Breast cancer has always been a research hotspot in the medical field due to its highest incidence and mortality rates among women worldwide. However, the significant molecular heterogeneity of breast cancer presents major challenges for its diagnosis and treatment. Surface-enhanced Raman spectroscopy (SERS) has gained considerable attention for its capability in trace detection and molecular analysis. To accurately identify different breast cancer cell subtypes, constructing reliable SERS bioprobes is essential. Therefore, a specific highly expressed receptor, human epidermal growth factor receptor 2 (HER-2), was employed to explore SERS bioprobes in this study. Two bioprobes capable of targeting breast cancer cells, Au NPs@4-MBA@PDA@aHER-2 and Au NPs@4-MPY@PDA@aHER-2, were synthesized. SERS performance testing indicated that the Au NPs were able to detect and trace molecules at concentrations as low as 2 × 10–9 mol/L. Additionally, the two bioprobes exhibited good spectral stability with a relative standard deviation (RSD) of 9.58%. Moreover, by constructing a “symphonic SERS spectra” of the two bioprobes with prominent component analysis-linear discriminant analysis (PCA-LDA), the classification accuracy of distinguishing white blood cells (WBCs) and two breast cancer cell subtypes (SK-BR-3 and MDA-MB-231) reached up to 97.33%. The integration of machine learning with SERS detection provides a novel technological pathway for the early diagnosis and personalized treatment of breast cancer.
B. Han, R. Zheng, H. Zeng, et al. Cancer incidence and mortality in China, 2022. Journal of the National Cancer Center, 2010, 4: 47−53. https://doi.org/10.1016/j.jncc.2024.01.006
A.N. Giaquinto, H. Sung, K.D. Miller, et al. Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians, 2022, 72(6): 524−541. https://doi.org/10.3322/caac.21754
Z.Y. He, Z. Chen, M.D. Tan, et al. A review on methods for diagnosis of breast cancer cells and tissues. Cell Proliferation, 2020, 53(7): e12822. https://doi.org/10.1111/cpr.12822
P.A. Carney, J.P. Yi, L.A. Abraham, et al. Reactions to uncertainty and the accuracy of diagnostic mammography. Journal of General Internal Medicine, 2007, 22(2): 234−241. https://doi.org/10.1007/s11606-006-0036-9
D. Barba, A. León-Sosa, P. Lugo, et al. Breast cancer, screening and diagnostic tools: All you need to know. Critical Reviews in Oncology/Hematology, 2021, 157: 103174. https://doi.org/10.1016/j.critrevonc.2020.103174
Y. Bareche, D. Venet, M. Ignatiadis, et al. Unravelling triple-negative breast cancer molecular heterogeneity using an integrative multiomic analysis. Annals of Oncology, 2018, 29(4): 895−902. https://doi.org/10.1093/annonc/mdy024
A. Li, J.M. Keck, S. Parmar, et al. Characterizing advanced breast cancer heterogeneity and treatment resistance through serial biopsies and comprehensive analytics. NPJ Precision Oncology, 2021, 5: 28. https://doi.org/10.1038/s41698-021-00165-4
M.A. Subhan, F. Parveen, H. Shah, et al. Recent advances with precision medicine treatment for breast cancer including triple-negative sub-type. Cancers, 2023, 15(8): 2204. https://doi.org/10.3390/cancers15082204
N. Iqbal, N. Iqbal. Human epidermal growth factor receptor 2 (HER2) in cancers: Overexpression and therapeutic implications. Molecular Biology International, 2014, 2014: 852748. https://doi.org/10.1155/2014/852748
P. Tarantino, D. Trapani, G. Curigliano. Mastering the use of novel anti-HER2 treatment options. JCO Oncology Practice, 2021, 17(10): 605−606. https://doi.org/10.1200/OP.21.00216
J.S. Ross, J.A. Fletcher, G.P. Linette, et al. The HER-2/ neu gene and protein in breast cancer 2003: Biomarker and target of therapy. The Oncologist, 2003, 8(4): 307−325. https://doi.org/10.1634/theoncologist.8-4-307
C. Gutierrez, R. Schiff. HER2: Biology, detection, and clinical implications. Archives of Pathology & Laboratory Medicine, 2011, 135(1): 55−62. https://doi.org/10.5858/2010-0454-rar.1
A. Aisa, S.S. Weng, X.Y. Li, et al. Immune checkpoint inhibitors combined with HER-2 targeted therapy in HER-2 positive gastroesophageal cancer. Critical Reviews in Oncology/Hematology, 2022, 180: 103864. https://doi.org/10.1016/j.critrevonc.2022.103864
Y. Xu, C.J. Wang, Y.L. Xu, et al. Changes in the detection of human epidermal growth factor receptor 2 gene (Her-2) status for Her-2 fluorescent in situ hybridization testing. Chinese Medical Journal, 2022, 135(7): 849−850. https://doi.org/10.1097/cm9.0000000000001733
M. Yarbakht, M. Nikkhah, A. Moshaii, et al. Simultaneous isolation and detection of single breast cancer cells using surface-enhanced Raman spectroscopy. Talanta, 2018, 186: 44−52. https://doi.org/10.1016/j.talanta.2018.04.009
S.M. Swain, M. Shastry, E. Hamilton. Targeting HER2-positive breast cancer: Advances and future directions. Nature Reviews Drug Discovery, 2023, 22(2): 101−126. https://doi.org/10.1038/s41573-022-00579-0
M. Kumar, U. Kumar, A.K. Singh. Therapeutic nanoparticles: Recent developments and their targeted delivery applications. Nano Biomedicine and Engineering, 2022, 14(1): 38−52. https://doi.org/10.5101/nbe.v14i1.p38-52
C.Y. Meng, Z. Chen, G. Li, et al. Nanoplatforms for mRNA therapeutics. Advanced Therapeutics, 2021, 4(1): 2000099. https://doi.org/10.1002/adtp.202000099
J.Y. Cao, S. Hu, W.X. Tang, et al. Reactive hydrogel patch for SERS detection of environmental formaldehyde. ACS Sensors, 2023, 8(5): 1929−1938. https://doi.org/10.1021/acssensors.2c02676
H. Kim, B.T. Trinh, K.H. Kim, et al. Au@ZIF-8 SERS paper for food spoilage detection. Biosensors & Bioelectronics, 2021, 179: 113063. https://doi.org/10.1016/j.bios.2021.113063
X.M. Tang, H. Jiang, R.M. Wen, et al. Advancements and challenges on SERS-based multimodal biosensors for biotoxin detection. Trends in Food Science & Technology, 2024, 152: 104672. https://doi.org/10.1016/j.jpgs.2024.104672
L. Guerrini, R.A. Alvarez-Puebla. Multiplex SERS chemosensing of metal ions via DNA-mediated recognition. Analytical Chemistry, 2019, 91(18): 11778−11784. https://doi.org/10.1021/acs.analchem.9b02385
X.Y. Meng, J. Yu, W.X. Shi, et al. SERS detection of trace carcinogenic aromatic amines based on amorphous MoO3 monolayers. Angewandte Chemie International Edition, 2024, 63(33): e202407597. https://doi.org/10.1002/anie.202407597
J.L. Jiang, X.Y. Cui, Y.X. Huang, et al. Advances and prospects in integrated nano-oncology. Nano Biomedicine and Engineering, 2024, 16(2): 152−187. https://doi.org/10.26599/nbe.2024.9290060
S. Schlücker. Surface-enhanced Raman spectroscopy: Concepts and chemical applications. Angewandte Chemie International Edition, 2014, 53(19): 4756−4795. https://doi.org/10.1002/anie.201205748
Q.Q. Li, H.Q. Huo, Y. Wu, et al. Design and synthesis of SERS materials for in vivo molecular imaging and biosensing. Advanced Science, 2023, 10(8): e2202051. https://doi.org/10.1002/advs.202202051
M.L. Patterson, M.J. Weaver. Surface-enhanced Raman spectroscopy as a probe of adsorbate-surface bonding: Simple alkenes and alkynes adsorbed at gold electrodes. The Journal of Physical Chemistry, 1985, 89(23): 5046−5051. https://doi.org/10.1021/j100269a032
M.J. Zhang, X.Y. Meng, J. Yu, et al. A novel Fe2O3@CeO2 heterojunction substrate with high surface-enhanced Raman scattering performance. SmartMat, 2024, 5(6): e1301. https://doi.org/10.1002/smm2.1301
X.T. Wang, L. Guo. SERS activity of semiconductors: Crystalline and amorphous nanomaterials. Angewandte Chemie International Edition, 2020, 59(11): 4231−4239. https://doi.org/10.1002/anie.201913375
O. Guselnikova, H. Lim, H.J. Kim, et al. New trends in nanoarchitectured SERS substrates: Nanospaces, 2D materials, and organic heterostructures. Small, 2022, 18(25): e2107182. https://doi.org/10.1002/smll.202107182
J. Lin, J. Yu, O.U. Akakuru, et al. Low temperature-boosted high efficiency photo-induced charge transfer for remarkable SERS activity of ZnO nanosheets. Chemical Science, 2020, 11(35): 9414−9420. https://doi.org/10.1039/d0sc02712j
J. Yu, C. Chen, J. Lin, et al. Amorphous Co(OH)2 nanocages achieving efficient photo-induced charge transfer for significant SERS activity. Journal of Materials Chemistry C, 2022, 10(5): 1632−1637. https://doi.org/10.1039/d1tc05770g
G. Awiaz, J. Lin, A.G. Wu. Recent advances of Au@Ag core–shell SERS-based biosensors. Exploration, 2023, 3(1): 20220072. https://doi.org/10.1002/EXP.20220072
N. Sher, M. Ahmed, N. Mushtaq, et al. Acetylcholinesterase activity in the brain of rats: Presence of an inhibitor of enzymatic activity in Heliotropium eichwaldi L. induced silver/gold allied bimetallic nanoparticles. Nano Biomedicine and Engineering, 2023, 15(3): 317−329. https://doi.org/10.26599/nbe.2023.9290034
A. Shekhar, S. Singh, K. Gupta, et al. Comprehensive review of available nanotechnological techniques for treating nonsolid tumors. Nano Biomedicine and Engineering, 2023, 15(2): 191−198. https://doi.org/10.26599/nbe.2023.9290023
X.Y. Meng, L. Qiu, G.C. Xi, et al. Smart design of high-performance surface-enhanced Raman scattering substrates. SmartMat, 2021, 2(4): 466−487. https://doi.org/10.1002/smm2.1058
J. Lin, X.H. Ma, A.R. Li, et al. Multiple valence states of Fe boosting SERS activity of Fe3O4 nanoparticles and enabling effective SERS-MRI bimodal cancer imaging. Fundamental Research, 2024, 4(4): 858−867. https://doi.org/10.1016/j.fmre.2022.04.018
M. He, J. Lin, O.U. Akakuru, et al. Octahedral silver oxide nanoparticles enabling remarkable SERS activity for detecting circulating tumor cells. Science China Life Sciences, 2022, 65(3): 561−571. https://doi.org/10.1007/s11427-020-1931-9
Y.M. Zhang, L. Lin, J. Ye. A rapid and universal method for depth estimation of lesions in heterogeneous tissues via photosafe ratiometric transmission Raman spectroscopy. View, 2023, 4(4): 20230022. https://doi.org/10.1002/viw.20230022
X. Zhao, X.J. Liu, D.X. Chen, et al. Plasmonic trimers designed as SERS-active chemical traps for subtyping of lung tumors. Nature Communications, 2024, 15: 5855. https://doi.org/10.1038/s41467-024-50321-0
L. Xu, Y.J. Xie, J. Lin, et al. Advancements in SERS-based biological detection and its application and perspectives in pancreatic cancer. ESS Open Archive Eprints, 2023, 553: 55324580. https://doi.org/10.22541/au.169199835.55324580/v1
X.W. Xu, J. Lin, Y.H. Guo, et al. TiO2-based Surface-Enhanced Raman Scattering bio-probe for efficient circulating tumor cell detection on microfilter. Biosensors and Bioelectronics, 2022, 210: 114305. https://doi.org/10.1016/j.bios.2022.114305
Y.J. Xie, L. Xu, J.H. Zhang, et al. Precise diagnosis of tumor cells and hemocytes using ultrasensitive, stable, selective cuprous oxide composite SERS bioprobes assisted with high-efficiency separation microfluidic chips. Materials Horizons, 2024, 11(22): 5752−5767. https://doi.org/10.1039/d4mh00791c
G.C. Zheng, I. Pastoriza-Santos, J. Pérez-Juste, et al. Plasmonic metal-organic frameworks. SmartMat, 2021, 2(4): 446−465. https://doi.org/10.1002/smm2.1047
L.E. Jamieson, S.M. Asiala, K. Gracie, et al. Bioanalytical measurements enabled by surface-enhanced Raman scattering (SERS) probes. Annual Review of Analytical Chemistry, 2017, 10: 415−437. https://doi.org/10.1146/annurev-anchem-071015-041557
E. Papadopoulou, S.E.J. Bell. Label-free detection of single-base mismatches in DNA by surface-enhanced Raman spectroscopy. Angewandte Chemie International Edition, 2011, 50(39): 9058−9061. https://doi.org/10.1002/anie.201102776
B.J. Hao, K.G. Wang, Y.K. Zhou, et al. Label-free detecting of the compaction and decompaction of ctDNA molecules induced by surfactants with SERS based on a nanoPAA-ZnCl2-AuLs solid substrate. ACS Omega, 2020, 5(2): 1109−1119. https://doi.org/10.1021/acsomega.9b03294
N.B. Yi, C. Zhang, Q.H. Song, et al. A hybrid system with highly enhanced graphene SERS for rapid and tag-free tumor cells detection. Scientific Reports, 2016, 6: 25134. https://doi.org/10.1038/srep25134
Y.P. Xu, J. Lin, X.X. Wu, et al. A TiO2-based bioprobe enabling excellent SERS activity in the detection of diverse circulating tumor cells. Journal of Materials Chemistry B, 2022, 10(20): 3808−3816. https://doi.org/10.1039/d2tb00464j
T. Pan, D.H. Zhang, G.M. You, et al. PD-L1 targeted iron oxide SERS bioprobe for accurately detecting circulating tumor cells and delineating tumor boundary. Chinese Chemical Letters, 2025, 36(1): 109857. https://doi.org/10.1016/j.cclet.2024.109857
J. Lin, D.H. Zhang, J. Yu, et al. Amorphous nitrogen-doped carbon nanocages with excellent SERS sensitivity and stability for accurate identification of tumor cells. Analytical Chemistry, 2023, 95(10): 4671−4681. https://doi.org/10.1021/acs.analchem.2c05272
D.H. Zhang, J. Lin, Y.P. Xu, et al. A novel dual-function SERS-based identification strategy for preliminary screening and accurate diagnosis of circulating tumor cells. Journal of Materials Chemistry B, 2023, 11(40): 9666−9675. https://doi.org/10.1039/d3tb01545a
L. Bottou. From machine learning to machine reasoning. Machine Learning, 2014, 94(2): 133−149. https://doi.org/10.1007/s10994-013-5335-x
X.Y. Zhu, Y. Li, N. Gu. Application of artificial intelligence in the exploration and optimization of biomedical nanomaterials. Nano Biomedicine and Engineering, 2023, 15(3): 342−353. https://doi.org/10.26599/nbe.2023.9290035
B.S.S. SivaRao, B.S. Rao. EfficientNet - XGBoost: An effective white-blood-cell segmentation and classification framework. Nano Biomedicine and Engineering, 2023, 15(2): 126−135. https://doi.org/10.26599/nbe.2023.9290014
J. Plou, P.S. Valera, I. García, et al. Machine learning-assisted high-throughput SERS classification of cell secretomes. Small, 2023, 19(51): e2207658. https://doi.org/10.1002/smll.202207658
X.F. Lu, J.L. Meng, H.T. Wang, et al. DNA replication stress stratifies prognosis and enables exploitable therapeutic vulnerabilities of HBV-associated hepatocellular carcinoma: An in-silico precision oncology strategy. The Innovation Medicine, 2023, 1(1): 100014. https://doi.org/10.59717/j.xinn-med.2023.100014
Z.H. Sun, H. Yin, K.L. Liu, et al. Machine learning accelerated calculation and design of electrocatalysts for CO2 reduction. SmartMat, 2022, 3(1): 68−83. https://doi.org/10.1002/smm2.1107
M.A. Aslam, M.A. Munir, R. Ahmad, et al. Deep neural networks for prediction of cardiovascualr diseases. Nano Biomedicine and Engineering, 2022, 14(1): 81−89. https://doi.org/10.5101/nbe.v14i1.p81-89
M. Greenacre, P.J.F. Groenen, T. Hastie, et al. Principal component analysis. Nature Reviews Methods Primers, 2022, 2(1): 100. https://doi.org/10.1038/s43586-022-00184-w
S.P. Zhao, B. Zhang, J. Yang, et al. Linear discriminant analysis. Nature Reviews Methods Primers, 2024, 4: 70. https://doi.org/10.1038/s43586-024-00346-y
X.L. Wu, Z.X. Liu, Y.X. Liu, et al. Construct high performance SERS sensing platform assisted by machine learning. Alexandria Engineering Journal, 2023, 81: 284−289. https://doi.org/10.1016/j.aej.2023.09.029
T. Huang, H.Y. Xu, H.T. Wang, et al. Artificial intelligence for medicine: Progress, challenges, and perspectives. The Innovation Medicine, 2023, 1(2): 100030. https://doi.org/10.59717/j.xinn-med.2023.100030
X.X. Wu, L.Q. Luo, S. Yang, et al. Improved SERS nanoparticles for direct detection of circulating tumor cells in the blood. ACS Applied Materials & Interfaces, 2015, 7(18): 9965−9971. https://doi.org/10.1021/acsami.5b02276
W.H. Qian, M. Xing, M. Ye, et al. Reproducible and acid-responsive Rhodamine B/PEG functioned nanographene oxide-Au nanocomposites for surface-enhanced Raman scattering sensing. SmartMat, 2024, 5(6): e1305. https://doi.org/10.1002/smm2.1305
T.S. Lan, D.X. Cui, T.Y. Liu, et al. Gold NanoStars: Synthesis, modification and application. Nano Biomedicine and Engineering, 2023, 15(3): 330−341. https://doi.org/10.26599/nbe.2023.9290025
R. Yang, Y. Gao, Z.J. Ouyang, et al. Gold nanostar-based complexes applied for cancer theranostics. View, 2022, 3(3): 20200171. https://doi.org/10.1002/viw.20200171
X.B. Mang, L.Q. Yao. Grazing-incidence small-angle X-ray scattering property of double-layered gold nanoparticle arrays. Rare Metals, 2022, 41(10): 3585−3590. https://doi.org/10.1007/s12598-016-0736-1
X.B. Mang, L.Q. Yao. Hexagonal packing lattice formed by functionalized gold nanoparticles. Rare Metals, 2022, 41(11): 3858−3864. https://doi.org/10.1007/s12598-016-0744-1