AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Emerging Trends in the Biomedical Application of Carbon-based Nanomaterials

Sayed Mustafa Banihashemi Jozdani1,§Zohreh Hashemian1,2,§Sajedeh Ebrahim Damavandi3Zahra Elyasigorji2( )Massoud Vosough1( )
Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
Iranian Biological Resource Center (IBRC), ACECR, Human and Animal Cell Bank, Tehran, Iran
Laboratory of Membrane Biophysics and Macromolecules, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran

§These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Nanotechnology, defined as engineering at the nanometer scale, involves developing materials or systems to perform a systematic arrangement for various platforms in biomedical applications. This study presents possible applications of carbon-based nanomaterials in regenerative biomedicine, drug delivery, and cancerous conditions. We highlight significant advancements in carbon nanotubes-based nanotechnology, with an emphasis on carbon nanotubes, which accelerate various regenerative therapies in the liver, nervous system, heart, vascular system, and bone tissue engineering. Using carbon nanomaterials to deliver drugs precisely to their site of action is also one area of interest, attracting the attention of researchers and giving great hope for carbon nanomaterials’ widespread use in medicine. Moreover, green nanotechnology was introduced as an innovative and noninvasive discipline in carbon-based nanomaterials for human biomedicine. It can solve the problem of using dangerous and toxic chemical nanoscale materials.

References

[1]

J. Jeevanandam, A. Barhoum, Y.S. Chan, et al. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 2018, 9: 1050−1074. https://doi.org/10.3762/bjnano.9.98

[2]

J.W. Qin, X.H. Chen, Y.L. Wang, et al. Fabrication techniques and the formation mechanism of nanoparticles and nanoclusters in metal materials. Metals, 2022, 12(9): 1420. https://doi.org/10.3390/met12091420

[3]

M. Thiruvengadam, G. Rajakumar, I.M. Chung. Nanotechnology: Current uses and future applications in the food industry. 3 Biotech, 2018, 8(1): 74. https://doi.org/10.1007/s13205-018-1104-7

[4]

C. Fabbro, H. Ali-Boucetta, T. Da Ros, et al. Targeting carbon nanotubes against cancer. Chemical Communications, 2012, 48(33): 3911. https://doi.org/10.1039/c2cc17995d

[5]

D.Y. Li, Y.X. Liu, N. Wu. Application progress of nanotechnology in regenerative medicine of diabetes mellitus. Diabetes Research and Clinical Practice, 2022, 190: 109966. https://doi.org/10.1016/j.diabres.2022.109966

[6]

J.K. Patra, G. Das, L.F. Fraceto, et al. Nano based drug delivery systems: Recent developments and future prospects. Journal of Nanobiotechnology, 2018, 16: 71. https://doi.org/10.1186/s12951-018-0392-8

[7]
Y.F. Yang, A. Chawla, J. Zhang, et al. Applications of nanotechnology for regenerative medicine; healing tissues at the nanoscale. In: Principles of Regenerative Medicine. Amsterdam: Elsevier, 2019: 485–504. https://doi.org/10.1016/b978-0-12-809880-6.00029-1
[8]

Q. Ali, S. Malik, A. Malik, et al. Role of modern technologies in tissue engineering. Archives of Neuroscience, 2020, 7(1): e90394. https://doi.org/10.5812/ans.90394

[9]

S. Iijima. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56−58. https://doi.org/10.1038/354056a0

[10]

D. Yang, F. Yang, J.H. Hu, et al. Hydrophilic multi-walled carbon nanotubes decorated with magnetite nanoparticles as lymphatic targeted drug delivery vehicles. Chemical Communications, 2009, 7(29): 4447−4449. https://doi.org/10.1039/b908012k

[11]

L.Y. Niu, L. J. Meng, Q.H. Lu. Folate-conjugated PEG on single walled carbon nanotubes for targeting delivery of doxorubicin to cancer cells. Macromolecular Bioscience, 2013, 13(6): 735−744. https://doi.org/10.1002/mabi.201200475

[12]

A. Pistone, D. Iannazzo, S. Ansari, et al. Tunable doxorubicin release from polymer-gated multiwalled carbon nanotubes. International Journal of Pharmaceutics, 2016, 515(1−2): 30−36. https://doi.org/10.1016/j.ijpharm.2016.10.010

[13]

J.Y. He, Y.Y. Hou, Z.X. Zhang, et al. Carbon-based nanozymes: How structure affects performance. Nano Biomedicine and Engineering, 2024, 16(1): 28−47. https://doi.org/10.26599/nbe.2024.9290053

[14]

W.X. Zhang, Z.Z. Zhang, Y.G. Zhang. The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Research Letters, 2011, 6(1): 555. https://doi.org/10.1186/1556-276X-6-555

[15]
J. Kaur, G.S. Gill, K. Jeet. Applications of carbon nanotubes in drug delivery. In: Characterization and Biology of Nanomaterials for Drug Delivery. Amsterdam: Elsevier, 2019: 113–135. https://doi.org/10.1016/b978-0-12-814031-4.00005-2
[16]

M. Chakrabarti, R. Kiseleva, A. Vertegel, et al. Carbon nanomaterials for drug delivery and cancer therapy. Journal of Nanoscience and Nanotechnology, 2015, 15(8): 5501−5511. https://doi.org/10.1166/jnn.2015.10614

[17]

S. Marchesan, K. Kostarelos, A. Bianco, et al. The winding road for carbon nanotubes in nanomedicine. Materials Today, 2015, 18(1): 12−19. https://doi.org/10.1016/j.mattod.2014.07.009

[18]

B.O. Murjani, P.S. Kadu, M. Bansod, et al. Carbon nanotubes in biomedical applications: Current status, promises, and challenges. Carbon Letters, 2022, 32(5): 1207−1226. https://doi.org/10.1007/s42823-022-00364-4

[19]

J.H. Ma, G.F. Wang, X.Y. Ding, et al. Carbon-based nanomaterials as drug delivery agents for colorectal cancer: Clinical preface to colorectal cancer citing their markers and existing theranostic approaches. ACS Omega, 2023, 8(12): 10656−10668. https://doi.org/10.1021/acsomega.2c06242

[20]
V. Negri, J. Pacheco-Torres, D. Calle, et al. Carbon Nanotubes in Biomedicine. In: Surface-modified Nanobiomaterials for Electrochemical and Biomedicine Applications. A.R. Puente-Santiago, D. Rodríguez-Padrón, Eds. Springer International Publishing: Cham., 2020: 177–217. https://doi.org/10.1007/978-3-030-55502-3_6
[21]

B. Hosnedlova, M. Kepinska, C. Fernandez, et al. Carbon nanomaterials for targeted cancer therapy drugs: A critical review. The Chemical Record, 2019, 19(2−3): 502−522. https://doi.org/10.1002/tcr.201800038

[22]

S.K. Asrani, H. Devarbhavi, J. Eaton, et al. Burden of liver diseases in the world. Journal of Hepatology, 2019, 70(1): 151−171. https://doi.org/10.1016/j.jhep.2018.09.014

[23]

L.H. Gu, F. Zhang, J.H. Wu, et al. Nanotechnology in drug delivery for liver fibrosis. Frontiers in Molecular Biosciences, 2022, 8: 804396. https://doi.org/10.3389/fmolb.2021.804396

[24]

E.S. Mirdamadi, D. Kalhori, N. Zakeri, et al. Liver tissue engineering as an emerging alternative for liver disease treatment. Tissue Engineering Part B: Reviews, 2020, 26(2): 145−163. https://doi.org/10.1089/ten.teb.2019.0233

[25]

A. Vasudevan, D.M. Tripathi, S. Sundarrajan, et al. Evolution of electrospinning in liver tissue engineering. Biomimetics, 2022, 7(4): 149. https://doi.org/10.3390/biomimetics7040149

[26]

T.S.R. Bate, V.L. Gadd, S.J. Forbes, et al. Response differences of HepG2 and Primary Mouse Hepatocytes to morphological changes in electrospun PCL scaffolds. Scientific Reports, 2021, 11: 3059. https://doi.org/10.1038/s41598-021-81761-z

[27]

D.G. Nair, R. Weiskirchen. Recent advances in liver tissue engineering as an alternative and complementary approach for liver transplantation. Current Issues in Molecular Biology, 2023, 46(1): 262−278. https://doi.org/10.3390/cimb46010018

[28]

J.J. Wei, J.F. Lu, Y.W. Liu, et ak. Spheroid culture of primary hepatocytes with short fibers as a predictable in vitro model for drug screening. Journal of Materials Chemistry B, 2016, 4(44): 7155−7167. https://doi.org/10.1039/c6tb02014c

[29]

G. Lekshmi, S.S. Sana, V.H. Nguyen, et al. Recent progress in carbon nanotube polymer composites in tissue engineering and regeneration. International Journal of Molecular Sciences, 2020, 21(17): 6440. https://doi.org/10.3390/ijms21176440

[30]

B. Gorain, H. Choudhury, M. Pandey, et al. Carbon nanotube scaffolds as emerging nanoplatform for myocardial tissue regeneration: A review of recent developments and therapeutic implications. Biomedicine & Pharmacotherapy, 2018, 104: 496−508. https://doi.org/10.1016/j.biopha.2018.05.066

[31]
C.A. Che Abdullah, E.L. Albert. Carbon nanotubes as biological transporters and tissue-engineering scaffolds. In: Synthesis, Technology and Applications of Carbon Nanomaterials. Amsterdam: Elsevier, 2019: 135–156. https://doi.org/10.1016/b978-0-12-815757-2.00006-1
[32]

U. Jammalamadaka, K. Tappa. Recent advances in biomaterials for 3D printing and tissue engineering. Journal of Functional Biomaterials, 2018, 9(1): 22. https://doi.org/10.3390/jfb9010022

[33]

M. Assali, N. Kittana, S. Alhaj-Qasem, et al. Noncovalent functionalization of carbon nanotubes as a scaffold for tissue engineering. Scientific Reports, 2022, 12: 12062. https://doi.org/10.1038/s41598-022-16247-7

[34]

A. Shar, A. Shar, D. Joung. Carbon nanotube nanocomposite scaffolds: Advances in fabrication and applications for tissue regeneration and cancer therapy. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1299166. https://doi.org/10.3389/fbioe.2023.1299166

[35]

W.F. Dai, Y.T. Yang, Y.M. Yang, et al. Material advancement in tissue-engineered nerve conduit. Nanotechnology Reviews, 2021, 10(1): 488−503. https://doi.org/10.1515/ntrev-2021-0028

[36]

A. Halim, K.Y. Qu, X.F. Zhang, et al. Recent advances in the application of two-dimensional nanomaterials for neural tissue engineering and regeneration. ACS Biomaterials Science & Engineering, 2021, 7(8): 3503−3529. https://doi.org/10.1021/acsbiomaterials.1c00490

[37]

R. Kumar, K.R. Aadil, S. Ranjan, et al. Advances in nanotechnology and nanomaterials based strategies for neural tissue engineering. Journal of Drug Delivery Science and Technology, 2020, 57: 101617. https://doi.org/10.1016/j.jddst.2020.101617

[38]

F. Wang, H. Wu, V. Venkataraman, et al. Silk fibroin-poly(lactic acid) biocomposites: Effect of protein-synthetic polymer interactions and miscibility on material properties and biological responses. Materials Science & Engineering C, Materials for Biological Applications, 2019, 104: 109890. https://doi.org/10.1016/j.msec.2019.109890

[39]
M. Chawla, R. Kumar, P.F. Siril, High catalytic activities of palladium nanowires synthesized using liquid crystal templating approach. Journal of Molecular Catalysis A: Chemical, 2016, 423: 126–134. https://doi.org/10.1016/j.molcata.2016.06.014
[40]

F. Re, M. Gregori, M. Masserini. Nanotechnology for neurodegenerative disorders. Maturitas, 2012, 73(1): 45−51. https://doi.org/10.1016/j.maturitas.2011.12.015

[41]

K.K. Bokara, J.Y. Kim, Y.I. Lee, et al. Biocompatability of carbon nanotubes with stem cells to treat CNS injuries. Anatomy & Cell Biology, 2013, 46(2): 85. https://doi.org/10.5115/acb.2013.46.2.85

[42]

J.L. Gilmore, X. Yi, L.D. Quan, et al. Novel nanomaterials for clinical neuroscience. Journal of Neuroimmune Pharmacology, 2008, 3(2): 83−94. https://doi.org/10.1007/s11481-007-9099-6

[43]

P.P. Komane, Y.E. Choonara, L.C.mdu Toit, et al. Diagnosis and treatment of neurological and ischemic disorders employing carbon nanotube technology. Journal of Nanomaterials, 2016, 2016: 9417874. https://doi.org/10.1155/2016/9417874

[44]

R. Kumar, A. Singh, K. Sharma, et al. Preparation, characterization and in vitro cytotoxicity of Fenofibrate and Nabumetone loaded solid lipid nanoparticles. Materials Science & Engineering C, Materials for Biological Applications, 2020, 106: 110184. https://doi.org/10.1016/j.msec.2019.110184

[45]

A. Hasan, J. Saliba, H. Pezeshgi Modarres, et al. Micro and nanotechnologies in heart valve tissue engineering. Biomaterials, 2016, 103: 278−292. https://doi.org/10.1016/j.biomaterials.2016.07.001

[46]

K. Mc Namara, H. Alzubaidi, J.K. Jackson. Cardiovascular disease as a leading cause of death: How are pharmacists getting involved. Integrated Pharmacy Research and Practice, 2019, 8: 1−11. https://doi.org/10.2147/iprp.s133088

[47]
V. Martinelli, S. Bosi, B. Peña, et al. 3D carbon-nanotube-based composites for cardiac tissue engineering. ACS Applied Bio Materials, 2018, 1(5): 1530–1537. https://doi.org/10.1021/acsabm.8b00440
[48]

S. Sim, N. Wong. Nanotechnology and its use in imaging and drug delivery (Review). Biomedical Reports, 2021, 14(5): 42. https://doi.org/10.3892/br.2021.1418

[49]
A. Benko, L.B. Truong, D. Medina-Cruz, et al. Green nanotechnology in cardiovascular tissue engineering. In: Tissue Engineering. Amsterdam: Elsevier, 2022: 237–281. https://doi.org/10.1016/b978-0-12-824064-9.00012-5
[50]

A.P. Durko, M.H. Yacoub, J. Kluin. Tissue engineered materials in cardiovascular surgery: The surgeon’s perspective. Frontiers in Cardiovascular Medicine, 2020, 7: 55. https://doi.org/10.3389/fcvm.2020.00055

[51]

S. Jana, B.J. Tefft, D.B. Spoon, et al. Scaffolds for tissue engineering of cardiac valves. Acta Biomaterialia, 2014, 10(7): 2877−2893. https://doi.org/10.1016/j.actbio.2014.03.014

[52]

Onoe, H., Okitsu, T., Itou, A., Kato-Negishi, M., Gojo, R., Kiriya, D., Sato, K., Miura, S., Iwanaga, S., Kuribayashi-Shigetomi, K. et al. Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nature Materials, 2013, 12(6): 584−590. https://doi.org/10.1038/nmat3606

[53]

A. Weekes, N. Bartnikowski, N. Pinto, et al. Biofabrication of small diameter tissue-engineered vascular grafts. Acta Biomaterialia, 2022, 138: 92−111. https://doi.org/10.1016/j.actbio.2021.11.012

[54]

C.D. Devillard, C.A. Marquette. Vascular tissue engineering: Challenges and requirements for an ideal large scale blood vessel. Frontiers in Bioengineering and Biotechnology, 2021, 9: 721843. https://doi.org/10.3389/fbioe.2021.721843

[55]
A.C. Bean, R.S. Tuan. Fiber diameter and seeding density influence chondrogenic differentiation of mesenchymal stem cells seeded on electrospun poly(ε-caprolactone) scaffolds. Biomedical Materials, 2015 , 10(1): 015018. https://doi.org/10.1088/1748-6041/10/1/015018
[56]
L. Song, D. Sengupta, C.E. Shu. Vascular tissue engineering: From in vitro to in situ. WIREs Systems Biology and Medicine, 2014, 6(1): 61–76. https://doi.org/10.1002/wsbm.1246
[57]

S. Pradhan, O.A. Banda, C.J. Farino, et al. Biofabrication strategies and engineered in vitro systems for vascular mechanobiology. Advanced Healthcare Materials, 2020, 9(8): e1901255. https://doi.org/10.1002/adhm.201901255

[58]

P. Chaudhuri, R. Harfouche, S. Soni, et al. Shape effect of carbon nanovectors on angiogenesis. ACS Nano, 2010, 4(1): 574−582. https://doi.org/10.1021/nn901465h

[59]

A. Laganowsky, E. Reading, T.M. Allison, et al. Membrane proteins bind lipids selectively to modulate their structure and function. Nature, 2014, 510(7503): 172−175. https://doi.org/10.1038/nature13419

[60]

M. Ashcraft, M. Douglass, Y.J. Chen, et al. Combination strategies for antithrombotic biomaterials: An emerging trend towards hemocompatibility. Biomaterials Science, 2021, 9(7): 2413−2423. https://doi.org/10.1039/d0bm02154g

[61]

A. Assmann, C. Delfs, H. Munakata, et al. Acceleration of autologous in vivo recellularization of decellularized aortic conduits by fibronectin surface coating. Biomaterials, 2013, 34(25): 6015−6026. https://doi.org/10.1016/j.biomaterials.2013.04.037

[62]

Y. Iwasaki, K. Ishihara. Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces. Science and Technology of Advanced Materials, 2012, 13(6): 064101. https://doi.org/10.1088/1468-6996/13/6/064101

[63]

S.K. Jaganathan, M.P. Mani, M. Ayyar, et al. Blood compatibility and physicochemical assessment of novel nanocomposite comprising polyurethane and dietary carotino oil for cardiac tissue engineering applications. Journal of Applied Polymer Science, 2018, 135(3): e45691. https://doi.org/10.1002/app.45691

[64]

C.R. Lankala, M. Yasir, A. Ishak, et al. Application of nanotechnology for diagnosis and drug delivery in atherosclerosis: A new horizon of treatment. Current Problems in Cardiology, 2023, 48(6): 101671. https://doi.org/10.1016/j.cpcardiol.2023.101671

[65]

J. Saleem, L.M. Wang, C.Y. Chen. Carbon-based nanomaterials for cancer therapy via targeting tumor microenvironment. Advanced Healthcare Materials, 2018, 7(20): 1800525. https://doi.org/10.1002/adhm.201800525

[66]

X.F. Ding, Y.J. Su, C. Wang, et al. Synergistic suppression of tumor angiogenesis by the co-delivering of vascular endothelial growth factor targeted siRNA and candesartan mediated by functionalized carbon nanovectors. ACS Applied Materials & Interfaces, 2017, 9(28): 23353−23369. https://doi.org/10.1021/acsami.7b04971

[67]

J.P. Cheng, Y.J. Gu, Y.J. Wang, et al. Nanotherapeutics in angiogenesis: Synthesis and in vivo assessment of drug efficacy and biocompatibility in zebrafish embryos. International Journal of Nanomedicine, 2011, 6: 2007−2021. https://doi.org/10.2147/IJN.S20145

[68]

M. Wierzbicki, E. Sawosz, M. Grodzik, et al. Comparison of anti-angiogenic properties of pristine carbon nanoparticles. Nanoscale Research Letters, 2013, 8(1): 195. https://doi.org/10.1186/1556-276X-8-195

[69]

Y. Cao, Y.M. Luo. Pharmacological and toxicological aspects of carbon nanotubes (CNTs) to vascular system: A review. Toxicology and Applied Pharmacology, 2019, 385: 114801. https://doi.org/10.1016/j.taap.2019.114801

[70]

C.J. Deng, C. Xu, Q. Zhou, et al. Advances of nanotechnology in osteochondral regeneration. WIREs Nanomedicine and Nanobiotechnology, 2019, 11(6): e1576. https://doi.org/10.1002/wnan.1576

[71]

C. Zietz, P. Bergschmidt, R. Lange, et al. Third-body abrasive wear of tibial polyethylene inserts combined with metallic and ceramic femoral components in a knee simulator study. The International Journal of Artificial Organs, 2013, 36(1): 47−55. https://doi.org/10.5301/ijao.5000189

[72]

G.G. Walmsley, A. McArdle, R. Tevlin, et al. Nanotechnology in bone tissue engineering. Nanomedicine: Nanotechnology, Biology and Medicine, 2015, 11(5): 1253−1263. https://doi.org/10.1016/j.nano.2015.02.013

[73]

G.M. Cooper, M.P. Mooney, A.K. Gosain, et al. Testing the critical size in calvarial bone defects: Revisiting the concept of a critical-size defect. Plastic and Reconstructive Surgery, 2010, 125(6): 1685−1692. https://doi.org/10.1097/prs.0b013e3181cb63a3

[74]

B.Q. Pei, W. Wang, N. Dunne, et al. Applications of carbon nanotubes in bone tissue regeneration and engineering: Superiority, concerns, current advancements, and prospects. Nanomaterials, 2019, 9(10): 1501. https://doi.org/10.3390/nano9101501

[75]

R. Eivazzadeh-Keihan, A. Maleki, M. de la Guardia, et al. Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review. Journal of Advanced Research, 2019, 18: 185−201. https://doi.org/10.1016/j.jare.2019.03.011

[76]

K. Brindhadevi, H.A. Garalleh, A. Alalawi, et al. Carbon nanomaterials: Types, synthesis strategies and their application as drug delivery system for cancer therapy. Biochemical Engineering Journal, 2023, 192: 108828. https://doi.org/10.1016/j.bej.2023.108828

[77]
K.S.K. Krishna Rao, T.J. Sudha Vani, B. Adi Lakshmi, et al. Surface modified carbon nanotubes for bone tissue engineering. In: Surface Modified Carbon Nanotubes Volume 2: Industrial Applications. J. Aslam, C.M. Hussain, R. Aslam, Eds. Washington, DC: American Chemical Society, 2022: 117.
[78]

Y.L. Liu, G. Wu, K. de Groot. Biomimetic coatings for bone tissue engineering of critical-sized defects. Journal of the Royal Society Interface, 2010, 7(suppl_5): S631−S647. https://doi.org/10.1098/rsif.2010.0115.focus

[79]

H. Stamm. Nanomaterials should be defined. Nature, 2011, 476(7361): 399. https://doi.org/10.1038/476399c

[80]

R.E. McMahon, L.N. Wang, R. Skoracki, et al. Development of nanomaterials for bone repair and regeneration. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2013, 101B(2): 387−397. https://doi.org/10.1002/jbm.b.32823

[81]

J. Ro, C. Park, J.T. Kim, et al. Enhancing lysozyme loading in powderized liposomes by controlling encapsulation processes. Bulletin of the Korean Chemical Society, 2017, 38(7): 744−750. https://doi.org/10.1002/bkcs.11164

[82]
V.P. Chavda. Nanobased nano drug delivery. In: Applications of Targeted Nano Drugs and Delivery Systems. Amsterdam: Elsevier, 2019: 69–92. https://doi.org/10.1016/b978-0-12-814029-1.00004-1
[83]

Y. Franco, T. Vaidya, S. Ait-Oudhia. Anticancer and cardio-protective effects of liposomal doxorubicin in the treatment of breast cancer. Breast Cancer: Targets and Therapy, 2018, 10: 131−141. https://doi.org/10.2147/bctt.s170239

[84]

F. Danhier, O. Feron, V. Préat. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. Journal of Controlled Release, 2010, 148(2): 135−146. https://doi.org/10.1016/j.jconrel.2010.08.027

[85]

Y.H. Yao, Y.X. Zhou, L.H. Liu, et al. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Frontiers in Molecular Biosciences, 2020, 7: 193. https://doi.org/10.3389/fmolb.2020.00193

[86]

H. Zhang, R.Y. Li, X. Lu, et al. Docetaxel-loaded liposomes: Preparation, pH sensitivity, Pharmacokinetics, and tissue distribution. Journal of Zhejiang University SCIENCE B, 2012, 13(12): 981−989. https://doi.org/10.1631/jzus.b1200098

[87]
Y. Yao, Z.H. Su, Y.C. Liang, et al. pH-Sensitive carboxymethyl chitosan-modified cationic liposomes for sorafenib and siRNA co-delivery. International Journal of Nanomedicine, 2015, 10: 6185–6197. https://doi.org/10.2147/IJN.S90524. eCollection 2015
[88]

J.A. de Lemos, A.M. Navar. A life-course approach to cardiovascular disease prevention. Nature Medicine, 2022, 28(6): 1133−1134. https://doi.org/10.1038/s41591-022-01870-8

[89]
A. Seifalian. A new era of cancer treatment: Carbon nanotubes as drug delivery tools. International Journal of Nanomedicine, 2011: 2963. https://doi.org/10.2147/ijn.s16923
[90]

S. Beg, M. Rizwan, A.M. Sheikh, et al. Advancement in carbon nanotubes: Basics, biomedical applications and toxicity. Journal of Pharmacy and Pharmacology, 2011, 63(2): 141−163. https://doi.org/10.1111/j.2042-7158.2010.01167.x

[91]
S. Hampel, D. Kunze, D. Haase, et al. Carbon nanotubes filled with a chemotherapeutic agent: A nanocarrier mediates inhibition of tumor cell growth. Nanomedicine, 2008, 3(2): 175–182. https://pubmed.ncbi.nlm.nih.gov/18373424/
[92]

R.A. Soni, M.A. Rizwan, S. Singh. Opportunities and potential of green chemistry in nanotechnology. Nanotechnology for Environmental Engineering, 2022, 7(3): 661−673. https://doi.org/10.1007/s41204-022-00233-5

[93]
Ambika, P.P. Singh. Advances in carbon nanomaterial-based green nanocomposites. In: Emerging Carbon‐Based Nanocomposites for Environmental Applications. A.K. Mishra, C.M. Hussain, S.B. Mishra, Eds. Scrivener Publishing LLC, 2020: 175–201.
[94]
M. Nasrollahzadeh, S.M. Sajadi, Z. Issaabadi, et al. Biological sources used in green nanotechnology. In: Interface Science and Technology. Amsterdam: Elsevier, 2019: 81–111. https://doi.org/10.1016/b978-0-12-813586-0.00003-1
[95]

T.N.V.K.V. Prasad, V. Subba Rao Kambala, R. Naidu. A critical review on biogenic silver nanoparticles and their antimicrobial activity. Current Nanoscience, 2011, 7(4): 531−544. https://doi.org/10.2174/157341311796196736

[96]

N. Pantidos. Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. Journal of Nanomedicine & Nanotechnology, 2014, 5: 5. https://doi.org/10.4172/2157-7439.1000233

[97]

P. Singh, Y.J. Kim, D.B. Zhang, et al. Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology, 2016, 34(7): 588−599. https://doi.org/10.1016/j.tibtech.2016.02.006

[98]

D. Nath, P. Banerjee. Green nanotechnology–A new hope for medical biology. Environmental Toxicology and Pharmacology, 2013, 36(3): 997−1014. https://doi.org/10.1016/j.etap.2013.09.002

[99]

A.N. Geraldes, A.A. da Silva, J. Leal, et al. Green nanotechnology from plant extracts: Synthesis and characterization of gold nanoparticles. Advances in Nanoparticles, 2016, 5(3): 176−185. https://doi.org/10.4236/anp.2016.53019

[100]

F. Khan, M. Shariq, M. Asif, et al. Green nanotechnology: Plant-mediated nanoparticle synthesis and application. Nanomaterials, 2022, 12(4): 673. https://doi.org/10.3390/nano12040673

[101]

S. Ahmad, S. Munir, N. Zeb, et al. Green nanotechnology: A review on green synthesis of silver nanoparticles - an ecofriendly approach. International Journal of Nanomedicine, 2019, 14: 5087−5107. https://doi.org/10.2147/IJN.S200254

[102]
R. Mondal, M.D. Yilmaz, A.K. Mandal. Green synthesis of carbon nanoparticles: Characterization and their biocidal properties. In: Handbook of Greener Synthesis of Nanomaterials and Compounds. Amsterdam: Elsevier, 2021: 277–306. https://doi.org/10.1016/b978-0-12-822446-5.00013-7
[103]

L.N. Wu, X. Cai, K. Nelson, et al. A green synthesis of carbon nanoparticles from honey and their use in real-time photoacoustic imaging. Nano Research, 2013, 6(5): 312−325. https://doi.org/10.1007/s12274-013-0308-8

[104]

J.P. Kumar, R. Konwarh, M. Kumar, et al. Potential nanomedicine applications of multifunctional carbon nanoparticles developed using green technology. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 1235−1245. https://doi.org/10.1021/acssuschemeng.7b03557

[105]

S. Kesavan, K.S. Meena, R. Dhakshinamoorthy. Bioactive polysaccharides based graphene oxide nanoparticle as a promising carrier for anticancer drug delivery. Biointerface Research Applied Chemistry, 2022, 12(3): 3429−3445. https://doi.org/10.33263/briac123.34293445

[106]
J.M. Gutiérrez-Hernández, D.M. Escobar-García, A. Escalante, et al. In vitro evaluation of osteoblastic cells on bacterial cellulose modified with multi-walled carbon nanotubes as scaffold for bone regeneration. Materials Science & Engineering C, Materials for Biological Applications, 2017, 75: 445–453. https://doi.org/10.1016/j.msec.2017.02.074
[107]

Y.X. Fang, S.J. Guo, D. Li, et al. Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles. ACS Nano, 2012, 6(1): 400−409. https://doi.org/10.1021/nn2046373

[108]

F.Y. Du, M.M. Zhang, X.F. Li, et al. Economical and green synthesis of bagasse-derived fluorescent carbon dots for biomedical applications. Nanotechnology, 2014, 25(31): 315702. https://doi.org/10.1088/0957-4484/25/31/315702

[109]

S.M. Mousavi, K. Yousefi, S.A. Hashemi, et al. Renewable carbon nanomaterials: Novel resources for dental tissue engineering. Nanomaterials, 2021, 11(11): 2800. https://doi.org/10.3390/nano11112800

[110]

N. Vasimalai, V. Vilas-Boas, J. Gallo, et al. Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition. Beilstein Journal of Nanotechnology, 2018, 9: 530−544. https://doi.org/10.3762/bjnano.9.51

Nano Biomedicine and Engineering
Pages 357-369
Cite this article:
Banihashemi Jozdani SM, Hashemian Z, Ebrahim Damavandi S, et al. Emerging Trends in the Biomedical Application of Carbon-based Nanomaterials. Nano Biomedicine and Engineering, 2024, 16(3): 357-369. https://doi.org/10.26599/NBE.2024.9290091

965

Views

177

Downloads

0

Crossref

1

Scopus

Altmetrics

Received: 06 December 2023
Revised: 09 April 2024
Accepted: 03 June 2024
Published: 12 August 2024
© The Author(s) 2024.

This is an open-access article distributed under  the  terms  of  the  Creative  Commons  Attribution  4.0 International  License (CC BY) (http://creativecommons.org/licenses/by/4.0/), which  permits  unrestricted  use,  distribution,  and reproduction in any medium, provided the original author and source are credited.

Return