MgO dopant on structural and optical properties of nanostructured CuO thin films. Neuroquantology, 2020, 18(5): 56−61. https://doi.org/10.14704/nq.2020.18.5.nq20168

[12]

M. Ahmad Wsoo, S. Izwan Abd Razak, S. Shahir, et al. Development of prolonged drug delivery system using electrospun cellulose acetate/polycaprolactone nanofibers: Future subcutaneous implantation. Polymers for Advanced Technologies, 2021, 32(9): 3664−3678. https://doi.org/10.1002/pat.5375

[13]

K. Sreekanth, T. Siddaiah, N.O. Gopal, et al. Optical and electrical conductivity studies of VO2+ doped polyvinyl pyrrolidone (PVP) polymer electrolytes. Journal of Science:Advanced Materials and Devices, 2019, 4(2): 230−236. https://doi.org/10.1016/j.jsamd.2019.06.002

[14]

M.H. Jameel, M.A. Bin Agam, M.S. bin Roslan, et al. A comparative DFT study of electronic and optical properties of Pb/Cd-doped LaVO4 and Pb/Cd-LuVO4 for electronic device applications. Computational Condensed Matter, 2023, 34: e00773. https://doi.org/10.1016/j.cocom.2022.e00773

[15]

C.Y. Yeh, Z.W. Lu, S. Froyen, et al. Zinc-blende–wurtzite polytypism in semiconductors. Physical Review B, 1992, 46(16): 10086−10097. https://doi.org/10.1103/physrevb.46.10086

[16]

S.Z. Wang, J.H. You, B.Y. Geng, et al. Fabrication of ZnSe hexagonal prism with pyramid end through the chemical vapour deposition route. CrystEngComm, 2011, 13(2): 668−673. https://doi.org/10.1039/c003631e

[17]

M.H. Jameel, S. Ahmed, Z.-Y. Jiang, et al. First principal calculations to investigate structural, electronic, optical, and magnetic properties of Fe3O4 and Cd-doped Fe2O4. Computational Condensed Matter, 2022, 30: e00629. https://doi.org/10.1016/j.cocom.2021.e00629

[18]

R. Khenata, A. Bouhemadou, M. Sahnoun, et al. Elastic, electronic and optical properties of ZnS, ZnSe and ZnTe under pressure. Computational Materials Science, 2006, 38(1): 29−38. https://doi.org/10.1016/j.commatsci.2006.01.013

[19]

S. Wei, J. Lu, Y.T. Qian. Density functional study of 2D semiconductor CdSe·hda0.5(had = 1,6-hexanediamine) and its excitonic optical properties. Chemistry of Materials, 2008, 20(23): 7220−7227. https://doi.org/10.1021/cm703406c

[20]

M. Jukić, I. Sviben, Z. Zorić, et al. Effect of polyvinylpyrrolidone on the formation AgBr grains in gelatine media. Croatica Chemica Acta, 2012, 85(3): 269−276. https://doi.org/10.5562/cca1919

[21]

N. Rajeswari, S. Selvasekarapandian, S. Karthikeyan, et al. Conductivity and dielectric properties of polyvinyl alcohol–polyvinylpyrrolidone poly blend film using non-aqueous medium. Journal of Non-Crystalline Solids, 2011, 357(22-23): 3751−3756. https://doi.org/10.1016/j.jnoncrysol.2011.07.037

[22]

A. Rahma, M.M. Munir, Khairurrijal, A. Prasetyo, et al. Intermolecular interactions and the release pattern of electrospun curcumin-polyvinyl(pyrrolidone) fiber. Biological and Pharmaceutical Bulletin, 2016, 39(2): 163−173. https://doi.org/10.1248/bpb.b15-00391

[23]

L.K. Mireles, M.R. Wu, N. Saadeh, et al. Physicochemical characterization of polyvinyl pyrrolidone: A tale of two polyvinyl pyrrolidones. ACS Omega, 2020, 5(47): 30461−30467. https://doi.org/10.1021/acsomega.0c04010

[24]

M.C. Divyasree, E. Shiju, J. Francis, et al. ZnSe/PVP nanocomposites: Synthesis, structural and nonlinear optical analysis. Materials Chemistry and Physics, 2017, 197: 208−214. https://doi.org/10.1016/j.matchemphys.2017.04.069

[25]

S. ,El-Gamal, A.M. El Sayed. Influence of MWCNTs in improving the optical, DC conductivity, and mechanical properties of CMC/PAAM blends. Polymer Engineering &Science, 2020, 60(5): 996−1005. https://doi.org/10.1002/pen.25355

[26]

M.M. Damoom, A. Saeed, E.M. Alshammari, et al. The role of TiO2 nanoparticles in enhancing the structural, optical, and electrical properties of PVA/PVP/CMC ternary polymer blend: Nanocomposites for capacitive energy storage. Journal of Sol-Gel Science and Technology, 2023, 108(3): 742−755. https://doi.org/10.1007/s10971-023-06223-6

[27]

R.S. Ali, M.K. Mohammed, A.A. Khadayeir, et al. Structural and optical characterization of sprayed nanostructured indium doped Fe2O3 thin films. Journal of Physics:Conference Series, 2020, 1664: 012016. https://doi.org/10.1088/1742-6596/1664/1/012016

[28]

N. Mahfoudh, K. Karoui, A. BenRhaiem. Optical studies and dielectric response of [DMA]2MCl4 (M = Zn and Co) and[DMA]2ZnBr4. RSC Advances, 2021, 11(40): 24526−24535. https://doi.org/10.1039/D1RA03652A

[29]

J. Tauc, A. Menth, D.L. Wood. Optical and magnetic investigations of the localized states in semiconducting glasses. Physical Review Letters, 1970, 25(11): 749−752. https://doi.org/10.1103/physrevlett.25.749

[30]

M.K. Mohammed, G. Al-Dahash, A. Al-Nafiey. Fabrication and characterization of the PMMA/G/Ag nanocomposite by pulsed laser ablation (PLAL). Nano Biomedicine and Engineering, 2022, 14(1): 15−22. https://doi.org/10.5101/nbe.v14i1.p15-22

[31]

A.Y. Yassin, A.M. Abdelghany, R.S. Salama, et al. Structural, optical and antibacterial activity studies on CMC/PVA blend filled with three different types of green synthesized ZnO nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 2023, 33(7): 1855−1867. https://doi.org/10.1007/s10904-023-02622-y

[32]

M.K. Mohammed, M.H. Abbas, A. Hashim, et al. Enhancement of optical parameters for PVA/PEG/Cr2O3 nanocomposites for photonics fields. Revue des Composites et des Matériaux Avancés, 2022, 34(4): 205−209. https://doi.org/10.18280/rcma.320406

[33]

D.A. Sabur, A. Hashim, A. Hadi, et al. Enhancement of optical properties in In2O3-doped PVA/PEG nanostructured films for optoelectronic applications. Revue des Composites et des Matériaux Avancés, 2023, 33(6): 411−417. https://doi.org/10.18280/rcma.330608

[34]

M.A. Kadhim, E. Al-Bermany. New fabricated PMMA-PVA/graphene oxide nanocomposites: Structure, optical properties and application. Journal of Composite Materials, 2021, 55(20): 2793−2806. https://doi.org/10.1177/0021998321995912

[35]

M.A. Morsi, A.H. Oraby, A.G. Elshahawy, et al. Preparation, structural analysis, morphological investigation and electrical properties of gold nanoparticles filled polyvinyl alcohol/carboxymethyl cellulose blend. Journal of Materials Research and Technology, 2019, 8(6): 5996−6010. https://doi.org/10.1016/j.jmrt.2019.09.074

[36]

T.S. Soliman, S.A. Vshivkov, S.I. Elkalashy. Structural, thermal, and linear optical properties of SiO2 nanoparticles dispersed in polyvinyl alcohol nanocomposite films. Polymer Composites, 2020, 41(8): 3340−3350. https://doi.org/10.1002/pc.25623

[37]

J. Fal, K. Bulanda, J. Traciak, et al. Electrical and optical properties of silicon oxide lignin polylactide (SiO2-L-PLA). Molecules, 2020, 25(6): 1354. https://doi.org/10.3390/molecules25061354

[38]

M.A. Habeeb. Enhancement of structural and mechanical properties for (PVA-PAAm) by adding titanium nanoparticles. Australian Journal of Basic and Applied Sciences, 2014, 8(17): 1−9.

[39]

A. Paydayesh, A.A. Azar, A.J. Arani. Investigation the effect of graphene on the morphology, mechanical and thermal properties of PLA/PMMA blends. Ciência e Natura, 2015, 37: 15. https://doi.org/10.5902/2179460x20823

[40]

S.S. Nemah, Z.A. Hasan. Influence of silver nanoparticles on optical properties for (PS-PMMA) blend. Journal of Global Pharma Technology, 2019, 11(7): 325−330.

Nano Biomedicine and Engineering
Cite this article:
Hadi QM, Mohammed MK, Musa SJ, et al. The Structural and Optical Properties of Polyvinyl Pyrrolidone-doped with Zinc Selenide. Nano Biomedicine and Engineering, 2024, https://doi.org/10.26599/NBE.2024.9290082

446

Views

69

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 30 November 2023
Revised: 16 December 2023
Accepted: 29 December 2023
Published: 31 May 2024
© The Author(s) 2024.

This is an open-access article distributed under  the  terms  of  the  Creative  Commons  Attribution  4.0 International  License (CC BY) (http://creativecommons.org/licenses/by/4.0/), which  permits  unrestricted  use,  distribution,  and reproduction in any medium, provided the original author and source are credited.

Return